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Summary

This supplementary information document contains a detailed description of the PrISMa

platform, including:

• A description of all investigated Case Studies (Section 8) and various databases used

in each layer of the platform (Section 2).

• A detailed description of all the layers in the platform and the methods used in each

of the layers (Section 3).

• A description of the assumptions for the MEA benchmark case (Section 4), as well as

a detailed comparison of the predicted versus experimental isotherms (Section 5).

• A description of all the KPIs and data generated by the platform can be found in

Table S5. This table links to the sections in which the properties and KPIs are defined.

• A description of the Spearman analysis we conducted to identify our reference KPIs

(Section 7).

• A detailed description of the different stakeholder’s views on all case studies is in

Section 8.

• A detailed analysis of the impact of water on KPIs and the limits of the model (Sec-

tion 9).

• A description of the applied optimization and obtained results (Section 10), and the

different feedback loops of the platform (Section 11).

• A description of the experimental structures investigated and/or evaluated in this work

(Section 12).
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1 Case studies

The Process-Informed design of tailor-made Sorbent Materials (PrISMa) platform has been

designed to screen solid adsorbent materials for carbon capture. The PrISMa platform can

be applied to a range of case studies that are defined by a CO2 source, a CO2 sink, a

process configuration, and a particular geographic region in the world. The specifications

of the flue/industrial gas (e.g., flow rate, composition, temperature, and pressure) and the

availability of resources and utilities (e.g., heat, electricity) change depending on the CO2

source. The CO2 sink defines the specifications of the product stream from the capture

process (e.g., purity, temperature, and pressure). The techno-economic analysis and the life

cycle assessment consider parameters specific to each geographic region.

This work analyzes a range of case studies (66 in total) to demonstrate the versatility of

the PrISMa platform and assess the effect of CO2 concentration, region-specific parameters,

availability of utilities, fuel, and electricity prices on the selection of the optimal materials

for a specific case study. Table S1 summarizes the case studies presented in this work,

corresponding to 22 source-sink-region-utility combinations combined with three process

configurations.

Three CO2 sources are investigated: an onshore Natural Gas Combined Cycle (NGCC)

power plant, a pulverized coal-fired power plant, and a cement plant. The plants can be

located in five geographic regions, i.e., the UK, the USA, Switzerland, and China (two

provinces). The northern and southern electricity grids of China differ strongly in carbon

intensity, and we use the Guangdong and Shandong regions as representatives for the North

and South, respectively. Coal power plants are not used in Switzerland and are therefore

excluded in the case studies related to coal. Energy prices in the UK are taken for two

years, 2019 and 2022, to consider the considerable increase in electricity and natural gas

prices due to unforeseen circumstances. The captured CO2 is sent to geological storage in

all case studies. As capture technologies, we consider Temperature Swing Adsorption (TSA)

and Temperature Vacuum Swing Adsorption (TVSA) with two vacuum levels 0.2 bar and

S-9



0.6 bar. As utilities, we either use the available utilities at the host plant and/or, if required,

additional thermal energy for heating can be generated using natural gas or electric boilers,

and the electricity grid can supply electricity demand.

In Table S2, we summarize the main flue/industrial gas and host plant characteristics, the

required CO2 product purity, and conditions from the CO2 sink. In Table S3, the regional

energy costs and main cost factors used for the case studies are presented.
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Table S1: Summary of all case studies.

Source Sink Process Conf. Region Ref. Year Heating Supply Cooling Supply Electricity Supply

NGCC Geo. storage
TSA
TVSA (0.6 bar)
TVSA (0.2 bar)

UK
2019

Steam extraction
NG boiler

Existing cooling
Additional cooling

Onsite power
Electricity grid

NG boiler Additional cooling

2022 Steam extraction
NG boiler

Existing cooling
Additional cooling

US 2019 Steam extraction
NG boiler

Existing cooling
Additional cooling

China - Shandong 2019 Steam extraction
NG boiler

Existing cooling
Additional cooling

China - Guangdong 2019 Steam extraction
NG boiler

Existing cooling
Additional cooling

Switzerland 2019

Steam extraction
NG boiler

Existing cooling
Additional cooling

NG boiler Additional cooling
Steam extraction
Electric boiler

Existing cooling
Additional cooling

Electric boiler Additional cooling

Coal Geo. storage
TSA
TVSA (0.6 bar)
TVSA (0.2 bar)

UK 2019
Steam extraction
NG boiler

Existing cooling
Additional cooling

Onsite power
Electricity grid

NG boiler Additional cooling

US 2019 Steam extraction
NG boiler

Existing cooling
Additional cooling

China - Shandong 2019 Steam extraction
NG boiler

Existing cooling
Additional cooling

China - Guangdong 2019 Steam extraction
NG boiler

Existing cooling
Additional cooling

Cement Geo. storage
TSA
TVSA (0.6 bar)
TVSA (0.2 bar)

UK 2019 Waste heat
NG boiler

Additional cooling Electricity grid

2022 Waste heat
NG boiler

US 2019 Waste heat
NG boiler

China - Shandong 2019 Waste heat
NG boiler

China - Guangdong 2019 Waste heat
NG boiler

Switzerland 2019

Waste heat
NG boiler
Waste heat
Electric boiler

S-11



Table S2: Parameters characterizing each case study.

Parameter Unit Value Description Ref.

CO2 Source

NGCC power plant

yall -, wet molar basis [0.0396, 0.0838, 0.7438, molar fraction of all species (i.e., CO2, H2O, N2, S1

0.1239, 0.0089] O2, Ar) in feed stream
yfeed,dry -, dry molar basis [0.0432, 0.9568] molar fraction of CO2 and N2 in the dry feed stream S1

yfeed,wet -, wet molar basis [0.0396, 0.0838, 0.8766] molar fraction of CO2, H2O and N2 in the feed S1

Tfeed
◦C 86.8 temperature of feed stream S1

Pfeed bar 1.01 pressure of feed stream S1

Ffeed kg s−1 1330.6 mass flow rate of feed stream (wet) S1

Nfeed mol s−1 42912.41 molar flow rate of feed stream (dry) S1

Nwater mol s−1 3924.97 molar flow rate of water in feed stream S1

Construction time year 3 construction period for reference plant S2

Plant lifetime year 25 lifetime of reference plant S2

Allocation year [0.4, 0.3, 0.3] total capital requirement during construction S2

CO2 intensity kgCO2
/MWh 351.67 direct specific emissions of reference plant S2

primary energy demand MJ(LHV)/MWh 6170.7 direct primary energy demand of reference plant S2

operating hours h/year [3500, 5700, 7500, operating hours for 1st, 2nd, 3rd, ..., Nth year S2

..., 7500]
Host plant utilities power generation system (available power, heat, cooling)
Low pressure steam flow kg s−1 205.0 low pressure steam mass flow to turbine S1

Available power MW 830.0 maximum power available in the plant S2

Coal power plant

yall -, wet molar basis [0.1373, 0.0973, 0.72855, molar fraction of all species (i.e., CO2, H2O, N2, S1

0.0365, 0.00005] O2, Ar) in feed stream
yfeed,dry -, dry molar basis [0.1521, 0.8479] molar fraction of CO2 and N2 in the dry feed stream S1

yfeed,wet -, wet molar basis [0.1373, 0.0973, 0.7651] molar fraction of CO2, H2O and N2 in the feed S1

Tfeed
◦C 50 temperature of feed stream S1

Pfeed bar 1.016 pressure of feed stream S1

Ffeed kg s−1 735.12 mass flow rate of feed stream (wet) S1

Nfeed mol s−1 24016.34 molar flow rate of feed stream (dry) S1

Nwater mol s−1 2589.53 molar flow rate of water in feed stream S1

Construction time year 3 construction period for reference plant S2

Plant lifetime year 40 lifetime of reference plant S2

Allocation year [0.2, 0.3, 0.3, 0.2] total capital requirement during construction S2

CO2 intensity kgCO2
/MWh 771.9 direct specific emissions of reference plant S2

primary energy demand MJ(LHV)/MWh 7955.8 direct primary energy demand of reference plant S2

operating hours h/year [3500, 5700, 7500, operating hours for 1st, 2nd, 3rd, ..., Nth year S2

..., 7500]
Host plant utilities power generation system (available power, heat, cooling)
Low pressure steam flow kg s−1 396.36 low pressure steam mass flow to turbine S1

Available power MW 758.6 maximum power available in the plant S2

Cement plant

yall -, wet molar basis [0.18, 0.09, 0.63, molar fraction of all species (i.e., CO2, H2O, N2, S3

0.10, 0.00] O2, Ar) in feed stream
yfeed,dry -, dry molar basis [0.1978, 0.8022] molar fraction of CO2 and N2 in the dry feed stream S3

yfeed,wet -, wet molar basis [0.18, 0.09, 0.73] molar fraction of CO2, H2O and N2 in the feed S3

Tfeed
◦C 110 temperature of feed stream S3

Pfeed bar 1.013 pressure of feed stream S3

Ffeed kg s−1 107.81 mass flow rate of feed stream (wet) S3

Nfeed mol s−1 3229.18 molar flow rate of feed stream (dry) S3

Nwater mol s−1 319.37 molar flow rate of water in feed stream S3

Construction time year 3 construction period for reference plant S3

Plant lifetime year 25 lifetime of reference plant S3

Allocation year [0.4, 0.3, 0.3] total capital requirement during construction S2

CO2 intensity kgCO2
/t cement 653 total specific emissions of reference plant S4

primary energy demand MJ(LHV)/MWh 2306.67 direct primary energy demand of reference plant S4

operating hours h/year [7998, 7998, 7998, operating hours for 1st, 2nd, 3rd, ..., Nth year S4

..., 7998]
Host plant utilities industrial site (available waste heat)
Available waste heat MW 8.2 heat recovered from clinker cooler calculated in this work –
Cooler air exhaust temperature ◦C 285 temperature of the air leaving the clinker cooler S4

CO2 sink

purity - 0.96 required purity of CO2 product stream before compression S1

pressure bar 110.0 final pressure of CO2 product stream after compression S1

temperature ◦C 40.0 temperature for CO2 compression S1
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Table S3: Parameters characterizing each region

Parameter Unit Value Description Ref.
Region UK Switzerland US China China

Guangdong Shandong

Location factor – 1 1 1 0.77 0.77 Location factor multiplies Total Direct Cost S5

CEPCI US2019 607.5 Chemical Engineering Plant Cost Index S6
US2022 804.6

Operator cost factor – 1 1 1 0.2 0.2 Multiplies yearly cost per operator S5

Electricity cost (2019) e /MWh 131.7 107.0 60.9 98.25 80.80 annual average electricity cost S7 S8

NG cost (2019) e /MWh 24.63 59.65 11.52 37.12 37.12 annual average natural gas cost S9 S10

Coal cost (2019) e /MWh 9.42 – 5.43 10.91 10.97 annual average coal cost S9 S11 S12

Electricity cost (2022) e /MWh 216.3 – – – – Jan-Sep 2022 average electricity cost S7

NG cost (2022) e /MWh 54.99 – – – – Jan-Sep 2022 average natural gas cost S7

Coal cost (2022) e /MWh 32.14 – – – – Jan-Sep 2022 average coal cost S9
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2 The PrISMa databases

The PrISMa platform uses various databases (see Figure S1) at each layer:

Materials layer: In this layer, “material properties" is the database that contains the re-

quired physical properties of the materials together with the thermodynamic adsorption

properties. These data can be obtained experimentally or from molecular simulations.

These molecular simulations use as input the crystal structures stored in “material

data".

Process layer: The process model uses data on equipment (stored in “equipment data") as

well as process parameters and operational conditions (stored in “process data") that

are characteristic for the case study. The process database uses the information from

the case study to provide a list of equipment and operating conditions of the process

that best suit the case study.

Techno-Economic Analysis layer: The TEA uses region-specific data on the utilities

(stored in “utilities data"), including the availability of utilities at the CO2 source,

as well as region-specific data related to the cost of materials and construction (stored

in “economic data"). The utility database contains all the information necessary for its

in-built utility models. Both process and utility databases are linked to the equipment

database, which provides the design, input, and cost data necessary to evaluate process

and utilities performance and cost.

Life Cycle Assessment layer: The LCA uses region-specific Life Cycle Impact Assess-

ment (LCIA) scores of the background system taken from commercial LCA databases

(stored in “LCIA data") and Life Cycle Inventory (LCI) data for the predictive LCA

model (stored in “LCI data").

Additionally, in the PrISMa platform, the case studies are defined and characterized in

a “Case Study Database”. This overarching case study database (not shown in Figure S1) is
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developed to provide all parameters needed to describe a case study fully and shared across

all layers. This database lists CO2 sources, CO2 sinks, and regions worldwide.

Two other aspects of relevance to describe the case study are the economic parameters

and the region. Economic parameters are case-specific (e.g., the plant’s lifetime might vary

depending on the type of industry) and are retrieved from the economic database. The region

impacts the carbon footprint of utilities and their cost. The relevant information is obtained

by linking the information of the CO2 source and region to the economic database. Region-

specific LCIA scores of the background system are taken from commercial LCA databases

and shared across the TEA and LCA layers to ensure consistent data use. LCI data for

the predictive LCA model is taken from the literature (for details on the LCIA and LCI

databases, see Section 3.4).
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Figure S1| A diagram of the PrISMa platform. The flowchart consists of the process-
ing steps (main models/frameworks that are represented as rectangles, i.e., molecular sim-
ulations, process evaluation, techno-economic analysis, and life cycle assessment), the input
(data and databases) and output (KPIs) information (represented as rhomboids). Databases
in the case study (see process bar banner) are highlighted in dark gray.
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3 Methods

In this section, we describe in detail the methods that we use in the four layers of the Process-

Informed design of tailor-made Sorbent Materials (PrISMa) platform (see Figure S1).

3.1 Materials layer

In the materials layer, we ensure that all thermodynamic data needed for the process layer

are available. This layer differs from the other layers as the workflow that generates the data

(“molecular simulations") is a separate workflow that computes the thermodynamic data for

all case studies in the PrISMa “Case Studies Database” and for all materials in the “materials

data” database. For those materials for which the required thermodynamic data is available

experimentally, the data can be uploaded directly in the “material properties” database.

3.1.1 Material properties

The materials screening starts from the material layer, which computes all the material prop-

erties necessary for its subsequent process evaluation. In this layer, nanoporous crystalline

structures, in this case, MOFs, are retrieved from open-access databases or by accessing

experimentally obtained data.

We either use the experimental or the in silico crystal structure as a starting point for

those materials without experimental data. From the crystal structure, we can directly

compute the properties of the crystal (e.g., crystal density or heat capacity), and we also use

the crystal structure as input for a molecular simulation. From the molecular simulation, we

obtain the adsorption thermodynamics for CO2, N2, and H2O (see Section 3.1.2).

Crystal structures. We developed a procedure to curate experimental MOF structures for

computational screening studies summarized in Figure S2. We start with the Computation-

Ready Experimental MOF (CoRE-MOF) database-2019.S13,S14 This database is a MOF sub-

set of structures from the Cambridge Structural Database (CSD).S15 The disorder has been
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removed for those structures, missing hydrogen atoms have been added, and coordinated

and floating solvents in the pores have been removed.

In our curation, as a first step, we keep only those MOF structures, of which the chemical

structure contains carbon and a metal. From the remaining structures, we remove all the non-

porous structures by constraining our set to structures that have an accessible pore volume

to the N2 probe radii 1.86Å.S16 In addition, we remove all structures that contain floating

atoms in the crystal structure. After these basic checks, we remove the structures which

are not physically realistic. For this, we check chemical structures that contain close contact

atoms (pairwise distance smaller than 0.5Å) or have atoms with large point charges (absolute

value larger than 3 A.U. computed using the extended charge equilibration methodS17,S18).

The last step is to remove the duplicate structures. In this work, two MOFs are identified to

be identical if their labeled crystal graphs are isomorphic using NetworkX.S19–S21 The crystal

graphs are computed using the bond cutoff distances implemented in VESTA programS22

and then labeled using atom types. The codes and procedures for performing the calculations

are made available in the MOFChecker program.S23

To further refine these structures, we use periodic Density Functional Theory (DFT) to

optimize the chemical structures. The procedure for these DFT calculations is described in

full detail in our previous publications.S24,S25 In addition, the workflows for these calculations

can be accessed via AiiDa-lsmo plugin (https://github.com/lsmo-epfl/aiida-lsmo),

where we published the Automated Interactive Infrastructure and Database for Compu-

tational Science (AiiDA),S26 workflows. All calculations are performed using CP2K.S27 We

use our machine-learning algorithmS28 to assign the oxidation state of metal atoms in MOF

structures, which is used to infer the initial magnetization of the system. The DFT calcu-

lations are performed within the generalized gradient approximation (GGA) level of theory

using Perdew–Burke–Ernzerhof (PBE) exchange-correlation functional with DFT-D3(BJ)

dispersion corrections.S29,S30 We use GTH pseudopotentialsS31 and DZVP-MOLOPT-SR

contracted Gaussian with an auxiliary plane wave basis set.
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From these Density Functional Theory (DFT) calculations we obtain the partial charges

using the Density Derived Electrostatic and Chemical net atomic charges (DDEC)S32 pro-

tocol.S17

CURATED-MOF

INPUT STRUCTURES

Basic Checks

Remove Unphysical Structures

Deduplicate

DFT optimization

Figure S2|CURATED-MOF. Schematic of the steps used to curate MOF structures.

In silico MOF structures are obtained from the work of Boyd et al. S33 , Park et al. S34 , and

Majumdar et al. S35 . These structures are generated using the ToBasCCo,S36 PORMAKE,S37

and ToBaCCoS38 codes, respectively and optimized using the Universal Force Field (UFF)

force-field.S39 In addition, we used the database assembled by,S21 which contains about 30,000

structures. The atomic partial charges are generated using the extended charge equilibration

method.S18

Crystal properties. Physical properties such as crystal density and void fraction are

obtained using Zeo++.S16 For example, the density is computed by summing up the mass of

all atoms of the unit cell and dividing it by the volume. The pore volume is computed by

filling the pores with a probe molecule (see Ongari et al. S40 for more details).

Heat capacity. We estimate the heat capacity of each material using the machine learning

tool developed by Moosavi et al. S25 . This method accurately predicts the heat capacity for

a MOF, Covalent Organic Framework (COF), or zeolite based on its crystal structure.
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3.1.2 Molecular simulations

Force field The adsorption properties are obtained using molecular simulationS41 and the

Automated Interactive Infrastructure and Database for Computational Science (AiiDA).S26

The crystals are assumed to be rigid in these simulations. The Transferable Potentials

for Phase Equilibria Force Field (TraPPE)S42 force-field is used to describe the CO2 and

N2 molecules, whereas, the TIP4P/2005 modelS43 is used to describe the H2O molecules.

The crystal atoms are described using the Universal Force Field (UFF) force-field.S39 The

Lorentz-Berthelot combining rules are used to define the interactions between atom pairs.

Henry coefficient and zero loading heat of adsorption Constant Number of Particles,

Volume, and Temperature (NVT) Monte Carlo simulations with one adsorbed molecule are

used to compute the Henry coefficients and enthalpy of adsorption at zero loading of CO2,

N2, and H2O.

Pure component isotherms The pure component adsorption isotherms are computed

using Grand-Canonical Monte Carlo (GCMC) simulations using the procedure developed

by Moubarak et al. S44 . In this method, we efficiently compute the adsorption isotherm at

a reference temperature of 298.15K and use the loading-dependent enthalpy of adsorption

to compute the isotherms at other temperatures using the Clausius-Clapeyron equation.

Moubarak et al. S44 have shown that this procedure typically gives the binary data within

an error of 10% compared to a GCMC simulation at the same conditions. In this work,

we corrected the calculation of the loading dependence of the heat of adsorption for the

non-ideal gas behavior of the gas phase. This correction showed a 2–3% improvement in our

mixture predictions at high temperatures and pressures.

Mixture isotherms Based on the assumptions in our process model, the adsorption col-

umn is segregated into a dry and a wet part (see Section 3.2.1), which requires binary and

ternary mixture data, respectively.
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Mixture isotherms: Binary We use the pure component isotherms from the GCMC sim-

ulations to predict the mixture isotherms using Ideal Adsorbed Solution Theory (IAST).S45

Moubarak et al. S44 have shown that at the conditions of all our case studies, the IAST

predictions agree with mixture simulations for most materials.

To identify cases for which IAST fails to give an accurate prediction, we perform a single-

state point binary GCMC simulation for each material. These binary simulations are carried

out at the adsorption conditions of each of the case studies, and we compute the logarithm of

the ratio of loading of CO2 or N2 as obtained from IAST and GCMC. We find this flag to be

much smaller than 0.1 for most materials. If this test shows a higher value, the predictions

of the mixture isotherms might not be reliable, and one should do additional simulations of

mixture GCMC and fit the data separately.

Mixture isotherms: Ternary The process model (see Section 3.2.1) requires as input

the N2, CO2, H2O loading at the adsorption conditions, which are obtained from a ternary

GCMC simulation. For the desorption step, the loadings are much lower, and we can assume

that the water adsorption is independent of N2 and CO2 and therefore follows directly from

a pure component H2O GCMC simulation at desorption conditions. This is then combined

with the IAST predictions for N2 and CO2.

Water Resistance coefficient To assess which structures are affected the most/least by

the presence of water vapor in the flue gas, we perform multi-component GCMC simulations

at adsorption conditions of each case study (e.g., 1.013 25 bar and 37 ◦C for the cement case

study).

First, we run binary GCMC simulation corresponding to a dry flue gas and extract the

binary CO2 capacity (qCO2,dry
). Then, we run ternary GCMC calculations on wet basis,

extract the ternary CO2 capacity (qCO2,wet
), and compute the ternary selectivity of CO2/N2,

CO2/H2O and N2/H2O. From these results, we compute the ratio of the CO2 capacity in
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the ternary mixture over its capacity in the binary mixture (see Section 6.1.4), which we

refer to as Water resistance coefficient (WRC).

3.1.3 Flexibility of the MOFs

In our simulations, we assume that the MOFs are rigid. Flexibility can have different impacts

on the adsorption isotherms. We observe a structural change for some MOFs at a particular

gas pressure. An example of such a material is MIL-53-NH2 (see Section 5.2.4). We have

developed two different computational approaches to detect these structural changes,,S46,S47

and we would apply these methods to assess the mechanical stability of a material. However,

these methods are relatively computationally intensive, and, therefore, we would do this only

once we select a material for subsequent synthesis.

Another important effect is that flexibility can impact the “binding site". Witman

et al. S48 have shown that, in the case of an optimal binding site, in which a ligand is

exactly at the right position to give a very low binding site, thermal motion can have a

significant impact on these binding sites. These binding sites have an important contribu-

tion to the Henry coefficients. We used the procedure of Witman et al. S48 to test whether

linker flexibility impacts the Henry coefficients. In this procedure, we perform molecular

dynamics simulations of the MOF using LAMMPSS49 and UFF4MOF.S50 If flexibility im-

pacts adsorption properties, one would expect to observe large fluctuations in the Henry

coefficient along this molecular dynamics trajectory. To quantify this effect, we simulate

100 ps, and we collect 20 snapshots along this trajectory and compute the Henry coefficient

for each of these snapshots. The standard deviation of the log of these Henry coefficients is

of interest. If this standard deviation is low, one can expect that the assumption we can use

rigid crystals is valid. We then rank the materials according to their standard deviation, and

we use as a threshold a value of 1 to flag materials for which flexibility significantly impacts

the adsorption thermodynamics. This value of 1 corresponds to the accuracy at which our

model can predict the experimental data (see Section 5.6).
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3.1.4 Output of the layer

The outputs of the materials layer are four KPIs and the foreground data for the process

layer. The complete list of all materials outputs is given in Table S5.

3.2 Process layer

The process layer aims to evaluate the technical performance of solid sorbent-based carbon

capture technologies. In the process layer, we focus on the operation of a single column.

The process accounts for all steps that an adsorption column undergoes for separating the

CO2 from the feed stream and the regeneration of the material. At the next layer, i.e., the

TEA, we determine the number of columns required for the specific case study. The process

layer is developed flexibly and can be integrated with various process configurations. The

process model enables the evaluation of the performance of a material in a pre-defined process

configuration and provides essential data (i.e., process KPIs and foreground data listed in

Table S5) that are necessary for TEA and LCA. In addition to the operation of the adsorption

column, the process layer considers equipment that is necessary for the CO2 capture process

(i.e., vacuum pump) and the delivery of the CO2 at sink conditions (i.e., compressor). Any

pre-treatment of the flue gas before it enters the capture plant is not considered other than

the cooling required to bring its temperature down to the temperature of the adsorption

step.

3.2.1 Process description

In this work, we consider a 3-step Temperature Swing Adsorption (TSA) and a 5-step Tem-

perature Vacuum Swing Adsorption (TVSA) process (see Figure S3), that consists of the

following steps: (i) for TVSA: Adsorption Step (AS), Vacuum Step (VS), Intermediate Heat-

ing Step (IHS), Heating Step (HS) and Cooling Step (CS), and (ii) for TSA: AS, HS and

CS. It is expected that for less concentrated feed gas streams, the 5-step TVSA process will

enable more materials to meet the CO2 purity requirements for geological storage compared
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to a simple 3-step TSA. It has been shown that a TVSA process is efficient in recovering the

dilute component.S51,S52

In our screening exercise, we consider that our process conditions are fixed. Given these

conditions, we screen for the top-performing materials. These conditions include: A TFEED

or TLOW of 37 ◦C, a TMED of 47 ◦C (10 ◦C higher than TLOW), and a THIGH of 120 ◦C. The

selection of TLOW and THIGH follows from typical adsorption and regeneration temperatures

when considering the limitations of the flue gas cooling system in the host plant and the

materials’ stability at high temperatures, respectively. The value of TMED was set as 10 ◦C

higher than TLOW to avoid losing too much CO2 in the Intermediate Heating Step (IHS) when

heating (and discharging CO2). From this initial screening, we identify the top-performing

materials, and for these materials, we perform an optimization step in which we relax the

most important process conditions (see Section 10).

In the current process configurations, the adsorption column is modeled as a packed

multi-tubular heat exchanger column where all tubes are filled with the pelletized adsorbent

material. The outer column has fixed dimensions, i.e., 8m length and 1.3 length-to-diameter

ratio. The adsorbent material is assumed to be in pellet form with a porosity ϵpellet = 0.35 and

a porosity of the bed ϵbed = 0.37. The column undergoes sequential adsorption, vacuum,

heating, and cooling steps. The impact of water on the process performance has been

segregated into two major contributions: 1) reduction in working capacity of CO2 due to

competitive co-adsorption, and 2) direct impact on regeneration energy requirements due to

cyclic adsorption/desorption of H2O. The different steps are described in more detail in

the next sections.

Adsorption step In the Adsorption Step (AS), the flue gas is assumed to be a mixture of

N2, CO2, and H2O, where all gases get adsorbed.

During adsorption, we assume ideal breakthrough behavior, so equilibrium is reached

instantaneously (i.e., negligible mass transfer resistances) for both the adsorbed and gas
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Figure S3| 5-step TVSA process. A schematic illustration of the 5-step TVSA process:
Adsorption Step (AS), Vacuum Step (VS), Intermediate Heating Step (IHS), Heating Step
(HS), and Cooling Step (CS).
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phases, and the adsorption front moves as a step profile through the column. Such an ideal

front follows from assuming that we have negligible radial gradients, thermal dispersion, and

axial mixing, no pressure drop along the column, and the temperature of the heat exchange

fluid is homogeneous along the column. All properties are homogeneous over a phase, i.e.,

there is no difference in property between the bulk and the boundary within a phase.

The adsorption step is operated until the incipient breakthrough of the CO2 front from

the column. The total amount of CO2 that is captured during this step is calculated as

the difference between the equilibrium loading of CO2 at the adsorption conditions and that

at the start of the adsorption step/end of CS for the respective dry and wet regions in the

column. During the breakthrough, a nearly pure N2 stream leaves the column, which is part

of the “waste stream.” As shown in Figure S3, during this step, the temperature and pressure

of the column remain constant, and we refer to these as the adsorption conditions.

The performance evaluation of the adsorption process is conducted under Cyclic Steady

state (CSS) conditions, under which the column undergoes an identical operating trajectory

from cycle to cycle.S53 We first determine the penetration length of the water concentration

front (LH2O
, m) under CSS to permit further assessment of moisture-related impact on the

average working capacity of the bed.

Generally, the propagation velocities of the respective component concentration fronts

within the adsorption column during dynamic cyclic operation are non-equal.S54,S55 If H2O

travels at a lower velocity relative to CO2, the bed will segregate into two distinct water-

loaded and water-free zones wherein competitive co-adsorption manifests only in the former.

This is the case for nearly all materials studied in this work. Experimental breakthrough

measurements show that this behaviour applies for numerous CO2 sorbents, including 13X

zeoliteS56,S57 and several MOFs (such as UTSA-16S58 and CALF-20S59). The different speeds

of concentration wave propagation serve as the foundation for managing moisture and other

strongly adsorbing trace components during adsorptive separations.S60,S61 The feasibility

of preserving relative CO2 and H2O concentration front positions under cyclic steady state
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operation of adsorptive CO2 capture processes has been proposed based on numerical process

simulationsS62 and corroborated by experimental observations.S56,S63

For CSS, there is no accumulation from cycle to cycle; therefore, the amount of water

fed into the bed will equal the amount of water recovered by heating/evacuation. This

mass balance at CSS is formulated below in which the penetration length of the water

concentration front LH2O,m is a variable:S63

∫ LH2O

0

(
qi,H2O

− qf,H2O

)
ρbulkAbed dZ =

∫ tAS

0

AbedufPw

RT
dt = t(AS) ṅfeed yH2O,feed (S1)

Abed (m2) is the cross-sectional area of the column, Pw (kPa) is the partial pressure of water

in the flue gas, ρbulk (kgm−3) is the bulk density of the sorbent, and uf (ms−1) is the velocity

of the feed flue gas. qi,H2O
and qf,H2O

(mol kg−1) denote the local solid phase water loadings

at the beginning and end of the adsorption step, respectively. yH2O,feed is the mole fraction

of H2O in the feed (flue gas), and ṅfeed (mol s−1) is the molar flow rate of the feed stream.

The integral
∫ LH2O

0 (qi,H2O
− qf,H2O

) dZ may be interpreted as the cyclic working capacity for

water.

An idealized analysis can be performed by assuming shock front profiles for adsorption

and desorption and instantaneous mass transfer between the fluid and the adsorbent. Then,

the integral may be estimated by:S64

∫ LH2O

0

(qi,H2O
− qf,H2O

)ρbulkAbed dZ = ρbulkAbedLH2O
(qH2O,feed − qH2O,des) (S2)

where (qH2O,feed − qH2O,des) is the difference between the equilibrium uptakes at the feed and

final desorption conditions. Under realistic operation conditions, spreading at either or both

the adsorption and desorption concentration fronts is anticipated, reducing the separation

performance.S65 In addition, we assume equilibrium single-component H2O uptake is repre-

sentative of the mixture co-adsorption uptake of H2O. This is a reasonable assumption for

some materials (e.g., zeolitic sorbents),S66 but exceptions have been observed. For exam-
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ple, suppression of water uptake by CO2 for CALF-20S59 has been observed at CO2partial

pressures of ∼97 kPa, but these conditions are way in excess of the range considered in the

present case studies (4 to 20 kPa). Observing that the water content at the adsorber inlet for

our various case studies is near saturation levels, we further approximate the feed uptake by

the estimated geometric saturation loading of H2O from Zeo++ calculations. After applying

the above assumptions, solution of Equation (S1) yields a simplified expression for LH2O
:

LH2O
=

t(AS)Abed
ufPw

RT

ρbulkAbed(qH2O,sat,geom − qH2O,des)
=

t(AS) ṅfeed yH2O,feed

AbedWCH2O

(S3)

In Equation (S3), we make a conservative assumption and use the duration of the adsorption

step t(AS) as determined for the dry case (see Section 3.2.2) to approximate t(AS), thus

avoiding an iterative solution.

We can derive a similar expression as Equation (S3) for LCO2
by combining Equa-

tions (S6), (S40) and (S42) to give:

LCO2
=

nCO2, out (HS)

AbedWC CO2

≈
nCO2, in (AS) Recovery CO2

Abed WC CO2

=
t(AS)ṅfeed yCO2,feed

ηsat

Recovery CO2

AbedWC CO2

(S4)

See Section 6.2.4 for more details on how the CO2 working capacity is calculated consid-

ering the impact of water sorption.

Vacuum step The Vacuum Step (VS) together with the Intermediate Heating Step (IHS)

and Heating Step (HS) complete the regeneration process, but we do not collect the product

until the HS starts. The aim of the VS is to increase the purity of the product (CO2 rich)

stream. At the end of the AS, the void space in the column1 contains gas with a composition

that is equal to that in the feed gas stream. During the VS, the bed is exposed to a rapid

(instantaneous) vacuum, and as a result, we remove (part of) the gas phase, which goes to the

waste stream. During this step, the adsorbed phase is assumed to be “frozen” and, therefore,
1We assume that the total void space is the sum of the void space in the pellets and the void space in

the bed.
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it is expected that the quick change in the bulk pressure will not affect the adsorbed phase

concentration. Santori et al. S52 and Charalambous S67 have given a detailed description of

this step.

Once we stop applying the vacuum, the column will equilibrate again but at a lower

total pressure than the initial feed pressure. We can compute the new partial pressures

in the gas phase and the new loadings in the adsorbed phase from the mass balance and

adsorption thermodynamics. In our model, we follow a step-wise approach in which we

apply this vacuum step several times until the rate of pressure change calculated from the

last three steps is below a set value. The final equilibrium pressure in the bed is PVAC−MED

(see Figure S3, step 2). During these vacuum steps, the removed gas phase is rich in N2, and

we increase the CO2 concentration in the column. Hence, the purity of our product stream

increases, but as we add some CO2 to the waste stream, we lower the recovery.

Intermediate Heating Step We can further increase the purity of our product if we

heat the bed to an intermediate temperature. At this higher temperature, the gas phase

will contain a higher concentration of the weaker bound component (i.e., N2). This heating

process is conducted in a series of ten consecutive steps until we reach a temperature TMED

(see Figure S3, step 3). At the start of the intermediate heating step, the pressure in

the column will be the final pressure of the Vacuum Step (VS), and the pressure is further

decreased during the Intermediate Heating Step (IHS) to the final vacuum pressure, Pvac. The

pressure decrease happens as a step change during the first sequential step in the temperature

profile and is kept constant at Pvac during the remaining steps.

Heating Step During the Heating Step (HS), the bed is further heated in ten steps to the

final heating temperature, THIGH (see Figure S3, step 4). In this step, we have an open end

for collecting the CO2 rich product at constant vacuum pressure.
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Cooling Step During the Cooling Step (CS), the bed is pressurized and cooled down in ten

steps by flowing the feed stream through an open end of the bed. This results in a pressure

increase from the vacuum to the pressure of the feed stream PFEED and simultaneous cooling

of the bed to the temperature of the feed stream TFEED (see Figure S3, step 5). During this

step, no gas leaves the column. Hence, all the feed gas that enters the bed and gets adsorbed

stays in the bed. In this step, the total amount of flue gas we must let in to achieve the

desired temperature and pressure in the column is unknown. This amount is then calculated

from the mass balance, i.e., the difference between the amount of CO2 and N2 at the end of

the HS and the end of the CS. At the end of the CS, the partial pressure of CO2 in the gas

phase will be (significantly) lower than its partial pressure in the flue gas.

3.2.2 Cycle time

For the process and subsequent Techno-Economic Analysis (TEA) and Life Cycle Assessment

(LCA) evaluation, it is important to compute the effective cycle time of the carbon capture

process. We define our tcycle (h) as the total time required to operate all steps that a single

column undergoes, i.e., is the sum of the five steps in our TVSA process:

tcycle = t(AS) + t(VS) + t(IHS) + t(HS) + t(CS). (S5)

The time to operate the AS is given by the time it takes for the adsorption front to break

through, which can be obtained from the total amount of CO2 that is captured during the

AS:

t(AS) =
ηsat nAS,CO2

ṅfeed yfeed
, (S6)

where ηsat is the saturation efficiency of the column, which is set to one for this study, nAS,CO2

is the total number of moles of CO2 captured in the AS, yfeed is the mole fraction of CO2 in

the feed (flue gas), and ṅfeed (mol s−1) is the molar flow rate of feed stream.
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The time to operate the VS is determined by the total volume of gas that is removed

during the vacuum step (VVS,out) over the flux of the pump:

t(VS) =
VVS,out

υoutAtubes

, (S7)

in which υout (ms−1) is the velocity of the gas leaving the column and Atubes (m2) is the

total cross-sectional area of the tubes.

The heating and cooling times associated with IHS, HS, and CS follow from the time it

takes to heat/cool the bed from an initial temperature T0 to a final temperature T1.

t(IHS), (HS), (CS) =
cp, bed Vbed |T1 − T0|+Hads

U AVbed (THEX − T1+T0

2
)

, (S8)

where cp, bed (kJm−3K−1) is the heat capacity of the packed bed, which is calculated using

cp, solid from material layer; Vbed (m3) is the bed volume; Hads (kJ) is the (multi-component)

enthalpy of adsorption; U is the heat transfer resistance (kJm−2 s−1K−1), which is assumed

to be constant, i.e., independent of composition, temperature, and pressure of the fluid and

adsorbed phase, and fixed for all the materials. A (m2m−3) refers to the heat transfer area

and THEX (K) is the temperature of the heat exchanger media.

3.2.3 Energy requirements

In the process layer, we compute the specific thermal energy for heating, the specific thermal

energy for cooling, and the specific electrical energy.

Specific thermal energy for heating The specific thermal energy for heating, qth in

kJmol−1, is defined as the sum of the total (multi-component) enthalpy of adsorption, Hads
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(kJ), and the sensible heat, Qsens (kJ), in the Intermediate Heating Step (IHS) and Heating

Step (HS) per amount of CO2 collected in the HS, nHS,CO2
,

qth =
Qsens +Hads

nHS,CO2

. (S9)

where Qsens is the sum of heat required to bring the adsorbent from the feed temperature

TLOW to the intermediate temperature, TMED, in the IHS, and the heat required to further

increase the temperature of the bed to the desorption temperature, THIGH, in the HS (see

Figure S3). In this calculation, we assume that the contribution of the gases in the adsorbed

and bulk-gas phase is negligible (see Moosavi et al. S25):

Qsens = msolid

∫ THIGH

TLOW

cp, solid dT = msolid cp, solid [(TMED − TLOW) + (THIGH − TMED)] (S10)

Here, msolid (kg) is the total mass of the adsorbent in the bed. The heat capacity of the

solid cp, solid (kJ kg−1K−1) is obtained from the foreground data of the material layer (see

Section 3.1.1).

To compute the energy needed to undo the adsorption (Hads), we assume that the en-

thalpy of adsorption of each component is independent of the composition and loading. With

these assumptions, Hads follows from:

Hads =

Ncomp∑
i=1

−∆hi ni (S11)

where ni is the total number of moles of component i adsorbed in the AS and for ∆hi

(kJmol−1), we use the average pure component isosteric heat of adsorption, which is obtained

the data in the material layer (see Section 3.1.2).
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The thermal energy associated with regenerating the water-loaded sorbents, HH2O
(kJ),was

calculated by an analogous expression to Equation (S11).

HH2O
= −∆(hH2O

nH2O
) = −∆hH2O

· ρbulk ALH2O
·
(
qH2O, sat, geom − qH2O, des

)
(S12)

The change in the solid phase loading of water, ∆nH2O
, was derived by weighting the ap-

proximated change in uptake (qH2O,sat,geom−qH2O,des) (mol kg−1) by the total mass of sorbent

in the water-loaded zone (ρbulkALH2O
, kg). Meanwhile, the pure component isosteric heat

of adsorption for H2O, −∆hH2O
(kJmol−1), is obtained from molecular simulations (see

Section 3.1.2).

Specific thermal energy for cooling In the process, cooling is needed in the following

steps, each demanding distinct amount of energy:

• QTherm Cool (kJ), is the thermal cooling energy required in the Cooling Step (CS);

• QDCC (kJ), is the cooling energy required in the direct contact cooler (DCC), where

the flue gas stream is cooled down to the temperature required in the Adsorption Step

(AS), TFEED (K), and where part of the water is condensed out, ncond water;

• Qcondenser (kJ), is the cooling energy required in the condenser, where the CO2 rich

product stream collected in the Heating Step (HS) is cooled down to Tcool (K) prior to

entering the compression train, and;

• Qcompr (kJ) is the cooling energy required in the intercoolers located between com-

pressor stages. A compressor train is needed for those case studies in which the CO2

sink is geological storage, and the CO2 product needs to be pressurized to 110 bar.

For TVSA process configurations, a compressor is also needed to bring the CO2 rich

product stream from Pvac to atmospheric pressure before it is sent to the compressor

train.
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Hence, the total specific thermal energy for cooling, qth, cooling (kJmol−1), can be calculated

by adding all the different terms and normalizing them by the amount of CO2 collected in

the Heating Step (HS), nHS,CO2
, mol, as follows:

qth, cooling =
QTherm Cool +Qcompr +QDCC +Qcondenser

nHS,CO2

. (S13)

The thermal energy in the Cooling Step (CS) is computed similarly to the specific thermal

energy for heating (see Section 3.2.3); the sum of the sensible heat, Qsens (kJ), and (multi-

component) enthalpy of adsorption, Hads (kJ):

QTherm Cool = Qsens +Hads (S14)

The thermal energy required to cool down the flue gas feed stream from Tflue gas to TFEED is

given by:

QDCC = [nflue gas, in hfg(Tflue gas)− nflue gas, out hfg(TFEED)] + ncond water hlatent(TFEED). (S15)

Here nflue gas, in and nflue gas, out (mol) are the number of moles of flue gas entering and exiting

the direct contact cooler; hfg (kJmol−1) is the enthalpy of the flue gas, Tflue gas (K) is the

temperature of the flue gas leaving the host plant; TFEED (K) is the temperature required at

the Adsorption Step (AS); ncond water (mol) is the number of moles of condensed water; and

hlatent (kJmol−1) is the latent heat of condensation at a given temperature.

The thermal energy required to cool the CO2 rich product stream from the desorption

temperature, THIGH, to Tcool is given by:

Qcondenser = [nproduct, in hgas(THIGH)− nproduct, out hgas(Tcool)] + ncond water hlatent(Tcool). (S16)
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Here nproduct, in and nproduct, out(mol) are the number of moles of product entering and exiting

the condenser; hgas (kJmol−1) is the enthalpy of the mixture in the product stream, Tcool

(K) is the outlet temperature, which is 313K for our cooling system.

The cooling duty of the compressor intercoolers is given by:

Qcompr =
Nc∑
j=1

[n2j hgas(T2j)− n2j+1 hgas(Tcool) + ncond water hlatent(Tcool)] . (S17)

Here, n2j and n2j+1 (mol) are the number of moles of each of the mixture components in

the product stream entering and leaving the j-intercooling stage, respectively; T2j (K) is

the temperature of the fluid downstream of the compressor stage j, and; Tcool (K) is the

intercooling temperature, which is 313K for our cooling system.

The amount of condensed water, ncond water (mol), and molar composition of the outlet

stream in a given cooling step, i.e., DCC, cooler, compressor intercoolers, when the gas stream

is cooled down below the dew temperature, Tdew, follows directly from a mass balance around

the cooler and water knock-out drum and is evaluated as:

ncondwater = nin − nout, (S18)

nout = nin

(1− yH2O, in)

(1− yH2O, sat)
, (S19)

yH2O, out = yH2O, sat, (S20)

yi, out = yi, in
(1− yH2O, sat)

(1− yH2O, in)
for i ̸= H2O, (S21)

where nin and nout (mol) are the inlet and outlet total number of moles to a given cooling

stage, respectively; yi, in and yi, out are the molar fraction of a component i in the inlet and

outlet streams; yH2O, in and yH2O, out are the molar fractions of water in the inlet and outlet

streams; and yH2O, sat is the molar fraction of water at saturation in the outlet stream, which
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is calculated as the saturation (vapor) pressure of water at Tcool, Psat(Tcool)(bar), divided by

the total pressure of the gas stream, Ptotal (bar), according to:

yH2O, sat =
Psat(Tcool)

Ptotal

. (S22)

Specific electrical energy The specific electrical energy, wel (kJmol−1), is defined as the

energy needed to operate the vacuum pump during the VS and IHS of the capture process

and to operate the compressor used to pressurize the product stream that leaves the capture

plant to the conditions required for geological storage:

wel =
Wel, vacuum +Wel, compression

nHS,CO2

. (S23)

We compute each term using the expression of the polytropic compression work (a reversible

process which involves both heat and work transfer)S68 shown in Equation (S24).

Wel,vacuum =
1

ηp

n

n− 1
n1RT1

((
P2

P1

)n−1
n

− 1

)
, (S24)

(
n− 1

n

)
=

(
γmix − 1

γmix

)
· 1

ηp
. (S25)

Here, ηp is the polytropic efficiency of the equipment (i.e., vacuum pump or compressor),

n is the polytropic coefficient, γmix is the ratio of the heat capacity at constant pressure to

heat capacity at constant volume of the mixture, and ‘1’ and ‘2’ indices correspond to the

stream upstream and downstream of the equipment, respectively.

For a Nc-multistage compression system that is composed of Nc compressor alternated

with Nc intercoolers, one divides the thermodynamic path from suction to discharge pressure

and temperature into a number of steps with the same (polytropic) efficiency. In each j-
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compression stage, the fluid is compressed from the state (2j-1) to the state (2j), and the

fluid goes through a cooling process from the state 2j to the state (2j+1). The compression

work is calculated as follows:

Wel,compression =
Nc∑
j=1

1

ηp

n

n− 1
n2j−1RT2j−1

((
P2j

P2j−1

)n−1
n

− 1

)
, (S26)

n2j = n(2j+1)

(1− yH2O,(2j))

(1− yH2O, sat at Tcool
)
, (S27)

P2j = P2j+1, (S28)

T2j−1 = T2j+1 = Tcool. (S29)

Here, T1 and P1 are the suction temperature and pressure, respectively, and T2Nc and P2Nc

are the discharge temperature and pressure. Iterative calculations are employed to determine

the number of compression stages, Nc, ensuring that the exit temperature from the initial

compression stage remains below 200◦C.S69 The process assumes a constant pressure ratio

for each compression stage. Assumptions include constant polytropic efficiency ηp for each

compression stage, ideal gas behavior of the working fluid with constant heat capacity, and

neglecting pressure drop in the intercoolers (Equation (S28)).

3.2.4 Validation of the layer

Our 3-step TSA model is based on the approach of Ajenifuja et al. S70 . We used the authors’

results to validate our model. For this validation, we considered the same case study as

the authors, i.e., the CO2 capture from post-combustion carbon capture systems. We also

consider a binary mixture of CO2 and N2 adsorbed on zeolite 13X with a CO2 molar fraction

of 0.12 in the feed stream. All results were in good agreement in terms of purity, recovery,

working capacity, and specific thermal energy.
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The validated TSA model was then modified to the 5-step TVSA model presented above.

The performance of this model was compared against an in-house detailed model developed

in gPROMSS71 and described by Young et al. S51 .

The modifications to model the water distribution in the column are derived from the

strategy of Webley and coworkers.S63 They reflect the qualitative behavior observed from

dynamic wet experimentsS57,S58 and cyclic separation involving wet mixtures.S56,S63 The pen-

etration length concept has also been used in tandem with detailed numerical modeling of

PVSA cycles by Leperi et al. S64 .

3.2.5 Output of the layer

The outputs of the process layer are eight process-KPIs and TEA foreground data. The

complete list of all process outputs is in Table S5.

3.3 Techno-Economic Analysis layer

In the Techno-Economic Analysis (TEA) layer, we provide estimates of economic KPIs as

well as foreground data required for the LCA layer.

3.3.1 TEA system boundaries

For the TEA calculations, the first step is to use the output of the process layer for scaling

out from the process design (i.e., the operation of a single column) to the capture plant

design. The capture plant boundaries are illustrated in Figure S4. Similar to the process

layer, the pre-treatment of the flue gas and the transport and storage/utilization processes

are excluded.

3.3.2 CAPEX calculation

The Capital Expenditure (CAPEX) of the capture plant is calculated by following the guide-

lines of Woods, which are based on the Bare Module method for developing screening cost
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Figure S4| TEA system boundaries. Schematic illustration of the system boundaries
considered within the TEA of the adsorption-based carbon capture process.

estimates. In this method, the Free-On-Board (FOB) cost of a specific piece of equipment is

multiplied by factors that account for all the concrete, piping, electrical, insulation, paint-

ing, and supports needed in a space approximately 1m out from the sides of the equipment.

This whole space is called a module, and the factors are referenced to as the Labour and

Materials (LM) costs. The key equipment required at the screening level consists of the

adsorption column and the compressor and/or vacuum pumps necessary to maintain the

required conditions inside the adsorption column.

The Total Direct Cost (TDC) is then estimated by adding the FOB cost multiplied

by the equipment-specific LM factors for all relevant equipment (Section 3.3.2). Next, the

Engineering, Procurement and Construction (EPC) cost is estimated by multiplying the

TDC by the process contingencies (P1), indirect costs (P2), and project contingencies (P3)

factors (Section 3.3.2), respectively. Finally, the Capital Expenditure (CAPEX) is estimated
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by multiplying the EPC cost by a factor that takes into account spare parts, and owners

cost, etc. (P4) (Section 3.3.2).

TDC =
∑

FOB · LM (S30)

EPC = (1 + P1) · (1 + P2) · (1 + P3) · TDC (S31)

CAPEX = (1 + P4) · EPC, (S32)

with P1 = 0.10, P2 = 0.14, P3 = 0.30, and P4 = 0.07.

For these calculations, Aspen Capital Cost EstimatorS72 and the database from WoodsS73

have been used as a source of FOB and LM costs. The work of Rubin et al. S74 has been

used as a source for process and project contingencies.

3.3.3 OPEX calculation

The operational expenditure, OPEX, is calculated annually and considers all plant operation

costs. It is calculated as the sum of fixed operational costs, variable operational costs,

and adsorbent replacement. Fixed costs, such as labor, maintenance, and insurance, are

estimated following the guidelines of EBTF.S75 Variable costs are material dependent and

include materials and costs of utilities that need to be generated in addition to the available

ones in the host plant (see Section 3.3.4). The adsorbent replacement cost, which will depend

on material durability, is calculated based on the assumption that the adsorbent is replaced

every five yearsS76 through the lifetime of the capture plant. This cost is allocated to the year

when the adsorbent needs to be replaced. As there are huge uncertainties regarding the costs

of MOF synthesis, our TEA model assumes the price for all MOFs to be the same (30 e kg−1).

This value is based on a recent analysis of the cost of some MOFS.S77 In Section 8.4.3, we

study the impact of the price on the overall cost of the process. In addition, we obtained

some insights into the cost associated with the metal from the life-cycle assessment KPIs.
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Equation (S33) shows how the lifetime discounted expenditure of the capture plant is

calculated.

OPEX =
Plant lifetime∑

yr=1

OPEXfixed(yr) + OPEXvariable(yr) + αyr,lifetimeCmaterial, repl

(1 +DCF )yr
(S33)

Here, the summation runs over the years the plant is operating, αyr,lifetime is one if the year

is a multiple of the lifetime of the adsorbent; otherwise, zero. Cmaterial, repl (Me) refers to the

cost of material replacement, and DCF is the discounted cash flow rate.

While the OPEX defined in (S33) reflects the costs from a plant’s operator perspective,

the overall cost can be larger if the systems perspective is taken into account. This perspec-

tive is particularly important for power plant generation technologies because the operation

of the carbon capture plant leads to a loss of electricity (i.e., parasitic load) that has to

be compensated by the system. Thus, in our PrISMa platform, we consider an additional

definition of the operational cost that accounts for this compensation by the system, where

we assume the electricity market price for electricity production. For industrial plants, the

system-based operational cost is equal to the OPEX defined in Equation (S33) if the pro-

duction of the industrial site is not affected by the integration of the carbon capture plant,

and no product loss has to be compensated by the system.

3.3.4 Utilities calculation

In Equation (S33), the operational variable costs include the costs of the utilities. Calculating

this cost requires assumptions on how the utilities are supplied to the capture plant. In the

PrISMa platform, we have developed a utility database (see Figure S1) that allows for the

creation of different scenarios.

There are two distinct relevant situations:

1. Utilities (heat, cooling, and power) are available at the CO2 source (the host plant):

In some cases, the use of these utilities in the capture plant leads to a reduction in
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production. This is the case of power plants, where it has been assumed that the fuel

input to the power plant is the same with and without carbon capture. This results in

a reduction of power output and net efficiency when the capture plant is integrated.

In other cases, production is not affected by the use of utilities. For instance, some

industrial sites (e.g., cement plants and oil platforms) might have waste heat streams

that can be used in the capture plant without any impact on production.

2. Utilities (heat, cooling, and power) are not or insufficiently available at the CO2 source:

In this case, the utilities need to be generated at the site or purchased, and they have

to be included in the overall capital and operational expenditure of the plant.

The case study description provides scenarios on how the utilities are supplied to the

capture plant. The generic utility integration method then follows three steps:

1. Availability of utilities and limitations: The database contains upper and lower

limits of energy flows, pressure, and temperature for available utilities. A scenario for

estimating carbon footprint and primary energy use is provided for each utility. These

scenarios are region-dependent. Each case in the database is linked to a region that

considers local energy costs and local carbon footprints.

2. Estimation of required energy flows: These flows are computed and compared

with available utilities at CO2 source. This step evaluates how much energy can be

supplied from the CO2 source and how much energy needs to be purchased or generated.

The current database contains models for fuel-fired boilers, electrical boilers, and steam

generation from waste heat.

3. Integration or generation of utilities: Utilities can be either integrated from the

CO2 source or generated by adding extra equipment.

For every material, the overall utility consumption is estimated. If additional utility

generation must be included, the TEA framework follows a pre-defined case study-dependent
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list of utilities until the requirements for all utilities are satisfied. In each case study, at least

one utility is unlimited to guarantee the energy supply for each material.

3.3.5 Validation of the layer

Sorbent-based carbon capture is an innovative emerging technology that is in the early stages

of development, and, as a consequence, not all design and cost data are available in the

standard resources. For those components whose data is missing, the design and cost results

are calibrated with data from other industrially available components that share a high

degree of design similarity to the ones in our framework. In this context, design similarity

is established by only choosing cost models and data for comparison from components with

similar upper and lower design limits (pressure and temperature) and similar limits in their

main dimensions (e.g., diameter and length). Commercial software has been used to generate

the data when such data cannot be found in the literature. Table S4 shows a list of the

sources and models used to calibrate the main equipment components of the techno-economic

layer.S78

Table S4: Main equipment components: Data, models, and correlations used to calibrate
the main equipment components in the techno-economic layer

Equipment Design models/ corre-
lations

Performance
data

Cost correlations Cost Data

Turbine/ Power plant S79,S80 S75 [-] S75

Compressor S72 S78,S81 [-] S75,S78,S81

Adsorption Column S72 From process layer S73 [-]

Boilers, coolers, S72 [-] S73 [-]
and other heat exchangers

Cooling tower [-] [-] [-] S75

Direct Contact Cooler S72 S75 [-] S75

3.3.6 Output of the layer

The outputs of the TEA layer are ten TEA KPIs and LCA foreground data, all listed in

Table S5.
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3.4 LCA layer

LCA aims to quantify a product’s or process’s environmental impacts. Generally, this quan-

tification requires detailed data on all life cycle phases, which is usually unavailable in the

early design phase of material discovery. To still incorporate environmental KPIs, we de-

veloped a predictive LCA model for carbon capture using metal-organic frameworks that

predicts the environmental impacts of a carbon capture solution solely from the foreground

data of the capture plant and the molecular structure of the used material.

3.4.1 Goal and scope definition

The goal of the Life Cycle Assessment (LCA) is to estimate the environmental impacts of

the selected carbon capture process for all adsorbent materials to guide material selection

based on LCA KPIs. Generally, the carbon capture plant considered within the PrISMa

platform captures the CO2 from flue gas to reduce the CO2 emissions to the atmosphere.

However, the environmental benefit of reducing the CO2 in the atmosphere is decreased

by direct and indirect emissions, e.g., from utility demand required for plant operation.

Moreover, environmental impact categories beyond climate change are increased and must be

analyzed to ensure overall environmentally benign solutions. To analyze the environmental

impacts, we account for the energy and material exchanges of the capture plant with the

environment during the life cycle of the capture plant. Because our PrISMa platform aims

to compare the KPIs of using different materials for carbon capture serving a specified CO2

sink, we predict the environmental impacts of the captured CO2 from cradle-to-gate. We

define the functional unit that defines the function of our investigated process as ’1 kg CO2

captured’. Consequently, our system boundaries include the carbon capture plant (i.e., the

energy demand of utilities, compensation of parasitic load for power plant case studies, steel

demand for plant construction, material synthesis, and material disposal (see Figure S5)).

Within our system boundaries, we do not consider the environmental impacts of the CO2

source and flue gas treatment and the CO2 transportation, utilization, or storage, which are
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expected to be the same for all materials and the Mono-Ethanol-Amine (MEA) benchmark

process.
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Figure S5| LCA system boundaries. Schematic illustration of the system boundaries
considered within the LCA of the adsorption-based carbon capture process.

3.4.2 Life cycle inventory

To assess the environmental impacts of the entire life cycle of the carbon capture plant, we

divide our model into three phases: 1) the use phase of the carbon capture plant, 2) the

materials synthesis phase, and 3) the materials disposal phase.

Use phase in carbon capture plant. Our predictive LCA model for the use phase of the

carbon capture plant calculates the environmental impact using foreground data provided by

the TEA model (cf., Section 6.3.11). The model captures the environmental impacts from
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the energy supply of the utility systems, i.e., for power, heating, and cooling, depending

on the energy supply scenario of the specific utility system as defined in the TEA model.

For power plant case studies, the energy demand of the carbon capture plant is primarily

supplied by the power plant (e.g., by steam extraction) until the limits of the power plant

are reached. Due to the operating limits of the power plant, it cannot compensate for the

resulting parasitic load (loss of electricity due to the operation of the carbon capture plant).

This parasitic load needs to be compensated by other electricity producers, and the resulting

indirect emissions must be accounted for in LCA.S82 Here, we assume a compensation of the

parasitic load by the average grid characteristics in the defined region, following standard

LCA practice.S83

The environmental impacts for carbon capture plant construction, disposal, and recycling

at the end of life are considered based on rough estimations of the carbon steel demand of the

equipment provided by the TEA model (cf., Section 6.3.11). At the end of life, we assume a

recycling rate of the carbon steel of 85% based on Reuter et al. S84 and a transport distance

to a landfill of 15 km by lorry based on Frischknecht et al. S85 .

Material synthesis phase. Due to the diversity of metal-organic framework synthesis,

the detailed consideration of material synthesis in a high-throughput materials screening is

challenging. Thus, we have developed a simplified, predictive LCA model that estimates the

environmental impacts of material synthesis from the 3D molecular structure. The model

focuses on a detailed assessment of the metal used within the material.

We initially fragment the MOF based on its molecular structure in the model using the

so-called Moffragmentor tool.S86 We obtain information on the molecular structure of the

metal node and all organic linkers within the MOF structure. Because we obtain molec-

ular fragments from the structure, we perform a similarity search based on the PubChem

databaseS87 to identify the chemicals with the most similar molecular structure as the molec-

ular fragments of the organic linkers. The identified chemical is considered a reactant of the
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organic linker. If the PubChem search fails, we approximate the molecular structure of the

organic linker reactant by the molecular structure of the fragment. From the molecular

structure of the identified chemicals and their occurrences within the MOF structure, the

demand of the organic linkers for material synthesis is estimated from the carbon content of

the material. If no carbon is contained in a linker, the organic linker demand is estimated

from the nitrogen, phosphorus, or sulfur content in a hierarchical order. The metal demand

is estimated from the metal content. We assume a fixed MOF yield rate of 85% based on

Sathre and Masanet S88 . For simplicity, we assume that all organic linkers have the same en-

vironmental impact as terephthalic acid, the most occurring organic linker of the materials in

our database. To assess the environmental impact of the metal precursor, we select a proper

metal or metal compound market process from the LCIA database following a hierarchical

procedure:

1. Select the market process of the metal oxide, if available.

2. Select the market process of a metal compound other than oxide as a proxy, if available

(e.g., a carbamate).

3. Select the market process of the pure metal, if available.

4. If no metal or metal compound market process is available in the LCIA database, use

the mean environmental impact per kg of metal of the market processes of all metal

oxides of the corresponding elemental family (e.g., alkali metals or transition metals).

The environmental impacts of metal compounds are transferred into the functional unit ’1 kg

pure metal’ based on the chemical formula.

The solvent in which a MOF is synthesized can have an important impact on several

LCA-KPIs.S89 In this work, we developed a methodology to predict the greenest solvent

that can be selected for synthesizing a given MOF. This selection approach uses the (limited)

information available at this initial screening stage.
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We follow a hierarchical solvent selection procedure that pursues two aims: 1) the use

of green solvents and 2) the use of solvents that are miscible with the organic linker. To

select the solvent used for the synthesis, we follow a sequential approach where a set of five

solvents that are frequently used in MOF synthesis (i.e., water, ethanol, methanol, DMF,

and DMAS90) are considered and tested (from greenest to least green).

We assume that a MOF can be synthesized in a particular solvent if no phase split occurs

between the solvent and the organic linkers, i.e., no liquid-liquid-equilibrium (LLE) exists.

Our sequential approach starts by testing water as the solvent. If water forms an LLE with

one of the organic linkers, we continue with the next, less green, solvent until we find a

solvent that matches our criteria.

The LLE calculations are performed using the nonrandom two-liquid model (NRTL)

model considering two synthesis conditions: 1) at 298.15K, as room temperature requires

less energy and is thus preferred and 2) 373.15K to test if the phase split can be prevented

for a green solvent with increased temperature. For the LLE calculations, we use the Frame-

work for Equations of State and Classical Density Functional Theory (FeOs)S91 combined

with the SMILES-to-Properties-Transformer (SPT) model to predict NRTL parameters from

the SMILES codes of the organic linkers and the solvents.S92,S93 We exclude LLEs with a

miscibility gap smaller than 0.05 (molar) or occurring at molar organic linker concentrations

larger than xOrganiclinker = 0.5. A solvent is then selected in the hierarchical order, starting

with water if no LLE occurs for one of both tested temperatures.

The input of the SPT model is a combined string of the SMILES codes of both binary

mixture components, i.e., the organic linker and the solvent. The used version of SPT

allows a maximal length of the combined SMILES string of 128 characters. Moreover, solely

characters considered in the training process of the SPT model can be used. Thus, for input

strings longer than 128 characters or organic linkers SMILES codes containing characters

not trained in SPT, we assume a proxy solvent with average environmental impacts of all
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five tested solvents. The proxy solvent is also assumed if none of our five tested solvents

matches our criteria.

For all solvents, we consider a mass ratio solvent/MOF of 70 and solvent recycling rate of

90% based on Sathre and Masanet S88 . The non-recycled solvent is discarded in a wastewater

treatment process if water is selected or a spent solvent mixture treatment process with

energy recovery if an organic solvent is selected.

In the current model, we use proxy data from the literature for the power demand of the

synthesis of 4.178 kWhkg−1 based on Hu et al. S89 . The grid supplies the power demand with

average characteristics in the defined region. Finally, we consider the transport distances of

the material to the capture plant of 600 km by train and 100 km by lorry.S85 The assumptions

of the simplified, predictive model introduce uncertainties into the model. Thus, a detailed

LCA based on laboratory synthesis data has to be performed a posteriori for the most

promising candidates.

Materials disposal phase. For the material disposal, we assume incineration of the ma-

terial and subsequent metal recycling and landfill. The input of the material disposal model

is the materials’ element weight fraction. For metal-organic frameworks, we calculate the

element weight fraction from the molecular structure or, for the experimental structures,

from the chemical formula defined in the corresponding literature. The material is first

transported to the incineration plant considering a transport distance of 10 km by lorry.

The emissions of the incineration to the air are calculated from the formed CO2, fuel- and

thermal NOx, N2O, NH3, and CN emissions, as well as particulates based on the waste

incineration model of Doka S94,S95 with updated data from Meys et al. S96 . The fuel-NOx

emissions are calculated from the nitrogen content of the material. Doka S94 assumes an

equal share of fuel-NOx and thermal-NOx emissions for average wastes in municipal solid

waste incinerators. To account for proper thermal-NOx emissions for materials without or

with low nitrogen content, we assume fixed thermal-NOx emissions of average wastesS94
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for materials with fuel-NOx emissions lower than the thermal-NOx emissions of the average

waste. An equal share of fuel-NOx and thermal-NOx emissions is assumed for materials with

fuel-NOx emissions higher than the thermal-NOx emissions of the average waste. For flue

gas treatment, Selective Catalytic Reduction (SCR) is assumed as an industrial standard in

waste incineration. For the SCR, we consider NH3, heat (natural gas boiler), and catalyst

(TiO2 and V2O5) demands according to Doka S94,S95 .

If sulfur, phosphorus, or halogens (Br, Cl, F, or I) are contained in the MOF, we assume

that acids are formed and neutralized using calcium carbonate in a stoichiometric reaction.

The neutralization leads to additional CO2 emissions to air and calcium carbonate demand.

The formed salts from sulfur or phosphorus (Ca3(PO4)2, CaSO4) are transported to a landfill.

For halogens, the formed ions (Br– , Cl– , F– , I– , and Ca2+) are considered as emissions to

water.

The produced heat of the incineration is calculated depending on the amount of carbon

and hydrogen remaining according to the mass balance of all reactions. For the heat of

incineration, credit to the environmental impacts is given for replacing state-of-the-art heat-

production technologies, i.e., here, the market for the district or industrial heat based on

natural gas. A recycling rate of 95% is assumed for the metals,S89 and credits to the

environmental impacts are given for the recycled material based on the hierarchical approach

for selecting the process for metals from the LCIA database in the materials synthesis model.

All material amounts neither recycled nor emitted to air or water are transported to a landfill

considering a transport distance of 15 km by lorry.S85

3.4.3 Life cycle impact assessment

We use the LCIA method Environmental Footprint 3.0, recommended by the European Com-

mission’s Joint Research Centre.S97,S98 The LCIA method comprises 28 impact categories (16

main categories and 12 subcategories) that can be used as KPIs for material selection. To

account for the environmental impact of the background system, we use the LCA database
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Ecoinvent V3.8 with the Ecoinvent system model at the Point of Substitution (APOS).S99

We choose the ecoinvent system model APOS for a consistent consideration of material re-

cycling in a future application.S100 The Ecoinvent database provides total environmental

impacts that capture both the direct emissions of a process and the indirect emissions of the

background supply chains.

3.4.4 Validation of the layer

The lack of LCA data makes the validation of the outputs of the layer challenging. However,

each individual part of the LCA model is validated or taken from the literature:

• Use Phase: The accuracy of the model used for the use phase depends strongly on

the quality of the foreground data obtained from the TEA layer. Thus, the expected

accuracy is in a similar order of magnitude as the TEA layer.

• Disposal Phase: For the disposal phase, we use an established approach from the

literature to assess the environmental impacts of waste incineration from the elementary

composition.

• Synthesis Phase: For the synthesis of MOFs, the data basis for LCA is most chal-

lenging. Thus, we focused in the synthesis model on the key learnings from LCA

studies from the literature that identified two hotspots: the impact of the metal and

solvent. Moreover, we use validated proxy data from the literature for the synthesis

parameters.S89

We use detailed and accurate LCIA scores from a commercial LCA database for the back-

ground data.S99 By combining the individual, validated parts, the LCA model can capture

trends between the materials and guide the selection of sustainable adsorption materials for

carbon capture.
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3.4.5 Output of the layer

The outputs of the LCA layer are 28 impact categories of the Environmental Footprint 3.0

per 1 kg CO2 captured.
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4 MEA Benchmark

4.1 TEA assumptions for the MEA benchmark

In the TEA layer, the assumptions for the MEA benchmark for the power plant case studies

are based on the work of the EBTF.S1,S2 The following modifications have been introduced

to align the methods of Manzolini et al. S2 to the methodology of the PrISMa platform (cf.,

Section 3.3):

1. All costs have been updated from 2008 to 2019 using the Harmonised Index of Con-

sumer Prices (HICP) average historical value for the Euro Area (EA) zone.

2. The process, project contingencies, and owner’s costs for the current platform method-

ology have been adopted to align the methods to estimate the total capital required.

3. The natural gas and coal costs are changed to reflect the UK-specific average cost for

2019.

4. The calculation of the levelized cost of electricity for the power plant with MEA based

capture is changed to follow the approach of the TEA layer in the PrISMa platform,

as described in the Section 3.3.

For the industrial case studies, in this particular case for cement plants, the assumptions

for the MEA benchmark are based on the work conducted in the CEMCAPS3,S4 project.

Performance parameters (i.e., specific CO2 emissions of the reference plant, electricity, and

thermal energy consumption in the MEA-based capture plant) and equipment cost for the

CO2 capture plant, compression train, and steam generation plant are taken from the report.

Waste heat is recovered from the cooling air exiting the hot clinker grate cooler. However,

additional thermal energy is required for the solvent regeneration in the form of a natural

gas boiler. Additional electricity is taken from the grid for the solvent pumps, water pumps,

and CO2 compression train. The CO2 emission intensity of the electricity grid and natural
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gas boilers are taken from the same LCA database as for the sorbent-based carbon capture

process (cf., Section 3.4).

The following modifications have been introduced to align the methods to the method-

ology followed in the PrISMa platform (cf., Section 3.3):

1. All costs have been updated from the year 2014 to 2019 using the Harmonised Index

of Consumer Prices (HICP) average historical value for the Euro Area (EA) zone.

2. The process, project contingencies, and owner’s costs for the current platform method-

ology have been adopted to align the different methods to estimate the total capital

required.

3. The natural gas and electricity costs are changed to reflect the UK-specific average

cost for 2019.

4.2 LCA assumptions for the MEA benchmark

Goal and scope definition. As for sorbent-based carbon capture technologies, we calcu-

late the environmental impacts of the captured CO2 for the MEA benchmark cradle-to-gate

and define the functional unit as ’1 kg CO2 captured’. Our system boundaries of the MEA

benchmark include the MEA-based carbon capture plant and the corresponding synthesis

of the material demands, disposal of degradation products, and compensation of parasitic

load for the power plant case studies (see Figure S6). For the NGCC and coal power plant

case studies, no additional energy demand supplied by utilities is required for the MEA

benchmark capture process because the power plants can supply the total required energy.

Life cycle inventory. The TEA model of the MEA benchmark provides the LCA fore-

ground data, i.e., the mass of CO2 captured, the MEA demand, and the parasitic load or

heating and power demand for power plant and cement case studies, respectively. As for

the sorbent-based capture plant, for power plant case studies, the parasitic load is compen-
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Figure S6|General LCA system boundaries for MEA benchmark processes.
Schematic illustration of the system boundaries considered within the LCA of the MEA
benchmark processes.
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sated by the average grid characteristics in the defined region.S83 We calculate the material

demand for MEA, water, sodium hydroxide (NaOH), activated carbon, and steel for plant

construction if available using LCI data from Singh et al. S101 for the NGCC power plant

and from Koornneef et al. S102 for the coal power plant. Moreover, we assume the mass of

degradation products and the emissions to air (i.e., MEA, ammonia, formaldehyde, and ac-

etaldehyde) proposed by Singh et al. S101 and Koornneef et al. S102 . No detailed LCI data is

available for the cement case in the literature. Therefore, we approximate the missing LCI

data by the data from the coal power plant caseS102, (i.e., the demand for water, sodium hy-

droxide, activated carbon, and steel and the emissions to air). Since this data is defined per

amount of captured CO2 and the environmental impact is generally dominated by energy-

related emissions calculated from the LCI data taken from the TEA model, the resulting

error is expected to be small. The degradation products are discarded in a hazardous waste

incineration plant for spent solvents with energy recovery.

Life cycle impact assessment. We consider the same database and assumptions for the

LCIA as for the sorbent-based carbon capture process (cf., Section 3.4).

The same LCA outputs obtained from the MOF screening are obtained for the MEA

benchmark (i.e., 28 impact categories of the Environmental Footprint 3.0 per 1 kg CO2

captured).

4.3 Additional remark

Generally, the assumptions have been adopted from MEA-based capture studies available

for NGCC power plants. However, it should be noted that these assumptions have not been

validated experimentally. Based on the recent publication by Moser et al. S103 , previous tech-

nical and environmental evaluations of MEA-based capture processes have underestimated

both degradation and emissions. The work of Moser et al. S103 has not been used in the

present study due to differences in flue gas characteristics. Their experimental studies based
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on flue gas from a lignite-based power plant, which contains much less oxygen than that of

NGCC flue gas, already suggest higher degradation rates, mainly due to oxidative degrada-

tion. This uncertainty is covered by applying sensitivity factors of ±50% to the CAPEX

and OPEX estimates of the MEA benchmark. Overall, the expected underestimation of

the amine degradation and emissions leads to underestimating the environmental impacts of

the MEA benchmark. Thus, the comparison to the MEA benchmark using LCA KPIs is a

conservative assessment of the actual potential of adsorption-based carbon capture processes.
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5 Materials layer: Comparison with experimental data

The basic thermodynamic data for a given material for the PrISMa platform comes from

experimental data or molecular simulations. For the molecular simulations, we use the UFF

force field (see 3.1.2). To obtain some insights into the accuracy of these predictions, we

compare the predicted pure component isotherms with experimental isotherms previously

reported in the literature for a representative set of 18 structures. For 7 out of those 18

structures, we provided additional experimental data using the procedures described in Sec-

tion 5.1 (see Figure S7). We also present a comparison of the simulated isotherms with the

experimental ones for zeolite 13X, as we compare the performance of zeolite 13X with some

MOFs in Section 9.3.2.

5.1 Gas sorption experiments

The CO2 (and N2) isotherms measurements at 298K (or 303K) for the samples (Ca-squarate,

MIP-212(Al/Cu), CAU-10(Al), MIL-160(Al), MIL-53(Al)-NH2, MIL-96(Al), and MIL-91(Ti))

were performed on a Micromeritics Triflex instrument with a temperature-controlled bath.

In all the cases, the measurements were recorded using ultra-high purity gas (≥ 4.8 grade).

Before the adsorption measurement, each sample was degassed under heating for at least 8

hours. The degassing was done in one step using a Micromeritics SmartVacPrep degas unit

(P = 10× 10−6mbar; at which point the outgassing rate was ≤ 2 µbarmin−1).

5.2 Al-containing MOFs

Boyd et al. S33 noticed that for Al-containing MOFs the UFF force field overestimates the

adsorption of CO2. As Al is an abundant metal, Al-MOFs are potentially attractive for

large-scale carbon capture applications. Therefore, we compared the predictions of the force

field used by Boyd et al. S33 with the regular UFF parameters for Al.
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Figure S7| MOFs of which the experimental isotherms are compared with the pre-
dictions from molecular simulations Crystal structures of MOFs studied in section 5.
(A) MIL-160(Al), (B) MIL-96(Al), (C) CAU-10(Al), (D) MIL-53(Al)’s, (E) NOTT-300(Al),
(F) CALF-20(Zn), (G) MOF-74(Mn), (H) FMOF-1(Ag), (I) PCN-14(Cu), (J) MOF-5(Zn),
(K) MOF-205(Zn), (L) UiO-66(Zr), UiO-66(Zr)-NH2 and UiO-67(Zr), (M) HKUST-1(Cu),
(N) UMCM-1(Zn) and (O) Ca-Squarate. Color code: AlO6, pink polyhedron; ZnO2N3, light
yellow polyhedron; MnO5, green polyhedron; AgN4, grey polyhedron; CuO5, orange polyhe-
dron; ZnO4, bleu polyhedron; ZrO8, dark blue polyhedron; CaO7, dark green polyhedron;
O, red; C, grey; N, blue and F, green. The crystal structure of MIP-212 is presented in
Section 12.1.
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In these figures, unless indicated, the isotherms are at 298K. Colored closed circles are

experimental isotherms. Open black circles are the predictions from our simulations, where

a solid line is added for the scaled force field.

5.2.1 MIL-160

MIL-160 was first described by Cadiau et al. S104 . The chemical formula of the dry MOF is

Al8H24C48O48 or Al(OH)(O2C−C4H2O−CO2). In this work, the sample was prepared using

the synthesis optimized by Permyakova et al. S105 . The metal nodes are AlO6 octahedra,

arranged in a chain-like building unit. The carboxylate groups of the linker link these units

together.

In Figure S8, we compare the predicted CO2, N2, and H2O isotherms with the experi-

mental data of Cadiau et al. S104 , Permyakova et al. S105 , Shade et al. S106 , Damasceno Borges

et al. S107 , Silva et al. S108 , Wang et al. S109 , Wahiduzzaman et al. S110 , and this work.

For CO2 and N2, we see a significant improvement if we use the scaled force field instead

of the regular UFF force field. Our predictions are in excellent agreement with one set of

experimental data. Also, for H2O, our model agrees with the experimental data.
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Figure S8|MIL-160 | Comparison of the experimental isotherms (blue,S106 orange,S108

green,S107 and red; this work) with the computational isotherms (open symbols, with solid
line, is the scaled model) for (a) CO2, (b) N2, and (c) H2O. For the water experimental
isotherms: blue,S104 orange,S109 green,S105 and redS110
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5.2.2 MIL-96

MIL-96 was first synthesized by Loiseau et al. S111 . The chemical formula is Al12O87C54H102,

or Al12O(OH)16(H2O)5[BTC]6 · nH2O (n = 29). The structure of MIL-96 (revisited byS112)

consists of 18-member hexagonal honeycomb layers from the infinite chains of AlO4(OH)2 and

AlO2(OH)3(H2O)/AlO2(OH)4 octahedra together with μ3-oxo-centered isolated Al-trimers

(all Al(III) adopt octahedral coordination), all linked together through 1,3,5-benzenetricar-

boxylate (BTC) ligands. In Figure S9, we compare the computational isotherms with the

experimental ones of Liu et al. S113 and this work for CO2.

For this MOF, the difference between the experimental data of the different groups makes

it impossible to conclude which force field gives better predictions.
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Figure S9|MIL-96 | Comparison of the experimental isotherms (blueS113 and orange: this
work) with the computational isotherms (open symbols, with solid line is the scaled model)
for CO2.
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5.2.3 CAU-10

The CAU-10-X family of MOFs was first synthesized by,S114 where X can be H, NO2, OH

or CH3. Here, we study CAU10-H. The chemical formula is Al8H40C64O40 or [Al(OH)−

(O2C−C6H4OH−CO2)] · 0.5(H2O). The structure is built up of helical chains of cis-connected

AlO6-octahedra linked together through 1,3-isophthalate linkers.

In Figure S10, we compare the predicted CO2 and N2 isotherms with the experimental

data of Abascal and Vega S43 , Pei et al. S115 , and this work.

Also, for this material, we see that the scaled UFF force field gives significantly better

predictions of the experimental isotherms for both CO2 and N2.
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Figure S10| CAU10 | Comparison of the experimental isotherms (orange,S115 green,S116

and blue; this work) with the computational isotherms (open symbols, with solid line is the
scaled model) for (a) CO2 and (b) N2.

S-63



5.2.4 MIL-53-NH2

MIL-53-NH2 is part of the MIL-53 family of MOFs, which was first synthesized from Cr(III)

ions and terephthalate ligands (BDC) by Millange et al. S117 and later from Fe(III) or Al(III)

as well as with various substituted BDC (X-BDC; X = NH2, NO2, COOH, halides, etc.)

analogues.S118 The MIL-53s are built of straight chains of trans-connected MO6-octahedra

(M = Al(III), Fe(III), Cr(III), ...) linked with X-BDC ligands. This family of MOFs has

been studied extensively because of their breathing behavior caused by the flexibility in

the structure.S119 One of the interesting analogs for the CO2 capture/separation is the one

obtained with the 2-amino-terephthalate (NH2−BDC).S120 The chemical formula of MIL-53-

NH2 is Al8H48C64N8O40 or Al(OH)(NH2−BDC) · 3.5H2O.

In Figure S11, we compare the predicted CO2 and N2 isotherms with the experimen-

tal data of Serra-Crespo et al. S121 , Martinez Joaristi et al. S122 , Couck et al. S123 , Garcia-

Perez et al. S124 , and this work. The experimental isotherms for H2O have been obtained by

Jeremias et al. S125 , Teo et al. S126 , Gaab et al. S127 , Bozbiyik et al. S128 , Wöllner et al. S129 ,

Coelho et al. S130 .

This is an example of a material that undergoes a structural transition upon gas loading

rates, i.e., we increase loadings of CO2 or N2. This transition occurs at the steps in the

isotherms. Our model assumes that we have a rigid framework, so we can’t observe these

types of transitions. However, these types of transitions can be detected using the approach

of Sarkisov et al. S46 . For H2O, our model agrees well with the experiments.
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Figure S11|MIL-53-NH2 | Comparison of the experimental isotherms (blue,S121 or-
ange,S122 green,S123 red,S124 and purple; this work) with the computational isotherms (open
symbols, with a solid line, is the scaled model) for (a) CO2, (b) N2 and (c) H2O. For the water
experimental isotherms: blue,S125 orange,S126 green,S127 red,S128 purple,S129 and brown.S130

S-65



5.2.5 MIP-212

MIP-212 is a novel in-house MOF. Its structure is described in Section 12.1. The chemical

formula is Al16Cu16H112C128N64O96 or [Al(μ2−OH)Cu(μ2−H2O)(PyC)2] · n−solvent, where

PyC stands for the pyrazolate 4-carboxylate ligand. The inorganic building units consist of

Al-chains with AlO5(OH) octahedra and Cu-chains built of CuN4(OH2)2 octahedra (when

fully hydrated). As this material was synthesized in the context of this work, we present

more details in Section 12.1.

In Figure S12, we compare the predicted CO2, N2, and H2O isotherms with our exper-

imental data. The scaled force field also better predicts the CO2 and N2 isotherms of this

material. The predicted H2O isotherm shows larger deviations. Interestingly, similar kinks

are seen in the experimental isotherm.
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Figure S12| MIP-212 | Comparison of the experimental isotherm (blue; this work) with
the computational isotherms (open symbols, with a solid line, is the scaled model) for CO2,
N2, and H2O.
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5.2.6 NOTT-300

NOTT-300 was first synthesized by Yang et al. S131 . The chemical formula of the dry MOF

is Al8H32C64O40, while the structure consists of 1D helical chains of corner-shared AlO6-

octahedra, linked together by tetracarboxylate linkers to form square-shaped channels.

In Figure S13, we compare the predicted CO2 and N2 isotherms with the experimental

data of Shade et al. S106 and Yang et al. S131 . The scaled force field also better predicts the

CO2 and N2 isotherms of this material.
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Figure S13| NOTT-300 | Comparison of the experimental isotherms (blueS106 and or-
angeS131) with the computational isotherms (open symbols, with a solid line, is the scaled
model) for (a) CO2 and (b) N2.
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5.3 Other MOFs

5.3.1 CALF-20

CALF-20 was first synthesized by Lin et al. S59 . The chemical formula is Zn4H8C12N12O8

or Zn2(1,2,4−triazolate)2(oxalate). The isolated Zn(II) metal nodes are five-coordinated

(ZnN3O2)in a (distorted) trigonal bipyramidal geometry where the structure can be described

as “layers" of Zn-triazolates linked together via oxalate ligands.

In Figure S14, we compare the predicted CO2 and N2 isotherms with the experimental

data of Lin et al. S59 and Nguyen et al. S132 . The predicted water isotherm is compared with

data from Lin et al. S59 .

The predicted isotherms for CO2 and N2 are in excellent agreement with the experimental

data. The agreement for H2O is less good; we underestimate the amount of water adsorbed.
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Figure S14| CALF-20 | Comparison of the experimental isotherms (blue,S132 orange,S133

greenS59) and red; this work, with the computational isotherms (open symbols) for (a) CO2,
(b) N2, and (c) H2O. The experimental water isotherm (blue points) was obtained from Lin
et al. S59 .
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5.3.2 MOF-74(Mn)

The MOF-74 (also known as CPO-27) structure was first synthesized with Zn(II) as the metal

node.S134 Subsequently, the MOF-74 structure has been synthesized with different metal ions

by different groups (e.g., Ni, Co, Zn, Mg, and Mn by Dietzel et al. S135 , Co, Ni, Zn, and by

Mg Caskey et al. S136 , and Fe by Bloch et al. S137). The chemical formula is Mn6H6C24O18,

or Mn2(DHBDC) · (H2O)2 with Mn as metal node and 2,5-dihydroxy-1,4-benzenedicarboxyl

(DHBDC) as linker.

In Figure S15, we compare the computational isotherms with the experimental ones of

Yu et al. S138 and Queen et al. S139 for CO2 and N2.

As MOF-74(Mn) has an open metal site, one can expect the UFF force field to underes-

timate the adsorption isotherms, as shown by Dzubak et al. S140 for Mg-MOF74. However,

the scatter in the experimental data for the Mn version of the materials does not allow us

to draw firm conclusions for this material.
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Figure S15|MOF-74(Mn) | Comparison of the experimental isotherms (blue,S138 or-
ange,S138 and greenS139) with the computational isotherms (open symbols) for (a) CO2 and
(b) N2.
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5.3.3 FMOF-1

FMOF-1 was first synthesized by Yang et al. S141 . The chemical formula is Ag24C96N72F144 or

Ag2[Ag4Tz6]. FMOF-1 is a fluorous MOF and is formed by the reaction of a perfluorinated

ligand (3,5-bis(trifluoromethyl)-1,2,4-triazolate(Tz)) with Ag(I) as a metal node.

In Figure S16, we compare the computational isotherms with the experimental ones of

Moghadam et al. S142 for CO2.

We obtain excellent agreement at low pressure. At high pressure, we underestimate the

loading, which is due to the flexibility of the structure.S142
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Figure S16| FMOF-1 | Comparison of the experimental isotherm (blueS142) with the com-
putational isotherm for (a) CO2.
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5.3.4 PCN-14

PCN-14 was first synthesized by Ma et al. S143 . The chemical formula is Cu12H84C180O48

or Cu2(H2O)2(adip) with adip = 5,5-(9,10-anthracenediyl)di-isophthalate. The metal nodes

are Cu, and the linker is derived from an anthracene derivative.

In Figure S17, we compare the computational isotherms with the experimental ones of

Perry IV et al. S144 and Parkes et al. S145 for N2.

The predicted N2 isotherm is in excellent agreement with the experimental data.
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Figure S17| PCN-14 | Comparison of the experimental isotherms (blueS144 and orangeS145)
with the computational isotherm for N2.
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5.3.5 UiO-66

UiO-66 was first synthesized by Cavka et al. S146 . The chemical formula is Zr6H28C48O32,

with a Zr6-cluster as metal node and as linker benzene-1,4-dicarboxylate (BDC).

In Figure S18, we compare the computational isotherms with the experimental ones,S147–S154

and Li et al. S155 for CO2 and N2.

Our model slightly overestimates the adsorption in the Henry regime, yet the overall

agreement for both CO2 and N2 is good.
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Figure S18|UiO-66 | Comparison of the experimental isotherms (blue,S147 orange,S148

green,S149 red,S150 purple,S151 brown,S152 pink,S153 grey,S154 and yellowS155) with the com-
putational isotherms (open symbols) for (a) CO2 and (b) N2.
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5.3.6 MOF-5

MOF-5 (or IRMOF-1) was first synthesized by Li et al. S156 . The chemical formula of MOF-5

is Zn8H24C48O26, or Zn4O(BDC)3, where Zn4O is the metal node and the linker is 1,4-ben-

zenedi-carboxylate (BDC).

In Figure S19, we compare the experimental isotherms,S157–S160,S160,S161 and Millward and

Yaghi S162 with the computational ones for CO2 and N2.

The predicted isotherms for CO2 and N2 are in excellent agreement with the experimental

data.
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Figure S19|MOF-5 | Comparison of the experimental isotherms (blue,S157 orange,S158

green,S159 red,S160 purple,S160 brown,S161 and pinkS162) with the computational isotherms
(open symbols) for (a) CO2 and (b) N2.
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5.3.7 MOF-205

MOF-205 was first synthesized by Furukawa et al. S163 . The chemical formula of MOF-205

is Zn24H156C288O78. MOF-205 has as metal node Zn4O and two different linkers: 4,4,4-ben-

zene- 1,3,5-triyl-tribenzoate (BTB) and 2,6-naphthalenedicarboxylate (NDC).

In Figure S20, we compare the experimental isotherms by Sim et al. S164,S164 , and Fu-

rukawa et al. S163 with the computational ones for CO2.

The predicted N2 isotherm is in excellent agreement with the experimental data.
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Figure S20|MOF-205 | Comparison of the experimental isotherms (blue,S164 orange,S164

and greenS163) with the computational isotherm for CO2.
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5.3.8 UiO-66-NH2

UiO-66 is a benchmark Zr-MOF built up from Zr(IV)-hexanuclear oxo-clusters (as nodes)

linked together by terephthalate (X-BDC; X=H, NH2, COOH, halides, etc.) linkers, to yield

a cubic structure endowed with octahedral and tetrahedral cages. It can be synthesized with

linkers that have different functional groups (e.g., NH2, NO2, and Br).S165,S166 The chemical

formula of UiO-66-NH2 which is obtained with the linker 2-amino-1,4-benzenedicarboxylate

(H2N−BDC) is Zr6H34C48N6O32. The inorganic building unit is a Zr6-cluster and the linker

is 2-amino-1,4- benzenedicarboxylate (H2N-BDC).

In Figure S21, we compare the experimental isotherms of Hu et al. S149 , Cmarik et al. S150 ,

and Zhang et al. S151 with the computational ones for CO2.

For the N2 isotherms, we obtain excellent agreement. For CO2, We observe a similar

overestimation of the isotherms at the Henry regime as for UiO-66 (see Section 5.3.5).

10 1 100 101

Pressure (bar)

100

101

Up
ta

ke
 (m

ol
/k

g)

(a) - CO2

10 1 100 101 102

Pressure (bar)

10 1

100

Up
ta

ke
 (m

ol
/k

g)

(b) - N2

Figure S21|UiO-66-NH2 | Comparison of the experimental isotherms (blue,S149 or-
ange,S150 and greenS151) with the computational isotherms (open symbols) for (a) CO2 and
(b) N2.
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5.3.9 UiO-67

UiO-67 was first synthesized by Cavka et al. S146 . This MOF is isoreticular to UiO-66-NH2

but obtained with the extend linker 4,4-biphenyl-dicarboxylate (BPDC). Its chemical formula

is Zr6H48C84O32.

In Figure S22, we compare the experimental isotherms of Yoon and Moon S167 with the

computational one for CO2. We see that our model is in excellent agreement.
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Figure S22| UiO-67 | Comparison of the experimental isotherm (blueS167) with the com-
putational isotherm for CO2.
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5.3.10 HKUST-1

HKUST-1 ([Cu3(TMA)2(H2O)3]n, where TMA is benzene-1,3,5-tricarboxylate) has inter-

secting nanochannels that form a 3D connected network of pores. The chemical formula for

HKUST-1 is Cu12H24C72O48. HKUST-1 was first synthesized by Chui et al. S168 , and since

then, many groups have synthesized this material (see, for example,S169).

In Figure S23, we compare the experimental isotherms,S170–S175 and Millward and Yaghi S162

with the computational ones for CO2 and N2.

The predicted isotherms for CO2 and N2 are in excellent agreement with the experimental

data.
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Figure S23|HKUST-1 | Comparison of the experimental isotherms (blue,S170 orange,S171

green,S172 red,S173 purple,S174 brown,S175 and pinkS162) with the computational isotherms
(open symbols) for (a) CO2 and (b) N2.
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5.3.11 UMCM-1

UMCM-1 was first synthesized by Koh et al. S176 . It has a chemical formula of Zn24H144C264O78.

UMCM is built of and has Zn4O as the inorganic node and a mixture of linkers, the tereph-

thate (BDC) and 1,3,5-benzene-tris(4-benzene-benzoate (BTB). The framework of UMCM-1

consists of Zn4O clusters linked together by two BDC and four BTB linkers arranged in an

octahedral geometry.

In Figure S24, we compare the experimental isotherms of Mu et al. S177 and Xiang

et al. S178 with the computational ones for CO2 and N2.

The predicted isotherms for CO2 and N2 are in reasonable agreement with the experi-

mental data. For CO2 and N2, we overestimate the loading.
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Figure S24|UMCM-1 | Comparison of the experimental isotherms (blueS177 and or-
angeS178) with the computational isotherms (open symbols) for (a) CO2 and (b) N2.
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5.3.12 Ca-SQA

Ca-SQA was first synthesized by Li et al. S179 . The chemical formula is Ca8H16C32O40. Its 3-D

structure consists of 1-D chains of edge-sharing Ca(II) polyhedra linked together by squarate

ligands (the deprotonated form of the squaric acid (3,4-dihydroxy-3-cyclobutene-1,2-dione)).

In Figure S25, we compare the experimental isotherms of Tu et al. S180 and this work with

the computational ones for CO2 and N2. Our model for both CO2 and N2 overestimates the

adsorption, particularly in the Henry regime.
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Figure S25|Ca-SQA | Comparison of the experimental isotherms (blueS180 and orange;
this work) with the computational isotherms (open symbols) for (a) CO2 and (b) N2.
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5.4 Zeolites

5.4.1 Zeolite-13X

Zeolite-13X, also known as NaX, is a Faujasite-type zeolite. The crystal structure has a Si to

Al ratio of 1.18, corresponding to 104 silicon atoms and 88 aluminum atoms, in addition to

88 sodium cations.S181 In our simulations, the crystal structure is assumed to be rigid, while

sodium ions are free to move (only translation). We used the force field developed by Vujić

and Lyubartsev S182 to generate the CO2 and N2 pure component isotherms. The force field

developed by Joos et al. S183 was implemented for water calculations. Joos et al. S183 showed

that this force field very well predicts the experimental water isotherms.

In Figure S26, we compare the experimental isotherms of McEwen et al. S184 , Najafi

et al. S185 , Cavenati et al. S186 , Wilkins and Rajendran S187 , and Wang and LeVan S188 with

the computational ones for CO2 and N2. Our model for CO2 overestimates the adsorption,

particularly in the Henry regime. While, for N2, the predicted isotherm is in excellent

agreement with the experimental data.
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Figure S26| Zeolite-13X | Comparison of the experimental isotherms (blue,S184 orange,S185

green,S186 red,S187 and purpleS188) with the computational isotherms (open symbols) for (a)
CO2 and (b) N2.
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5.5 Discussion of the results

In the previous sections, we have compared the predicted adsorption isotherms with experi-

mental data from the literature and data from this work. Our conclusions from this work are

that except for Al-MOFs, the UFF force field gives good to excellent predictions of the CO2

and N2 isotherms. However, the simple scaling introduced by Boyd et al. S33 for the Al-atoms

in the MOF significantly improves the predictions. Hence, we have used this correction for

all Al containing MOFs for our screening studies.

A comparison for water isotherms in MOFs is significantly more difficult because far fewer

water isotherms have been measured, and these isotherms show significant scatter (see, for

example, the work of Rudenko et al. S189 , Burtch et al. S190). For those structures we could

compare, the simulated isotherms were reasonable agreement with the experimental ones.

Interestingly, MOFs have recently been published for water harvesting, and we expect that

much more data will become available,S191 which will allow us to further validate our water

isotherms.

For some structures, we do see significant deviations for some materials. There can

be several reasons for these differences. First, our simulations assume that our MOF is a

perfect, fully-activated crystal. Experimentally, it is difficult, if not impossible, to obtain

such perfect crystals. Ongari et al. S192 compared the reported (experimental) pore volume

for MOFs that different groups have synthesized. For some MOFs, the reported experimental

pore volumes can vary by a factor of 2 to 10. Some MOFs have been extensively studied,

and for those MOFs, we know how to synthesize crystals with a pore volume close to the

theoretical pore volume computed from the crystal structure. Equally important, we know

how to activate these materials to remove the solvent used in the synthesis from the pores.

Park et al. S193 made a detailed comparison of the reproducibility of the adsorption isotherms

and also concluded the scatter in the experimental isotherms makes it difficult to draw firm

conclusions. Yet, there are a few MOFs for which such a comparison is possible, and the

agreement is generally good for these MOFs.
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A second assumption in our simulations is that a MOF is a rigid structure. This

speeds up the calculation as we only have to generate new configurations for the adsorbed

molecules. However, some MOFs change structure upon adsorption (e.g., MIL-53-NH2, see

Section 5.2.4), and we fail to predict the correct adsorption behavior for such MOFs. There-

fore, we flag those structures for which we expected the framework’s flexibility to have a

large impact (see Section 3.1.3) on the adsorption properties.

Hence, our conclusion of this comparison is that for a large screening, the Al-scaled UFF

force field is sufficiently reliable to make a first selection. However, once we have identified

a promising material, it is important to validate the force field further.

5.6 Error propagation

In the previous section, we have made a detailed comparison with the experimental data.

From this comparison, we can make the following conclusions:

• We assume an infinite, perfect crystal. However, synthesizing such perfect crystals in

practice is experimentally difficult, if not impossible. One can expect to have a 10-20%

lower accessible pore volume.

• In our screening study, we assume a universal force field (UFF) with an adjustment

for Al. The comparison with the experimental data shows that the error in the Henry

coefficient can be as much as one order of magnitude.

To study the propagation of these uncertainties in the calculation of the material properties,

we fitted the simulated pure component isotherms of CO2 and N2 with a Langmuir isotherm.

σi = σsat,i
Hip

1 +Hip

where σsat,i is the saturation loading and Hi the Henry coefficient of component i. We

then used the uncertainties in the Henry coefficients and saturation loading to generate the
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isotherms for which we compute the nCAC. For the other parameters, we assume a 10%

error.

The resulting propagation of the uncertainties for one of the top-performing materials

(Mg-MOF-74) is shown in the tornado plot in Figure S27. As expected, the most important

factor is the low-pressure part of the CO2 adsorption isotherm. The most important result

is that if we are one order of magnitude off, we overestimate the nCAC by 4et−1
CO2

.
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Figure S27| Tornado plot for the parameters of the materials layer We computed
the change in nCAC for one of the top-performing materials (Mg-MOF-74). The parameters
are ordered in decreasing impact on the nCAC. A red bar indicates a positive change in
the parameters, a blue bar indicates a negative change, and a purple bar indicates if both a
positive and a negative change have the same effect.
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6 Output of the PrISMa platform

The PrISMa platform generates two types of outputs: Key Performance Indicators (KPIs)

and Foreground data (FG). The KPIs are used to measure the performance of the materials

or process. FG are data computed in one platform layer and used in the next layer. At the

materials layer, we provide additional data that can be used to test the accuracy of the IAST

approximation and indicate the materials’ affinity towards water.We also flag the potential

flexibility of the structure. Table S5 summarizes the output of the PrISMa platform.

Table S5: Summary of all Key Performance Indicators (KPIs) and foreground data (FG)
generated by the PrISMa platform.

No Description Unit Type Section

1. Materials
1.1 Henry coefficient mol kg−1 Pa−1 KPI (6.1.1)
1.2 Henry selectivity - KPI (6.1.2)
1.3 Pure component capacity mol kg−1 KPI (6.1.3)
1.4 Water resistance coefficient - KPI (6.1.4)
Foreground data for the Process layer
1.5 Crystal density g cm−3 FG (6.1.5)
1.6 Pure component isotherm mol kg−1 (list) FG (6.1.5)
1.7 Isosteric heat of adsorption kJmol−1 (list) FG (6.1.5)
1.8 Average heat of adsorption kJmol−1 FG (6.1.5)
1.9 H2O desorption loading mol kg−1 FG (6.1.5)
1.10 Heat capacity J g−1 K−1 FG (6.1.5)
Flag data
1.11 IAST check - Flag (6.1.6)
1.12 Flexibility - Flag (6.1.6)

2. Process
2.1 Purity % KPI (6.2.1)
2.2 Recovery % KPI (6.2.2)
2.3 Effective recovery % KPI (6.2.3)
2.4 Working capacity molm−3 KPI (6.2.4)
2.5 Productivity mol kg−1 h−1 KPI (6.2.5)
2.6 Specific thermal energy for heating MJth/mol KPI (6.2.6)
2.7 Specific thermal energy for cooling MJth/mol KPI (6.2.7)
2.8 Specific electrical energy MJel/mol KPI (6.2.8)
Foreground data for the TEA layer
2.9 Cycle time and step times (list) s FG (6.2.9)
2.10 CO2 captured kg h−1 FG (6.2.9)
2.11 Water-loaded fraction of the sorbent bed, α - FG (6.2.9)
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Table S5: (continued)

No Description Unit Type Section
2.12 Amount of product of each gas at HS (list) mol FG (6.2.9)
2.13 Amount of waste of each gas at VS (list) mol FG (6.2.9)
2.14 List of P, T and molar fraction of CO2 at vacuum kPa, K, - FG (6.2.9)
2.15 Bed density kgm−3 FG (6.2.9)

3. TEA (entire capture plant)
3.1 CAPEX Me KPI (6.3.1)
3.2 OPEX Me KPI (6.3.2)
3.3 CAC e t−1 KPI (6.3.3)
3.4 nCAC e t−1 KPI (6.3.4)
3.5 LCOC e t−1 KPI (6.3.5)
3.6 CCC e t−1 KPI (6.3.6)
3.7 LCOE eMW−1 h KPI (6.3.7)
3.8 CO2 avoided kg h−1 KPI (6.3.8)
3.9 Specific CO2 emissions kgCO2/ unit KPI (6.3.9)
3.10 SPECCA MJkg−1 KPI (6.3.10)
Foreground data for the LCA layer
3.11 Total mass of CO2 captured kg FG (6.3.11)
3.12 Total mass of required adsorbent material kg FG (6.3.11)
3.13 Total amount of parasitic load MJ FG (6.3.11)
3.14 Total heat amount supplied MJth FG (6.3.11)

by each utility system
3.15 Total power amount supplied MJel FG (6.3.11)

by each utility system
3.16 Total cooling amount supplied MJth FG (6.3.11)

by each utility system
3.17 Total mass of carbon steel of the equipment kg FG (6.3.11)

4. LCA (functional unit: 1 kg CO2-captured)
4.1 Climate Change kg CO2-Eq KPI (6.4.1)
4.1.1 Climate Change: Biogenic kg CO2-Eq KPI (6.4.1)
4.1.2 Climate Change: Fossil kg CO2-Eq KPI (6.4.1)
4.1.3 Climate Change: Land Use and Land Use Change kg CO2-Eq KPI (6.4.1)
4.2 Water Use m3 world eq. KPI (6.4.2)

deprived
4.3 Energy Resources: Non-Renewable MJ, net calorific KPI (6.4.2)

value
4.4 Material Resources: Metals/Minerals kg Sb-Eq KPI (6.4.2)
4.5 Land Use - KPI (6.4.2)
4.6 Acidification mol H+-Eq KPI (6.4.3)
4.7 Ecotoxicity: Freshwater CTUe KPI (6.4.3)
4.7.1 Ecotoxicity: Freshwater, Inorganics CTUe KPI (6.4.3)
4.7.2 Ecotoxicity: Freshwater, Metals CTUe KPI (6.4.3)
4.7.3 Ecotoxicity: Freshwater, Organics CTUe KPI (6.4.3)
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Table S5: (continued)

No Description Unit Type Section
4.8 Eutrophication: Freshwater kg PO4-Eq KPI (6.4.3)
4.9 Eutrophication: Marine kg N-Eq KPI (6.4.3)
4.10 Eutrophication: Terrestrial mol N-Eq KPI (6.4.3)
4.11 Human Toxicity: Carcinogenic CTUh KPI (6.4.4)
4.11.1 Human Toxicity: Carcinogenic, Inorganics CTUh KPI (6.4.4)
4.11.2 Human Toxicity: Carcinogenic, Metals CTUh KPI (6.4.4)
4.11.3 Human Toxicity: Carcinogenic, Organics CTUh KPI (6.4.4)
4.12 Human Toxicity: Non-Carcinogenic CTUh KPI (6.4.4)
4.12.1 Human Toxicity: Non-Carcinogenic, Inorganics CTUh KPI (6.4.4)
4.12.2 Human Toxicity: Non-Carcinogenic, Metals CTUh KPI (6.4.4)
4.12.3 Human Toxicity: Non-Carcinogenic, Organics CTUh KPI (6.4.4)
4.13 Particulate Matter Formation disease incidence KPI (6.4.4)
4.14 Ozone Depletion kg CFC-11-Eq KPI (6.4.4)
4.15 Photochemical Ozone Formation: Human Health kg NMVOC-Eq KPI (6.4.4)
4.16 Ionising Radiation: Human Health kBq U235-Eq KPI (6.4.4)

6.1 Output at the materials level

6.1.1 Henry coefficient

The Henry coefficients in mol kg−1 Pa−1 for CO2, N2, and H2O at the reference temperature

(298.15 K) as obtained from the NVT simulations (see Section 3.1.1).

6.1.2 Henry selectivity

Henry selectivity of species i over species j is calculated from Henry’s coefficient of each

adsorbable component (see Section 6.1.1) and is governed by

Selectivity i/j =
KHi

KHj

. (S34)

Here, component i is CO2 and component j is N2.
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6.1.3 Pure component capacity

Pure component capacity in mol kg−1 of species i is obtained from the pure component

isotherm corresponding to that species at the adsorption conditions of temperature and

pressure (T = 310.15K and P = 1.013 25 bar). Here, component i is CO2 or N2.

6.1.4 Water resistance coefficient

This property measures the impact of water on the capacity of the material to adsorb CO2.

It is defined as the ratio of the amount of CO2 adsorbed in the material from a wet flue gas

over the amount of CO2 adsorbed in the material from a dry flue gas. The adsorption data

have been obtained from GCMC calculations at the adsorption conditions of temperature

and partial pressures for the wet and dry flue gases and is governed by

qratio =
qCO2, ternary

qCO2, binary

. (S35)

The adsorption data obtained from the GCMC calculations also allow us to compute the

ternary selectivity of species i over species j that is governed by

Selectivityterni/j =
qi
qj

yj
yi
. (S36)

yi and yj are the compositions of either CO2 or N2 and either N2 or H2O in the ternary mix-

ture, respectively. Here, we compute SelectivityternCO2/N2
, SelectivityternCO2/H2O

, and SelectivityternN2/H2O
.

6.1.5 Foreground data for the Process layer

Crystal density The density of the crystal in g cm−3 as obtained from Zeo++ calculations

(see Section 3.1.1).
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Pure component isotherm The pure component isotherms in mol kg−1 for CO2 and

N2 at the reference temperature (298.15K) as obtained from the GCMC simulations (see

Section 3.1.1).

Isosteric heat of adsorption The filtered loading-dependent heat of adsorption in kJmol−1

of N2 and CO2 as obtained from the GCMC simulations at the reference temperature

(298.15K) (see Section 3.1.1).

Average heat of adsorption The average heat of adsorption in kJmol−1 of N2 and CO2

as calculated from the filtered loading-dependent heat of adsorption given in Section 6.1.5.

For H2O, we use the heat of adsorption at the desorption conditions.

Water desorption loading The loading mol kg−1 of H2O at the desorption conditions is

calculated using single-point GCMC simulations. The desorption pressure of water (Pdes,H2O
),

at the process desorption temperature (393.15K), is obtained usingS194

Pdes,H2O
= Pdes,pro

Psat,FF

Psat,exp

, (S37)

where Pdes,pro is the process desorption pressure (1.013 25 bar), Psat,exp is the experimen-

tal water saturation pressure (1.9886 bar), and Psat,FF is the water saturation pressure as

predicted by the force field (0.689 bar).S195

Heat capacity The heat capacity in J g−1K−1, as predicted by our machine learning model

(see Section 3.1.1).
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6.1.6 Flags at the materials layer

IAST check To test the accuracy of IAST for a binary mixture at the adsorption con-

ditions of temperature and partial pressures, we compare the IAST predictions with the

GCMC calculations. As a measure of the accuracy, we use the logarithm of the ratio:

ratioi =

∣∣∣∣log( qi, IAST

qi,GCMC

)∣∣∣∣ . (S38)

Here, component i is CO2 or N2.

Flexibility check We use the relative standard deviation of the Henry coefficients obtained

during a molecular dynamics simulation, in which we allow the material’s atoms to move.

If this standard deviation is above a critical threshold, we flag the structure as flexible (see

Section 3.1.3 for details).

6.2 Output at the process level

6.2.1 Purity

Purity in % is defined by the molar fraction of the key species, in this case, CO2, in the

product stream and is determined by the amount of CO2 product collected at the outlet of

the compressor train, nCO2, out (molCO2), divided by the total amount of each species i (total

products) that leaves the column at outlet of the compression train, as

Purity CO2
=

nCO2, out∑Ncomp

i ni, out

· 100%. (S39)

Here, Ncomp refers to the number of components considered in the adsorption process.
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6.2.2 Recovery

Recovery in % is defined by the amount of the key species, in this case CO2, collected at the

Heating Step (HS) divided by the total amount of that species entering the column at the

Adsorption Step (AS), nCO2, in(AS) (molCO2), and the Cooling Step (CS), nCO2, in(CS), as

Recovery CO2
=

nCO2, out (HS)

nCO2, in (AS) + nCO2, in (CS)

· 100%. (S40)

6.2.3 Effective recovery

Effective recovery in % is defined as the recovery corrected by the CO2-eq. emissions of the

entire life cycle of the carbon capture plant and defines the effective amount of CO2 that is

avoided. The effective recovery can be calculated from the recovery and the climate change

impact CC, evaluated in the LCA layer, as

Eff. recovery CO2
= Recovery CO2

· (1− CC). (S41)

6.2.4 Working Capacity

The working capacity in molm−3 is defined by the amount of CO2 (mol) product collected

at Heating Step (HS) per m3 as

Working Capacity CO2
=

nCO2, out (HS)

Vbed

. (S42)

The reduction in working capacity of CO2 due to competitive co-adsorption, i.e., the im-

pact of water, is considered by using the computed LH2O
(see Section 3.2.1) to define qCO2,wet

(mol kg−1). The local equilibrium molar loadings for the adsorbent during the feed adsorp-

tion step for the water-loaded and water-free zones within the column are taken respectively
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from the ternary and binary GCMC simulations (see Section 3.1.2). The overall expression

for qCO2,wet
is then

qCO2,wet
=


WRC · qCO2,dry

Z ≤ LH2O

qCO2,dry
Z > LH2O

(S43)

where Z (m) is the position in the column.

The working capacity considering the impact of H2O sorption, can then be calculated as

the weighted average of the respective working capacities for the dry and wet parts:

Working Capacity CO2
≈ α Working Capacity CO2,wet

+ (1− α)Working Capacity CO2,dry

(S44)

where α gives the fraction of the sorbent bed that is water-loaded at the end of the feed

adsorption step at CSS (cf. Equation (S50)).

6.2.5 Productivity

Productivity in mol kg−1 h−1 is defined by the working capacity (cf., Equation (S44)) and

the cycle time, tcycle, as

Productivity CO2
= Working Capacity CO2

1

ρbulk tcycle
(S45)

tcycle (h) is the total time that is required to operate a complete cycle of the process. For the

five-step TVSA, it is defined by the predicted time required to complete the AS, VS, IHS,

HS, and CS (see Section 3.2.2). ρbulk (kgm−3) is the bulk bed density which is defined in

Equation (S51) (see Section 6.2.9).

6.2.6 Specific thermal energy

The specific thermal energy for heating, qth in kJmol−1, is defined as the sum of the sensible

heat and multi-component enthalpy of adsorption (cf. Equation (S9) in Section 3.2.3).
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6.2.7 Specific thermal energy for cooling

The specific thermal energy for cooling, qth, cooling in kJmol−1, is the sum of the energy

required for the CS in the capture process and the cooling duty of the direct contact cooler,

of the condenser, and of an inter-cooled compressor if, for a particular case study, the CO2

sink needs a compressor (cf. Equation (S13) in Section 3.2.3).

6.2.8 Specific electrical energy

The specific electrical energy, wel in kJmol−1, is defined as the energy needed to operate the

booster fan, the vacuum pump and the compressor2 and is derived from the expression of

the polytropic compression work (cf. Equation (S13) in Equation (S23)).

6.2.9 Foreground data for the TEA layer

Cycle time and step times. The cycle time, tcycle (h), is the total time required to

operate all steps that a single column undergoes, and it is defined as:

tcycle = t(AS) + t(VS) + t(IHS) + t(HS) + t(CS). (S46)

Section 3.2.2 describes how we compute the time to operate each step.

CO2 captured. Most economic KPIs depend on the scale of the capture plant. The basis

for the scaling is provided by the total amount of CO2 that is captured, ṁCO2 captured in

kgCO2/h, in the process and is defined as

ṁCO2 captured =
nCO2, out (HS) NcolumnsNtrainsMWCO2

tcycle
. (S47)

2This compression step will depend on the CO2 sink.
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Here, nCO2, out (HS) (molCO2) is the amount of CO2 obtained per column and, therefore,

the total amount of CO2 product is obtained by multiplying with Ncolumns, the number of

columns in the capture plant per train, and Ntrains, the number of trains in the capture plant:

Ncolumns =
tcycle
t(AS)

(S48)

Ntrains =
ṅfeed, tot

ṅfeed

(S49)

where ṅfeed, tot is the total molar flow rate of the feed stream to the capture plant (mol s−1)

and ṅfeed is the molar flow rate of the feed stream to the column (mol s−1). MWCO2 in

kgmol−1 is the molecular weight of CO2.

Water-loaded fraction of the sorbent bed α describes the fraction of the sorbent bed,

which is water-loaded at the end of the feed adsorption step at Cyclic Steady state.

α =
LH2O

LCO2

=
1

Recovery CO2

WCCO2

WCH2O

yH2O,feed

yCO2,feed

(S50)

Amount of product of each gas at HS. A list containing the total amount of product

(mol) of each species collected at the end of the Heating Step per column.

Amount of waste of each gas at VS. A list containing the total amount of waste (mol)

of each species exiting the column at the end of the steps where vacuum is applied, i.e., at

the end of the Vacuum Step, Intermediate Heating Step, and Heating Step.

List of P, T, and molar fraction of CO2 at vacuum. This list contains information on

the operation of the vacuum step (i.e., bulk-gas pressure in the column, column temperature,

molar fraction of CO2 in the bulk-gas phase of the column).
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Bed density. The bed density ρbulk in kgm−3 is calculated in the process model using

material parameters (i.e., crystal density, pellet density, and pellet porosity) and column

characteristics (i.e., bed porosity):

ρbulk = (1.0− ϵbed) ρpellet. (S51)

Here, ϵbed is the void fraction of the bed (tubes, in case of packed multi-tubular heat ex-

changer column). In this study, we use ϵbed = 0.37. ρpellet in kgm−3 presents the density

of the pellet, which can be either known/measured experimentally or defined by the pellet

void fraction, ϵpellet, and the density of the solid/crystal, ρcrystal (from the materials layer,

see Section 6.1.5), as

ρpellet = (1.0− ϵpellet) ρcrystal. (S52)

In this work, we assume ϵpellet = 0.35.

6.3 Output at the TEA layer

6.3.1 Capital Expenditure (CAPEX)

The Capital Expenditure (CAPEX) of the capture plant, in Me, is calculated by following

the guidelines of Woods S73 , which are based on the Bare Module method for developing

screening cost estimates (see Section 3.3.2 for details).

6.3.2 Operational Expenditure (OPEX)

The Operational Expenditure (OPEX), in Me, is calculated annually and takes into account

all costs to operate the plant. It is calculated as the sum of fixed operational costs, variable

operational costs, and adsorbent replacement (see Section 3.3.3). Please note that we con-

sider solely the OPEX from a plant’s operator perspective as KPI and not the OPEX from

the system’s perspective.
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6.3.3 Carbon Avoidance Cost (CAC)

CAC in e t−1 is a metric that quantifies the cost incurred in avoiding a mass unit of CO2 into

the atmosphere considering the energy-related life cycle CO2-eq. emissions of the capture

plant. For power generation case studies, CAC is calculated from the levelized cost of

electricity and the carbon intensity according to:

CAC =
LCOEcc − LCOEref

eCO2 intensity, ref − eCO2 intensity, cc

(S53)

In Equation (S53), LCOEref and LCOEcc (e/MWh) represent the levelized cost of electricity

for a reference power plant without and with carbon capture, respectively. eCO2 intensity, ref

(tCO2/MWh) represents the total CO2-eq. emissions per unit of electricity for the reference

power plant without carbon capture and is calculated as the sum of the direct CO2-eq

emissions as defined by the case study and the indirect CO2-eq emissions estimated based on

LCIA data taken from commercial LCIA databases. eCO2 intensity, cc (tCO2/MWh) indicates

the total CO2-eq. emissions per unit of electricity produced for the power plant with carbon

capture considering the energy-related life cycle CO2-eq. emissions of the capture plant (for

details, see Section 6.3.9).

For industrial case studies, Roussanaly et al. S196 have shown that Equation (S53) reduces

to Equation (S54), if the production of the industrial site is not affected by the integration

of the carbon capture plant.

CAC =
TCRcc +

∑ OPEXcc(yr)
(1+DCF )yr∑ ṁCO2 avoidedhr(yr)

(1+DCF )yr

(S54)

In this equation, TCR is the Total Capital Required, which equals CAPEX plus the interest

during construction, which is estimated according to EBTF guidelinesS75. ṁCO2 avoided are

the CO2-eq. emissions avoided as defined in Section 6.3.8, and hr(yr) are the operating hours
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per year of the plant during its lifetime. These calculation methods have been implemented

in the PrISMa platform to estimate the CAC (e t−1).

6.3.4 Net Carbon Avoidance Cost (nCAC)

The nCAC in e t−1 is a metric that quantifies the overall cost incurred in avoiding a mass

unit of CO2 into the atmosphere over the entire life cycle of the process, i.e., considering the

total life cycle CO2-eq. emissions of the capture plant. In contrast to the CAC, the nCAC

considers the emissions of the entire life cycle of the capture process, e.g., the additional

CO2-eq. emissions from the material’s synthesis, disposal, and plant construction, and not

solely the energy-related life cycle CO2-eq. emissions of the capture plant (cf. Section 6.3.9).

The nCAC is defined from a system’s perspective and thus also accounts for the costs and

emissions associated with the compensation of the loss of product in case the production is

affected by the carbon capture process (e.g., for power plant cases). This KPI thus requires

input from the LCA layer.

The nCAC can be calculated according to Equation (S55)

nCAC =
TCRcc +

∑ OPEXcc(yr)
(1+DCF )yr∑ ṁCO2 avoided NEThr(yr)

(1+DCF )yr

(S55)

where OPEXcc(yr) denotes the system-based operational cost as defined in Section 6.3.2

and the ṁCO2 avoided NET considers the amount of CO2 avoided considering the total CO2-

eq. emissions over the entire life cycle of the capture plant as calculated in the LCA layer.

Equation (S55) can be written in terms of the system-based LCOC or CCC, which are

identical for the system’s perspective (see Section 6.3.5 and Section 6.3.6) and the climate

change impact CC evaluated in the LCA layer, as illustrated in Equation (S56)

nCAC =
LCOC

1− CC
=

CCC

1− CC
. (S56)
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The nCAC is larger than the CAC defined in Section 6.3.3 due to the consideration of

the non-energy-related life cycle CO2-eq. emissions from the LCA in the denominator and

the additional costs and emissions from the compensation. The nCAC is thus preferred as a

KPI compared to the CAC from an environmental perspective.

6.3.5 Levelised Cost of Capture (LCOC)

The Levelised Cost of Capture (LCOC) is a metric presented in the Techno-economic Method-

ology Report by BEISS197, and it is calculated as the discounted lifetime cost of building

and operating a CO2 capture system (e t−1).

LCOC =
TCRcc +

∑ OPEXcc(yr)
(1+DCF )yr∑ ṁCO2 capturedhr(yr)

(1+DCF )yr

. (S57)

See Section 6.3.3 for the definition of the parameters.

6.3.6 Carbon Capture Cost (CCC)

The Carbon Capture Cost (CCC) is a metric that quantifies the cost incurred in capturing

a mass unit of CO2 (e t−1). This metric is used to assess the economic viability of a CO2

capture system relative to a market price for CO2 as an industry commodityS198. For indus-

trial case studies, the CCC reduces to the LCOC if the production of the industrial site is

not affected by the integration of the carbon capture plant. This is because the LCOC does

not consider the power output penalty due to the carbon capture system.

For a power generation plant, CCC can be defined as

CCC =
LCOEcc − LCOEref∑ ṁCO2 capturedhr(yr)

(1+DCF )yr∑ (Ẇcc)hr(yr)
(1+DCF )yr

. (S58)

where ṁCO2 captured is the total mass of CO2 captured and Ẇcc is the net power output of

the plant with capture. Equation (S58) reduces to Equation (S59) if the total mass of CO2
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captured and the net power output of the plant with capture is constant over the lifetime of

the plant:

CCC =
LCOEcc − LCOEref

ṁCO2 captured

Ẇcc

(S59)

See Section 6.3.3 for the definition of the parameters.

For the nCAC (Section 6.3.4) calculation, the CCC considers the system-based opera-

tional cost (cf. Section 3.3.3) and a power output equal to the reference power plant without

carbon capture due to the compensation of the parasitic load. In this case, the definition

of CCC from a system’s perspective reduces to the LCOC defined in Equation (S57) when

the system-based operational cost is used. For industrial plants, the system-based CCC is

equal to the operator-based CCC if the production of the industrial site is not affected by

the integration of the carbon capture plant.

6.3.7 Levelized Cost Of Electricity (LCOE)

LCOE is the discounted lifetime cost of building and operating a generation asset, expressed

as a cost per unit of electricity generated (e/MWh).S199 In the PrISMa platform, the levelized

cost of electricity of the power plant with carbon capture LCOEcc encompasses the capital

costs of the generator (power plant), which is assumed to be the same after the integration

of carbon capture, the capital costs of the capture plant, all relevant costs for operating the

power plant and the capture plant. It excludes financing costs. The LCOE is calculated

according:

LCOEref =
TCRref +

∑ OPEXref(yr)
(1+DCF )yr∑ Ẇrefhr(yr)

(1+DCF )yr

(S60)

LCOEcc =
TCRref +

∑ OPEXref(yr)
(1+DCF )yr

+ TCRcc +
∑ OPEXcc(yr)

(1+DCF )yr∑ Ẇcchr(yr)
(1+DCF )yr

(S61)

where TCRref is the total capital required (e) including interest during construction for the

reference plant, DCF is the discount cash flow rate, TCRcc is the total capital required for the
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capture plant, and Ẇref and Ẇcc are the power output of the reference power plant and the

power plant with carbon capture, respectively, and hr(yr) represents the annual operating

time in hours.

6.3.8 Carbon Dioxide Avoided

The mass flow rate of CO2 avoided quantifies the total CO2 emission reduction from a capture

plant considering its energy-related life cycle CO2-eq. emissions. We compute the total mass

flow rate of CO2 avoided, ṁCO2 avoided (kgCO2/h), from the total mass flow rate of CO2

captured ṁCO2 captured (cf., Section 6.2.9) and the total mass flow rate of CO2 emissions of

the energy supply by utilities to the capture plant, ṁCO2 emissions, cc, as

ṁCO2 avoided = ṁCO2 captured − ṁCO2 emissions, cc, (S62)

with

ṁCO2 emissions, cc =
∑

eCO2 intensity, utility Ẇutility Nutility. (S63)

Here, eCO2 intensity, utility (tCO2/MWh) is the total CO2-eq emission rate of a given utility (i.e.,

heat, cooling, power/electricity), Ẇutility (MW) is the power, heat or cooling requirement of

a utility unit, and Nutility corresponds to the number of equipment per utility needed in the

entire capture plant. The total CO2 intensity per utility eCO2 intensity, utility is taken from the

commercial LCIA database and includes direct and indirect emissions of the utility. It is

important to note that the CO2-eq. emissions from ‘in plant fuel use’ are excluded from

ṁCO2 emissions, cc since they are included in the CO2 source. Moreover, the ṁCO2 emissions, cc do

not consider the CO2-eq. emissions from materials synthesis and disposal and capture plant

construction.
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6.3.9 Specific carbon dioxide emissions

The specific CO2-eq. emissions or CO2 intensity eCO2 intensity, cc represents the total CO2

emitted per unit product in kgCO2/unit of product for industrial cases with carbon capture,

or per unit electricity for power plant cases with carbon capture. For power plant case

studies, eCO2 intensity, cc is given by the total emissions of the CO2 source plant with carbon

capture divided by the power generation of the power plant with carbon capture, Ẇcc.

For the power plant with carbon capture, eCO2 intensity, cc is calculated as:

eCO2 intensity, cc =
eCO2 intensity, ref · Ẇref − ṁCO2 captured + ṁCO2 emissions, cc

Ẇcc

(S64)

For cement and other industrial cases, eCO2 intensity, cc is calculated as:

eCO2 intensity, cc =
eCO2 intensity, ref · Productref − ṁCO2 captured + ṁCO2 emissions, cc

Productref
, (S65)

where eCO2 intensity, ref (tCO2/MWh) represents the total specific emissions of the reference

plant without carbon capture, Ẇref (MW) represents the power output of the reference plant

without carbon capture, ṁCO2 captured represents the total mass flow rate of CO2 captured,

ṁCO2 emissions, cc represents the total mass flow rate of energy-related CO2 emitted by the

capture plant and Productref is the production of an industrial plant without carbon capture,

which, for industry cases, is assumed to be unaffected by the integration of carbon capture.

6.3.10 SPECCA

The Specific Primary Energy Consumption per CO2 Avoided (SPECCA) is a metric that

measures the amount of primary energy consumed in avoiding emitting a mass unit of CO2

into the atmosphere. The calculation, as per EBTF, assumes constant thermal input of

the power plant with and without carbon capture. Following the definition of the specific

emission (see Section 6.3.9), the primary energy is calculated based on LCIA data taken
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from commercial LCIA database and includes both direct and indirect primary energy of

the reference plant and utilities. For power plants, the primary energy consumption is

calculated as the sum of the direct primary energy consumption as defined by the case study

heat rate (Qth input, ref/Ẇref) and the indirect primary energy consumption per unit electricity

(PEind,ref) estimated from commercial LCIA databases. In the case that the capture plant

utilities consume additional primary energy, the total primary energy consumption of the

utilities is added to the total primary energy consumption of the reference power plant

according to:

SPECCA =

(
Qth input, cc

Ẇcc
−
(

Qth input, ref

Ẇref
· 3600 + PEind,ref

))
eCO2 intensity, ref − eCO2 intensity, cc

(S66)

with

Qth input, cc =

(
Qth input, ref

Ẇref

· 3600 + PEind,ref

)
Ẇref +

∑
PEutility Ẇutility Nutility. (S67)

Here, PEind,ref denotes the indirect primary energy consumption of the reference power plant

per unit electricity (MJ/MWh), PEutility is the total primary energy consumption of a utility

per unit energy (MJ/MWh), and eCO2 intensity, cc and eCO2 intensity, ref are the specific CO2

emission (kgCO2/MWh) of the plant, with and without CO2 capture, respectively. The

factor 3600 is to convert Qth input, ref from MJ/sec to MJ/h. Ẇutility and Ẇref are the power

output of a utility unit or the reference power plant (MW), respectively. Nutility is the number

of utilities, and Ẇcc is the power output of the power plant with carbon capture (MW).

For industrial sources, we define:

SPECCA =

∑
PEutility Ẇutility Nutility

ṁCO2 avoided

(S68)

where ṁCO2 avoided is defined by Equation (S62).
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6.3.11 Foreground data for the LCA layer

The LCA foreground data calculated in the TEA layer provides data on the energy and

material demands of the carbon capture plant during its entire life cycle.

Total mass of CO2 captured. Indicates the total mass of CO2 in kg that is captured

during the life cycle of the capture plant. The variable is used to scale the environmental

impacts to the functional unit of ’1 kg CO2 captured’.

Total mass of required adsorbent material. Indicates the total mass of adsorbent

material in kg that is required during the life cycle of the capture plant. The mass includes

the initial amount of material required at plant construction and the refilling after the lifetime

of the material.

Total amount of parasitic load. Indicates the total parasitic load in MJ, i.e., the loss

of electricity of the power plant due to the energy supply of the carbon capture plant (e.g.,

power supply or heat supply by steam extraction).

Total heat amount supplied by each utility system. Indicates the total amount of

thermal energy for heating in MJ provided by each heat supply technology considered in

the utility system. Besides the amount of thermal energy, the scenario of the heat supply

technology is provided (e.g., natural gas boiler or electrical boiler).

Total power amount supplied by each utility system. Indicates the total amount of

electrical energy in MJ provided by each power supply technology considered in the utility

system. Besides the amount of power, the scenario of the power supply technology is provided

(e.g., electricity grid or wind turbine).

Total cooling amount supplied by each utility system. Indicates the total amount

of thermal energy for cooling in MJ provided by each cooling supply technology considered
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in the utility system. Besides the amount of cooling energy, the considered cooling supply

technology scenario (e.g., cooling water) is provided.

Total mass of carbon steel of the equipment. Indicates the total mass of carbon

steel required for the equipment construction. For each piece of equipment, the total mass of

carbon steel is obtained by the weight of each equipment unit multiplied by the total number

of equipment units required in the capture plant. The mass of carbon steel for each piece of

equipment is estimated using linear correlations fitted to Aspen Capital Cost EstimatorS72

data depending on the equipment size.

6.4 Output at the LCA layer

The KPIs of the LCA model are defined according to the life cycle impact assessment (LCIA)

method Environmental Footprint 3.0 recommended by the European Commission’s Joint

Research CentreS97,S98. The Environmental Footprint 3.0 LCIA method comprises 28 impact

categories (16 main categories and 12 subcategories) that can be clustered into environmental

impacts on climate change, resources, ecosystem quality, and human health. For each impact

category, the environmental impact hi can be calculated as:

hi =
∑
i∈D

ci · xi (S69)

where ci is the LCIA score taken from LCA databases, xi is the life cycle inventory of process

i, and D is the set of all processes within the system boundaries. All impact categories are

briefly described in the following subsections. For details, the reader is referred to the

Environmental Footprint 3.0 documentation.S97
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6.4.1 Climate Change

• Climate Change: Indicates the total Global Warming Potential (GWP) due to green-

house gas emissions to the air and CO2 uptake from the atmosphere according to the

IPCC, 2013.S200 A GWP baseline of 100 a (GWP100) is considered. (Unit: kg CO2-Eq)

– Climate Change: Biogenic: Indicates the GWP due to greenhouse gas emis-

sions from biomass utilization (e.g., combustion) and CO2 uptake from the atmo-

sphere due to biomass growth.

– Climate Change: Fossil: Indicates the GWP due to greenhouse gas emissions

from fossil fuel utilization (e.g., combustion).

– Climate Change: Land Use and Land Use Change: Indicates the GWP

(CO2 uptake and emission) due to changes of the carbon stock caused by land

use change and land use (e.g., deforestation or road construction).

6.4.2 Resources

• Water Use: Indicates the potential of water deprivation to ecosystems or humans in a

specific region. The impact category considers the relative available water that remains

after supplying the ecosystem and human water demand. (Unit: m3 world eq. deprived)

• Energy Resources: Non-Renewable: Indicates the use of non-renewable fossil

resources (e.g., natural gas or coal). The use of fossil resources is measured using the

net calorific value. (Unit: MJ, net calorific value)

• Material Resources: Metals/Minerals: Indicates the use of non-renewable non-

fossil natural resources (e.g., minerals and metals). This environmental impact cate-

gory takes into account the availability of a mineral or metal on earth and the current

mining rate. The use of natural resources like minerals and metals is measured using

antimony (Sb) as reference material. (Unit: kgSb-Eq)
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• Land Use: Indicates the use of the land area (e.g., by agriculture, housing, or mining)

depending on the soil quality and the effect on land properties and area changes. (Unit:

dimensionless)

6.4.3 Ecosystem Quality

• Acidification: Indicates the potential acidification of soils and water due to hydrogen

ions (H+) that are released to the environment due to mineralization of substances

like NOx or SOx. (Unit: mol H+-Eq)

• Ecotoxicity: Freshwater: Indicates the toxic impact of released substances on a

freshwater ecosystem and its organisms, structure, and function. The impact is mea-

sured using the comparative toxic unit for ecosystems (CTUe).

– Ecotoxicity: Freshwater, Inorganics: Indicates the toxic impact of inorganic

substances on a freshwater ecosystem.

– Ecotoxicity: Freshwater, Metals: Indicates the toxic impact of metals on a

freshwater ecosystem.

– Ecotoxicity: Freshwater, Organics: Indicates the toxic impact of organic

substances on a freshwater ecosystem.

• Eutrophication: Freshwater: Indicates the increase of nutritional elements in a

freshwater ecosystem. This increase can result from the emission of substances that

contain phosphor. (Unit: kg PO4-Eq)

• Eutrophication: Marine: Indicates the increase of nutritional elements in a marine

ecosystem. This increase can result from the emission of substances that contain

nitrogen. (Unit: kg N-Eq)
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• Eutrophication: Terrestrial: Indicates the increase of nutritional elements in a

terrestrial ecosystem. This increase can result from the emission of substances that

contain nitrogen. (Unit: mol N-Eq)

6.4.4 Human Health

• Human Toxicity: Carcinogenic: Indicates the effects of an intake of toxic sub-

stances on human health related to cancer. The intake of toxic substances can result,

e.g., from air, food, or water intake. (Unit: CTUh (Comparative Toxic Unit for human)

that indicates the disease cases in the human population per kg emitted)

– Human Toxicity: Carcinogenic, Inorganics: Indicates the effects of an in-

take of toxic inorganic substances on human health that are related to cancer.

– Human Toxicity: Carcinogenic, Metals: Indicates the effects of an intake of

toxic metals on human health, which are related to cancer.

– Human Toxicity: Carcinogenic, Organics: Indicates the effects of an intake

of toxic organic substances on human health, which are related to cancer.

• Human Toxicity: Non-Carcinogenic: Indicates the effects of an intake of toxic

substances on human health unrelated to cancer and not caused by particulate matter

or ionizing radiation. The intake of toxic substances can result, e.g., from air, food,

or water intake. (Unit: CTUh (Comparative Toxic Unit for human) that indicates the

disease cases in the human population per kg emitted)

– Human Toxicity: Non-Carcinogenic, Inorganics: Indicates the effects of

an intake of toxic inorganic substances on human health that are not related to

cancer.

– Human Toxicity: Non-Carcinogenic, Metals: Indicates the effects of an

intake of toxic metals on human health unrelated to cancer.
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– Human Toxicity: Non-Carcinogenic, Organics: Indicates the effects of an

intake of toxic organic substances on human health unrelated to cancer.

• Particulate Matter Formation: Indicates the effects of particulate matter (PM)

emissions and its precursors (e.g., NOx or SOx) on human health and potential disease.

(Unit: disease incidence)

• Ozone Depletion: Indicates the stratospheric ozone degradation due to emissions of

ozone-depleting molecules like chlorofluorocarbons. Trichlorofluoromethane (CFC-11)

is used as a reference molecule. (Unit: kg CFC-11-Eq)

• Photochemical Ozone Formation: Human Health: Indicates the effect of the

formation of the ozone at the troposphere level on human health due to photochemical

oxidation. The impact is measured by the increase of the tropospheric ozone concen-

tration in kg NMVOC-Eq (non-methane volatile organic compound).

• Ionising Radiation: Human Health: Indicates the effects of radioactive releases

(e.g., radionuclide emissions) on human health. Uranium-235 (U235) is used as refer-

ence material. (Unit: kBq U235-Eq)
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7 Spearman analysis

In our platform, we compute 50 KPIs. Some of these KPIs are important for a specific

application. With so many KPIs, observing specific trends across all platform layers for a

particular case study is challenging. Also, many KPIs are correlated, so for this purpose, we

analyze the Spearman’s rank-order correlation coefficientsS201 rS between KPIs as a first-pass

approach to find the strength and direction of association between two ranked KPIs.

The definition of the Spearman correlation coefficient is:

rS =
cov(R(X)R(Y ))

σR(X)σR(Y )

, (S70)

where R(X) denotes the rank of the variable X, cov(R(X)R(Y )) is the covariance of the rank

for variables X and Y , and σR(X) and σR(Y ) denote the standard deviation of the variables X

and Y , respectively. The Spearman correlation assesses the monotonicity of the relationship

between two variables where a rS of +1 indicates a perfectly monotone increasing relationship

between X and Y , while a rS of −1 indicates a perfectly monotone decreasing relationship.

Note that a well-defined but non-monotone relationship can generate a low/near-zero

rS. For example, the water-related variables (i.e., α, the water penetration length into the

column, and WRC) have complex interrelationships with other KPIs that are not readily

apparent through this metric. For example, if a material has a low α, this material can have

good performance irrespective of the WRC. If a material has a high WRC, the value of α is

irrelevant. For these reasons, we assess the water-related impact on the process in a separate

section (see Section 9.1). Figure S28 presents the resulting Spearman’s rank correlation

matrix for the cement case study in the UK with a TVSA process at 0.6 bar.

A minimum Spearman’s rank correlation coefficient of rS = 0.28 is obtained, and a

maximum of almost rS = 1. Thus, all KPI rankings have a positive correlation and range

from a weak up to a nearly perfect rank correlation.

S-110



material

process

TEA
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Figure S28| Spearman’s rank correlation matrix for the cement case in the UK
with TVSA process at 0.6 bar. The Spearman’s rank correlation matrix of the rankings
considers one material KPI, eight process KPIs, eight TEA KPIs, and 16 LCA KPIs. A dark
blue color represents very strong correlations, while dark red represents lower correlations.
The size of the circle is proportional to the absolute value of the correlation. The diagonal
circles in the matrix have a Spearman’s (self) correlation coefficient of 1.
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Materials Layer In many studies, the properties of the materials are used as proxies for

typical process KPIs. As our platform directly computes the relevant process KPIs, such

proxies are unnecessary in this analysis. It is interesting, however, to illustrate the limitation

of a materials’ KPI that is ignorant of the process details. For this purpose, we keep the

Henry selectivity (S) as an example of such a proxy.

Process Layer We include the eight process KPIs for Spearman analysis. For example, a

strong correlation between the purity and specific electrical energy demand is observed. No

strong correlation is observed between productivity and the other KPIs in the process layer.

The remaining process KPIs (e.g., effective recovery and working capacity) correlate with

the TEA-KPIs. Hence, we select purity (Pu) and productivity (P) as reference KPIs, and

no additional KPIs are selected from the group that correlates with the TEA-KPIs.

TEA Layer For the TEA layer, all KPIs are strongly correlated; thus, we select only the

Net Carbon Avoidance Cost (nCAC). The nCAC combines capital and operational costs

and considers the total life cycle CO2-eq. emissions of the capture plant, i.e., not solely

the energy-related emissions but also those from material synthesis and disposal and plant

construction.

LCA Layer For the LCA layer, we focus the analysis on the 16 main LCA impact cat-

egories (cf., Section Output of the PrISMa platform). In this layer, a high correlation is

observed for most KPIs except for the KPI Material Resources: Metals/Minerals (MR:MM).

Therefore, we select Climate Change (CC) due to its importance for carbon capture applica-

tions and the KPI MR:MM. The LCA KPI MR:MM considers the availability of a particular

metal on earth and the current mining rate. This KPI captures not only the environmental

impact of the metal in the MOF but also the metals and minerals required for, e.g., the

energy supply or plant construction.
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8 The stakeholders’ perspectives

The design and development of a carbon capture plant require a holistic approach, where the

perspectives of many stakeholders, from those in the technosphere to those in the ecosphere,

must be considered. The stakeholders’ perspectives incorporate a variety of requirements

and research questions on the plant’s development. So far, such a holistic approach has been

lacking within the field of carbon capture, with only some examples of design attempts that

cross over the materials and process design space.S202–S204 The stakeholders’ perspectives and

examples of the corresponding requirements and research questions we take are summarized

as follows:

• The engineer’s perspective: For a given CO2 source and sink, many technology options

exist to capture CO2. From an engineer’s perspective, it is crucial to identify and design

the best technology option for a given separation. Adsorption-based processes use

temperature and/or pressure swings to separate the component of interest from the gas

mixture. An adsorption cycle consists of several steps to achieve the required process

specifications, e.g., purity and recovery, and deliver a continuous plant operation. For

example, the CO2 separation from a very diluted gas stream may require adding a

vacuum step and/or several intermediate heating steps to meet the purity specifications

of the process. The engineer’s perspective provides the best technological option for the

process and considers the development of a feasible and optimal solution when scaling

up the amount of CO2 captured. This perspective also requires knowledge of available

utilities at the host CO2 emitter and its optimal integration within the capture plant.

• The environmental manager’s perspective: The perspective of the environmental man-

ager takes into account the environmental impacts of the capture plant. As capturing

CO2 inherently leads to CO2-eq. emissions, e.g., due to energy supply or material syn-

thesis, the environmental manager aims to maximize the captured CO2 while simul-

taneously minimizing the associated CO2-eq. emissions. Moreover, the environmental
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manager’s perspective considers environmental impacts beyond climate change to en-

sure an overall environmentally benign solution.

• The CO2 producer’s perspective: The required decarbonization of our energy and in-

dustrial systems will imply the mitigation of CO2 emissions from many sources. These

CO2 emitters define the input conditions to the capture plant, e.g., flue gas composi-

tion, flow rate, temperature, and pressure. For a specific CO2 source, the CO2 producer

aims to find the most cost-efficient way to reduce CO2 emissions. For example, the

available utilities in the host plant can be integrated into the capture process, and the

platform can guide the decision on if such an integration reduces costs.

• The CO2 buyer’s perspective: The CO2 buyer defines the requirements on the captured

CO2. From the CO2 buyer perspective, the developed carbon capture plant has to

provide a CO2 stream that fulfills specific requirements for use or storage, e.g., the

purity of the CO2 or pressure.

• The investor’s perspective: The investor aims to find the most cost-efficient solution for

a carbon capture plant with an optimal trade-off between the capital expenditure and

operating cost. From the investor’s perspective, the most cost-efficient solution has to

be economically competitive with current state-of-the-art carbon capture plants, e.g.,

absorption-based carbon capture using an amine solvent. The global nature of CO2

emissions reduction will require the deployment of carbon capture plants in many parts

of the world. Due to the region-dependent cost of building and operating a plant, the

investor aims to find the most cost-efficient region to invest in a carbon capture plant.

The PrISMa platform will give the investor the break-even carbon price for a given

CO2 source and sink in a particular part of the world.

• The chemist’s perspective: The adsorbent material used in the carbon capture plant

is at the heart of the process. For decades, efforts have been devoted to identifying

which materials would be “best” for carbon capture applications. The route from the
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first synthesis of a new material to its implementation into a commercial process can

take many years. It is, therefore, important to provide some guidance from a chemist’s

perspective on impactful innovation material targets. For example, a chemist has

synthesized a novel MOF and uses the PrISMa platform to see if this new material is

interesting for carbon capture. Or vice versa, the platform will provide insights into

the molecular features that define an optimal material for a given application. This

may further inspire chemists to synthesize alternative materials with similar features.

One of the most important applications and benefits of our PrISMa platform is that we

can holistically consider all the requirements from the many stakeholders at the early design

phase of a carbon capture plant.

In this section, we illustrate the use of the platform for some of our 66 Case Studies,

taking these stakeholders’ perspectives.

8.1 The engineer’s perspective

In the platform, we have implemented two technologies Temperature Swing Adsorption

(TSA), and Temperature Vacuum Swing Adsorption (TVSA), for which we consider two

levels of vacuum pressure, 0.2 bar and 0.6 bar.

In Figure S29, we compare the nCAC for the top-performing materials for each of the

three CO2 sources and process configurations. For the NGCC power plant, the TVSA process

with the lowest vacuum pressure (0.2 bar) gives the lowest nCAC. For coal and cement, we

see a similar nCAC for TSA and TVSA with some vacuum (0.6 bar). Our sink is geological

storage, which requires a purity of the CO2 > 96%. Figure S30 gives the purity that is

reached for these materials. We see that adding some vacuum greatly improves the purity.

For example, if we use TSA for cement, only four materials reach the desired purity, while for

TVSA (0.6 bar), most (17 out of 20) reach the desired purity. A similar conclusion holds for

coal. After optimization of the process parameters, more materials will reach the required

purity (see Section 10).
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After the adsorption step, the vacuum rapidly purges the weakly adsorbed components,

increasing the purity. Vacuum is most effective if the CO2 concentration is low. For instance,

increasing the vacuum level reduces the residual uptake after the regeneration step, which, in

turn, increases the working capacity of the material. As the working capacity is a good proxy

of the amount of adsorbent needed, and hence the number of required columns for the sepa-

ration, the effect of using vacuum is reflected in the CAPEX. However, including a vacuum

introduces additional capital and variable operating costs, such as electricity consumption,

which may outweigh these cost savings.

Where the feed concentration of CO2 is low, e.g., for NGCC power plants, the TVSA

process with the lowest vacuum pressure (0.2 bar) gives the lowest nCAC. The loss in working

capacity by reducing the vacuum level from 0.2 bar to 0.6 bar leads to notable increases in

CAPEX, being even more pronounced for TSA. Besides the increase in CAPEX for NGCC

power plants, the variable OPEX also increases for decreasing vacuum level, which is mainly

caused by the increase in total energy demand. This effect gets amplified for TSA because of

the additional drop in the working capacity and increased specific thermal energy demand.

For coal and cement, the lowest nCAC is obtained with TVSA process with intermediate

vacuum levels, e.g., (0.6 bar) vacuum pressure.

Simple thermodynamic arguments indicate that the higher the CO2 concentration, the

lower the minimal amount of work needed for the separation. However, Figure 4(a) shows

a higher nCAC for cement plants (20% CO2) than for coal power plants (15% CO2). Our

calculations show that the cement plant’s total energy requirements and capital costs are

smaller. However, in a cement plant, none, or very few, of the on-site utilities can be used

in the capture process. These utilities have to be either bought externally or built on-site,

which is more expensive than for the corresponding coal Case Studies, where the available

utilities in the host plant can be efficiently used to satisfy the energy demands of the capture

plant. The results highlight that the simple thermodynamic argument holds regarding total
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energy demand. Still, the final net costs per CO2 (avoided) additionally depend strongly on

the available utilities and the specifics of the Case Study.
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Figure S29| Breakdown of the nCAC of the top 20 materials for (top) NGCC power plants,
(middle) coal power plants, and (bottom) cement plants in the UK, for the technologies
TVSA with a vacuum pressure of 0.2 bar (left) and 0.6 bar (middle) and TSA (right). The
costs are grouped into CAPEX (purple), fixed OPEX (dark blue), which is a percentage of
the CAPEX, and variable OPEX (light blue), which mainly involves the cost related to the
energy requirements of the process. The black dots are the total nCAC values.
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Figure S30| The purity of the top 20 materials for (top) NGCC power plants, (middle) coal
power plants, and (bottom) cement plants in the UK, for the different technologies TVSA
with a vacuum pressure of 0.2 bar, TVSA with a vacuum pressure of 0.6 bar, and TSA. The
blue line is the required purity (96%) for geological storage. If a point is missing for a
material, it means that the purity is less than 80%
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8.2 The environmental manager’s perspective

At the LCA layer, 28 environmental impact categories of the Environmental Footprint 3.0

are calculated (cf. Section 6.4).

8.2.1 Climate Change

One of the most important LCA KPIs for carbon capture processes is the climate change

impact CC. The climate change impact measures the total CO2-eq. emissions of the capture

process in kg CO2-eq./kgCO2-captured (in the following indicated in %) associated with the

synthesis and disposal of the adsorbent, the external utility supply, the compensation for the

parasitic load for power plant cases, and the plant construction and disposal. To assess the

effective amount of CO2 avoided in the atmosphere, we compute the effective recovery R∗ of

the carbon capture process. The effective recovery R∗ is calculated as the ratio between the

avoided CO2-eq. emissions and the total amount of CO2 in the flue/industrial gas and can

be expressed as:

R∗ = R · (1− CC), (S71)

where R denotes the recovery of the process in % (see Section 6.2.2), which is the percentage

of the captured CO2 from the total amount of CO2 in the flue/industrial gas, and CC the

climate change impact in kg CO2-eq./kg CO2-captured.

In Figure S31, we compare the climate change impact CC with the recovery and effective

recovery of the capture process for the top 20 materials with the lowest nCAC in the UK.

If we only consider the process, we see that for all three CO2 sources, the recovery is

close to 100% for the TSA processes. In contrast, for TVSA with a vacuum pressure of

0.2 bar, the average recovery decreases for increasing CO2 concentration of the CO2 source.

The vacuum step increases the purity (see Figure S30) but at the expense of the recovery,

and the higher the CO2 concentration in the feed, the larger this effect.
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Figure S31| Recovery, effective recovery, and Climate Change (CC) for the top 20 materials
(ranked according to the nCAC) for (top) NGCC power plant, (middle) coal power plant,
and (bottom) cement plant in the UK, for the TVSA technology with a vacuum pressure of
0.2 bar (left) and 0.6 bar (middle) and TSA (right). The recovery is given by the dark green
bar, the CC (in %) by the light green bar, and the red dots give the effective recovery.
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We need to correct the recovery from the process for the indirect CO2 emissions. For the

power generation Case Studies (coal and NGCC), the major contributor to climate change

(CC) results from the compensation for the loss of electricity production (i.e., the parasitic

load) by the average electricity grid (see Section 3.4). As the concentration of CO2 for the

NGCC power plant is lower than for the coal power plant, the specific energy requirements

are higher for the NGCC case. As a result, the climate change impact per captured kg of CO2

is about 18% for the NGCC case and about 10% for the coal case (TVSA with a vacuum

pressure of 0.2 bar). For NGCC with TSA, the number of columns and energy requirements

strongly increase (see Section 8.1), leading to climate change impacts up to 77% for the top

20 materials (median = 50%).

For the cement plant, the climate change impact per captured kg of CO2 is about 18%,

independent of the technology we use. If we focus on the TSA process for the cement

and coal case, we see that despite the lower specific energy demand due to the higher CO2

concentration for cement, the climate change impact is higher than that for coal. For cement,

the major contribution to the CC results from the additional external utilities, i.e., the heat

demand supplied by natural gas boilers and the electricity demand supplied by the electricity

grid. It is assumed that the CO2 emitted by the external gas boilers is not captured. This

point is discussed in more detail in Section 8.2.2. The CO2-eq. emissions per amount of heat

are generally higher for natural gas boilers than for steam extraction and compensation of

the parasitic load by the average grid mix in the UK. These emissions are only slightly region-

dependent, and the much smaller region-dependence of the CC for cement mainly results

from the electricity demand (see Figure 4(c) in the main manuscript). For the cement plant

with TVSA and a vacuum pressure of 0.2 bar, we see a larger variation in effective recovery

due to the variation in the recovery of up to 15% for the same nCAC.

The effective recovery depends on the region of the world. In Figure S32, S33, S34,

and S35 we show the effective recovery, recovery, and CC for the US, China (Guangdong

and Shandong provinces), and Switzerland, respectively. The recovery is independent of the
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plant’s location. In contrast, the CC and thus also the effective recovery depends on the

region, and we see large differences between the regions.

For the NGCC case, we focus on TVSA with 0.2 bar vacuum pressure. We get a near

100% recovery for all materials. For Switzerland, the emissions associated with CC are

the lowest, leading to a median effective recovery of 95%. This is due to the contribution

of hydroelectric and nuclear power to the electricity grid.S205 In contrast, in China, the

median effective recovery drops to 59% and 40% in the Guangdong and Shandong provinces,

respectively. In China, coal accounts for a large fraction of its electricity production, and in

the Shandong province, the use of coal is higher compared to Guangdong.S206 In the US, the

energy grid generated more CO2 than in the UK, and we find a median effective recovery of

70% and 81%, respectively.

For coal, we see the impact of the vacuum on recovery for all countries. Using a lower

vacuum level (0.6 bar) or TSA gives a near 100% recovery. Once we subtract the CC from

the recovery, we see that the effective recovery reaches in the UK, US, China (Guangdong),

and China (Shandong), 89%, 83%, 77%, and 66%, respectively, which is again a reflection

of how CO2 emissions derived from the grid, are larger in China than in the US and UK.

The cement case gives a different picture. Here, we see that TSA gives a near 100%

recovery, but now the CC shows much smaller differences between the regions compared to

the NGCC and coal cases. The reason is that for cement, the most important contribution

to the CC are the emissions from the natural gas boilers. The natural gas boilers provide

most of the utilities required to operate the capture plant.
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Figure S32| Recovery, effective recovery, and Climate Change (CC) for the top 20 materials
(ranked according to the nCAC) for (top) NGCC power plant, (middle) coal power plant,
and (bottom) cement plants in the US, for the technologies TVSA with a vacuum pressure
of 0.2 bar (left) and 0.6 bar (middle) and TSA (right). The recovery is given by the dark
green bar, the CC (in %) by the light green bar, and the red dots give the effective recovery.
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Figure S33| Recovery, effective recovery, and Climate Change (CC) for the top 20 materials
(ranked according to the nCAC) for (top) NGCC power plant, (middle) coal power plant,
and (bottom) cement plants in China (Guangdong province), for the technologies TVSA
with a vacuum pressure of 0.2 bar (left) and 0.6 bar (middle) and TSA (right). The recovery
is given by the dark green bar, the CC (in %) by the light green bar, and the red dots give the
effective recovery. For TSA, not all materials in the top 20 resulted in an effective recovery
above 0; these materials have been omitted.
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Figure S34| Recovery, effective recovery, and Climate Change (CC) for the top 20 materials
(ranked according to the nCAC) for (top) NGCC power plant, (middle) coal power plant,
and (bottom) cement plants in China (Shandong province), for the technologies TVSA with
a vacuum pressure of 0.2 bar (left) and 0.6 bar (middle) and TSA (right). The recovery is
given by the dark green bar, the CC (in %) by the light green bar, and the red dots give the
effective recovery. For TSA, not all materials in the top 20 resulted in an effective recovery
above 0; these materials have been omitted.
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Figure S35| Recovery, effective recovery, and Climate Change (CC) for the top 20 materials
(ranked according to the nCAC) for (top) NGCC power plant and (bottom) cement plants in
Switzerland, for the technologies TVSA with a vacuum pressure of 0.2 bar (left) and 0.6 bar

(middle) and TSA (right). The recovery is given by the dark green bar, the CC (in %) by
the light green bar, and the red dots give the effective recovery.
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8.2.2 Impact of different utilities

Power plants Heat integration with the existing host plant is the default strategy for

power plant producers.

In Figure S36a, we compare those cases where heat extraction from the power plants

(NGCC and coal) is not possible (e.g., no access to the Intermediate-Pressure - Low-Pressure

crossover in the steam turbines in the case of a retrofit). In those cases, natural gas boilers

are considered to provide the required heat for the regeneration process. We observe that

the effective recovery decreases for both NGCC and coal since the impact of climate change

increases. Climate change increases because we use a natural gas boiler to produce the

steam instead of steam extraction from the power plant with compensation of the parasitic

load, and this natural gas boiler’s emitted CO2 is not captured. In Figure S36b, we also see

that the use of natural gas boilers increases the nCAC because of these increased emissions.

Moreover, the operating costs associated with using external utilities are generally more

expensive than those when the onsite utilities are used.

Cement plants For cement producers, however, the available utilities at the host plant

are very limited; a natural gas boiler has to be built on-site to satisfy heat energy demand.

The emissions derived from these gas boilers are the main factor contributing to the indirect

emissions from the capture plant. In practice, those emissions would also be abated, and

one could mix these with the flue gasses of the cement plant. The external energy demand

depends on the (unknown) performance of a material. Hence, the total amount of flue gases

will be dependent on the performance of the material, requiring iterative solutions of the

equations. Therefore, we have not implemented this solution but use the (worst-case) option

of non-abating the CO2.

From an environmental perspective, the replacement of gas boilers with electrical heaters,

e.g., boilers or heat pumps, is an interesting case. For electricity-based heating, an electric

boiler’s coefficient of performance (i.e., the ratio of useful heating provided to work required)
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Figure S36| (a) Recovery, effective recovery, and Climate Change (CC) and (b) nCAC for
the top 20 materials (ranked according to the nCAC) for an NGCC (top) and coal (bottom)
plant in the UK with TVSA with heat integration (left) and without heat integration (right).
The recovery is given by the dark green bar, the CC (in %) by the light green bar, and the
red dots give the effective recovery. For nCAC, the costs are grouped into CAPEX (purple),
fixed OPEX (dark blue), which is a percentage of the CAPEX, and the variable OPEX (light
blue), which mainly involves the cost related to the energy requirements of the process. The
black dots are the total nCAC values.
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would be lower than that of a heat pump and thus a heat pump would be preferred. However,

from a thoughtful review of the current status of high-temperature heat pumps for industrial

applications and careful analysis, we consider that the technology is not ready nor suitable to

supply the heat for sorbent regeneration in the cement Case Study because of the following

reasons:

1. Industrial heat pumps have limitations regarding their thermal output. The highest

thermal energy supply reported in existing literature when heat is extracted from a

flue gas stream is approximately 1.5 MWth.S207 To put this into perspective, in our

work, the heat demand for the cement plant Case Study ranges from 48 to 68 MWth

for identified top-performing materials. For instance, in the case of CALF20, the

heat demand is ca. 88 MWth. Consequently, meeting these heat requirements would

necessitate a substantial number of heat pumps.

2. To attain a Coefficient of Performance (COP) exceeding 2, the temperature lift (i.e.,

the temperature difference between the source and the sink) in a heat pump should

be lower than 60 K.S208 This requirement implies that a heat source at ca. 70 ◦C is

necessary to supply steam at 120 ◦C. In a cement plant, this heat source is only

available in the flue gas stream. However, this is not feasible for our reference cement

plant because the heat is already utilized in the raw mill, as outlined below.

3. Incorporating heat pumps would result in a substantial upfront investment cost and

increase the operational complexity of the capture plant. Utilizing an intermediate

working fluid (i.e., refrigerant) also introduces heat losses/irreversibility due to the

pinch points in the subsequent heat exchangers. A more practical alternative would

involve the utilization of low-pressure steam coupled with vapor re-compression. How-

ever, this alternative is not an option in our cement case, as indicated below.

Our reference cement plant aligns with the Best Available Technology (BAT) cement

kiln outlined in the Horizon 2020 CEMCAP project. In this study, an in-depth evaluation of
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heat integration options was conducted, and it was ultimately determined that heat recovery

can only be achieved from the cooling air stream exiting the clinker cooler. Approximately

8.23 MWth is recovered from the clinker cooler in our reference plant (representing a portion

ranging from 12 % to 17 % of the total heat demand for identified top-performing materials).

Due to the characteristics of the raw material in the cement plant, i.e., mostly limestone,

most of the heat in the flue gases (at ca. 210 ◦C) at the pre-heater outlet is needed in the

raw mill (in interconnected operation). The plant only turns off the raw mill 2 hours/day (in

direct operation). The exhaust flue gas leaves the raw mill at ca. 110 ◦C (130 ◦C if low air

leak is considered in the mill). Therefore, producing steam at 120 ◦C would not be possible.

This may differ from the situation in other cement plants.

A noteworthy heat integration approach is being implemented in the full-scale carbon

capture plant currently under construction at the Heidelberg Norcem’s Brevik cement plant

in Norway.S209 The carbon capture process incorporates Aker Carbon Capture’s proprietary

technology, and the heat integration strategy encompasses the recovery of heat from multiple

sources, including the clinker cooler, the exhaust flue gases, and the CO2 compression train.

Steam is generated at varying pressures, and a steam compressor is employed to achieve

the necessary pressure and temperature levels for sorbent regeneration. Despite this setup,

an electric boiler remains essential for start-up and shut-down procedures. One distinctive

feature of this approach is the substantial amount of heat recovery from the flue gas. This

is made possible by the relatively dry nature of their raw material, primarily composed of

limestone, which allows for the recovery of a significant amount of energy from the exhaust

flue gases.

We investigate the impact of different types of boilers on the heat supply in a cement

plant in Switzerland, as we can reduce the CO2-eq. emissions by replacing the natural gas

boilers with electrical ones. Figure S37a shows that a change from natural gas to electric

boilers increases the median effective recovery by 15%, as the CC is close to zero with

electrical boilers due to the low CO2 intensity of the electricity grid in Switzerland. However,
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Figure S37b shows that the higher operating costs of these electric boilers are not fully

compensated by the reduced CC, as the median nCAC is about 16et−1
CO2

more expensive.

8.2.3 Trends in environmental impact categories

Besides climate change, the other environmental impact categories should also be considered

for material selection to ensure an environmentally benign solution. In its present imple-

mentation, the LCA model for material synthesis focuses on the metals used in the MOFs,

as the model assumes that all organic linkers have the same environmental impact.

Impact of the metal used in the MOF Figure S38 shows the 20 top-performing ma-

terials in Net Carbon Avoidance Cost (nCAC) across ranks in the 16 main LCA impact

categories for (a) the NGCC power plant with TVSA at 0.2 bar vacuum pressure and (b)

the cement plant with TVSA at 0.6 bar in the UK. In the simplified LCA model, most

top-performing materials rank well in all LCA impact categories. These materials contain

environmentally friendly metals, and the ranks are mainly defined by the environmental

impacts associated with the energy supply. However, some top-performing materials in

nCAC should be avoided due to the used metal. For example, two materials in the top 20

contain Holmium or Gadolinium, leading to a drop in the ranking in Material Resources:

Metals/Minerals, Land Use, Ecotoxicity: Freshwater, Eutrophication: Marine, and Human

Toxicity: Carcinogenic and Non-Carcinogenic. Materials in the top 20 that contain Cobalt

in the metal node have strong outliers in Water Use, Material Resources: Metals/Minerals,

Land Use, and Human Toxicity: Carcinogenic. The materials with Praseodymium drop in

the ranking for Material Resources: Metals/Minerals, Land Use, Ecotoxicity: Freshwater,

and Eutrophication: Marine. One material in the top 20 of the cement case contains silver

leading to a drop in 10/16 impact categories. Moreover, materials with rare earth oxides like

Samarium or Yttrium drop in the ranking in Eutrophication: Marine due to their production

in ion-adsorption clays that have direct ammonium and sulfate emissions to waterS210.
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Figure S37| (a) Recovery, effective recovery, and Climate Change (CC) and (b) nCAC for
the top 20 materials (ranked according to the nCAC) for a cement plant in Switzerland with
TSA with natural gas boiler (left) and electrical boilers (right). The recovery is given by
the dark green bar, the CC (in %) by the light green bar, and the red dots give the effective
recovery. For nCAC, the costs are grouped into CAPEX (purple), fixed OPEX (dark blue),
which is a percentage of the CAPEX, and the variable OPEX (light blue), which mainly
involves the cost related to the energy requirements of the process. The black dots are the
total nCAC values.
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Solvent in MOF synthesis We also find some trends in the top-performing materials

in nCAC depending on the solvent used for the synthesis. In total, water is selected as the

solvent for over 420 materials, ethanol for over 460 materials, and methanol for only 2 mate-

rials following the solvent selection procedure described in Section 3.4. For 260 materials, the

proxy solvent is selected as the solvent because the phase split between the organic linkers

and the solvents could not be calculated due to the current limits on SMILES inputs.

Figure S39 shows the 10 top-performing materials in Net Carbon Avoidance Cost (nCAC)

for each solvent across ranks in the 16 main LCA impact categories for (a) the NGCC power

plant with TVSA at 0.2 bar vacuum pressure and (b) the cement plant with TVSA at 0.6 bar

in the UK. Since methanol is selected solely for two materials, these are also highlighted.

Please note that several effects overlap in this figure: For example, the strong outliers in

Figure S39 mainly result from the metals used as metal nodes in the materials. However,

we can see some general trends in the selected solvents: water as a green solvent ranks very

high for all impact categories and should thus be used as the solvent if possible. In contrast,

materials synthesized using ethanol as the solvent tend to rank worse in Water Use, Land

Use, Ecotoxicity: Freshwater, and Human Toxicity: Carcinogenic and Non-Carcinogenic.

For the materials that are synthesized using the proxy solvent (average of all five solvents),

the ranks tend to drop in almost all impact categories due to organic solvents like DMF,

DMA, or ethanol.

This analysis highlights the impact of the metal and solvent used for the material synthesis

on the environmental impacts of the entire capture plant. This impact becomes particularly

important for producing the materials on an industrial scale. Our PrISMa platform allows

us to identify materials that outperform the benchmark in terms of nCAC and to pinpoint

the anticipated environmental hotspots derived from the synthesis. Chemists can use these

findings to focus on materials with similar characteristics but look for alternative metals or

solvents.
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Figure S38|Material ranking for all 16 main LCA KPIs: Climate Change (CC),
Water Use (WU), Energy Resources: Non-Renewable (ER:NR), Material Resources:
Metals/Minerals (MR:MM), Land Use (LU), Acidification (A), Ecotoxicity: Freshwater
(EcoT:F), Eutrophication: Freshwater (Eut:F), Eutrophication: Marine (Eut:M), Eutroph-
ication: Terrestrial (Eut:T), Human Toxicity: Carcinogenic (HT:C), Human Toxicity: Non-
Carcinogenic (HT:NC), Particulate Matter Formation (PMF), Ozone Depletion (OD), Pho-
tochemical Ozone Formation: Human Health (POF:HH), and Ionising Radiation: Human
Health (IR:HH). The colored lines show the top 20 materials for nCAC shown in the first
column (red).
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Figure S39|Material ranking for all 16 main LCA KPIs with solvents highlighted:
Climate Change (CC), Water Use (WU), Energy Resources: Non-Renewable (ER:NR), Ma-
terial Resources: Metals/Minerals (MR:MM), Land Use (LU), Acidification (A), Ecotoxicity:
Freshwater (EcoT:F), Eutrophication: Freshwater (Eut:F), Eutrophication: Marine (Eut:M),
Eutrophication: Terrestrial (Eut:T), Human Toxicity: Carcinogenic (HT:C), Human Tox-
icity: Non-Carcinogenic (HT:NC), Particulate Matter Formation (PMF), Ozone Depletion
(OD), Photochemical Ozone Formation: Human Health (POF:HH), and Ionising Radiation:
Human Health (IR:HH). The colored lines show the top 10 materials for nCAC of each sol-
vent (if available) shown in the first column (red).

S-135



Materials with Climate Change larger than 1 In Extended Data Figure 2(a), we

have indicated those materials for which the total CO2-eq. emissions of the capture plant are

larger than the amount of CO2 that is captured (cement in the UK with TVSA process at

0.6 bar). Some of these materials rank high for other KPIs, yet using them in a capture plant

would have a negative effect on CO2 emissions. It is interesting to discuss some examples of

materials that have such a large impact (CC > 1) on Climate Change.

For instance, in Extended Data Figure 2(a), a group of materials that rank top or very

high in CO2/N2 Henry selectivity presents a CC > 1. A high selectivity does not guarantee

a high CO2 working capacity. Indeed, this is the case for some of the materials, where

their CO2 working capacity is so low (< 0.01molm−3) that a very small amount of CO2 per

volume of bed is captured per process cycle, i.e., the materials show very low productivity

values. As a result, the number of columns required to process the feed gas stream is large,

and in turn, the energy demand for regeneration is also so significant that more CO2-eq.

emissions are generated than captured over the life cycle time of the capture plant.

Other examples of materials with CC > 1 are those containing precious metals like Au and

Rh. Two MOFs fall into this category. Even though these materials have comparatively good

working capacity values and moderate heat demands, for these materials, the environmental

impact of their synthesis is so large that it leads to CC impacts higher than one.

Our visualization tool allows the reader to inspect these materials further.
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8.3 The Carbon dioxide producer’s perspective

In this section, we compare capturing CO2 from two power plants, namely NGCC and coal-

fired power plants, and from a cement plant. These plants are based in the UK. We use

a TVSA-based carbon capture process with a vacuum level of 0.2 bar for the NGCC case

and 0.6 bar for the coal and cement case, and the captured CO2 is compressed for geological

storage.

8.3.1 Different carbon capture cost metrics

In the literature, one can find various cost-related KPIs, and in this section, we discuss four of

them: Levelised Cost of Capture (LCOC), Carbon Capture Cost (CCC), Carbon Avoidance

Cost (CAC), and Net Carbon Avoidance Cost (nCAC).

The LCOC has been introduced by Department for Business, Energy and Industrial

Strategy of the UK government (BEIS) to be able to compare the extra costs of building

and operating a capture plant per mass of captured CO2. In the power plant Case Studies,

i.e., coal and NGCC, utilities are available at the host plant and can be integrated with

the carbon capture plant. However, using these on-site utilities reduces the power output

of the power plant, and this so-called parasitic load is accounted for in the CCC, i.e., by an

increased LCOE of the power plant with carbon capture. Running a carbon capture plant

leads inherently to CO2-eq. emissions due to, for instance, utility supply or material synthesis,

effectively decreasing the amount of CO2 that is avoided in the atmosphere. Moreover, for

power plants, the parasitic load also impacts the specific CO2 emissions. This correction

to the carbon capture costs gives us the CAC if solely the CO2-eq. emissions of the energy

supply are considered. The nCAC considers the total CO2-eq. emissions of the entire life

cycle and additional operating costs and CO2-eq. of the compensation of the parasitic load

from a system’s perspective. The nCAC calculation thus requires the climate change impact

of the entire life cycle and thus integration of TEA and LCA, which our PrISMa platform
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enables. The available utilities at the host plant are limited for the cement case. Hence,

additional utilities must be built on-site or bought/imported externally.
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Figure S40| Top 20 materials in terms of four economic KPIs (LCOC, CCC, CAC and
nCAC) for a TVSA carbon capture process at 0.2 bar from an NGCC power plant (blue)
and a TVSA carbon capture process at 0.6 bar from coal power plant (green) and cement
plant (orange) in the UK. The top 20 materials have been ranked for the nCAC, and this
ranking is used for all KPIs. Hence, material ten for coal is the same for all KPIs associated
with coal, but material ten can differ for cement and NGCC.

In Figures S40 and S41, we show the four economic KPIs the platform computes and the

LCA KPI CC for the top 20 materials with the lowest nCAC. We can identify approximately

17-18 materials for each Case Study that have more or less the same cost (those in the

corresponding “plateau” sections we can find for all the cost KPIs in Figure S40), and a few

materials that have significantly lower costs. In this section, we focus on discussing the cost
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associated with the group of 17-18 materials as we want to avoid discussing cost estimates

that rely on a single material. In Section 11, we show how we use feedback from the platform

to identify more top-performing materials.
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Figure S41| Top 20 materials in terms of the LCA KPI (CC) for a TVSA carbon capture
process at 0.2 bar from an NGCC power plant (blue) and a TVSA carbon capture process
at 0.6 bar from coal power plant (green) and cement plant (orange) in the UK. The top 20
materials have been ranked for the nCAC, and this ranking is used for all KPIs. Hence,
material ten for coal is the same for all KPIs associated with coal, but material ten can differ
for cement and NGCC.

Figure S40a shows that the LCOC, which gives us the discounted cost of running and

operating the capture plant, is the highest for the NGCC power plant and cement plants

and lowest for the coal-fired power plant. For the power plant Case Studies, we can use

the available utilities at the host plant for the top-performing materials. Compared to the

NGCC power plant, the coal-fired power plant additionally benefits from the higher CO2

concentration in the flue gas. In a cement plant, the available utilities are insufficient to

run the capture plant. As a result, in the considered Case Study, the electricity required is

imported from the grid. A natural gas boiler supplies heat built on-site to regenerate the

adsorbent. In some Case Studies, we use an electric boiler for regeneration (see Section 8.2.2).

As only the costs of the additional utilities are accounted for in the LCOC, we get the high

LCOC for cement compared to the power plant cases despite the high CO2 concentration

for the cement case.

S-139



For power plant cases, the loss of electricity production caused by the use of the utilities

for the capture plant (parasitic load) increases the Levelised Cost of Electricity (LCOE) and

thus the CCC due to a decreased amount of product (=electricity). In contrast, for cement,

the amount of product (=cement) does not change and, thus, LCOC equals the CCC. Both

economic KPIs would also be equal for power plants if all energy demands were supplied

externally. In the CCC in Figure S40b, the parasitic load is accounted for. This increases the

median CCC by ca. 19et−1
CO2

for the coal case and ca. 33et−1
CO2

for the NGCC case compared

to the median LCOC.

The CCC is normalized by the amount of CO2 captured. However, this KPI does not

consider the CO2 emissions from additional utilities, material synthesis and disposal, plant

construction, and compensation of the parasitic load (in the case of power plants). In the

CAC, the energy-related CO2-eq. emissions from additional utilities and the impact of the

parasitic load on the levelized cost of electricity and CO2 intensity of the power plant are

accounted for. The median CAC increases compared to the median CCC by ca. 15et−1
CO2

,

10et−1
CO2

, and 24et−1
CO2

for the coal, cement, and NGCC case, respectively (see Figure S40c).

Our platform also computes climate change impact (CC), including the CO2-eq. emissions

not only from additional utilities and the compensation of the parasitic load but also from

material synthesis and disposal and plant construction. In Figure S41, the CC is shown for

NGCC, coal, and cement; for every t of CO2 we capture, we get a climate change impact of

ca. 0.10, 0.18, and 0.17 t of CO2-eq. for the coal, NGCC, and cement case, respectively. This

implies that, for instance, for coal, if we capture 100 t of CO2, 10 t of CO2 will be emitted

back into the atmosphere, hence effectively reducing the amount that is avoided to 90 t of

CO2. The CAC must be corrected to ensure all CO2-eq. emissions are taken into account.

For this correction, we introduce the Net Carbon Avoidance Cost (nCAC) (see Section 6.3.4)

shown in Figure S40d. Note that the nCAC considers the system’s perspective and accounts

for operational costs and CO2-eq. emissions of the parasitic load for power plant cases. As

expected, the nCAC results in higher cost than the CAC. While the increase of the median
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nCAC compared to the median CAC is very small for the cement case (0.1et−1
CO2

), it is more

significant for the power plant cases, i.e., 13et−1
CO2

for the coal case and 42et−1
CO2

for the

NGCC case. As a result, compared to the CCC, we see an increase in the median nCAC

of 28et−1
CO2

, 10et−1
CO2

, and 66et−1
CO2

for the coal, cement, and NGCC case, respectively (see

Figure S40d) if we take all emissions and the system’s perspective into account. From this

discussion, we conclude that the nCAC is the best cost metric to compare the various Case

Studies.

8.3.2 Different sources

Capturing CO2 from NGCC power plants gives the highest nCAC and from cement plants the

lowest. Interestingly, while the results from the CAC differs from what we would expect from

only thermodynamic arguments, which would predict the lowest cost for the source with the

highest CO2 concentration, the results for the nCAC is now in line with the thermodynamic

arguments. In Figure S42, we break down the nCAC into contributions from CAPEX and

OPEX. The OPEX is separated into the fixed OPEX, which is a percentage of the CAPEX,

and the variable OPEX, which includes the costs associated with the utilities and replacement

of the adsorbent. Cement and coal have the lowest CAPEX and fixed OPEX; 18et−1
CO2

for the

coal and cement case versus 53et−1
CO2

for the NGCC case. This reflects the thermodynamic

argument: the higher the CO2 concentration in the flue/industrial gas, the larger the working

capacity of the materials. Hence, we need less material and equipment to capture a unit

mass of CO2. We also observe that the variable OPEX for coal and cement is notably

lower than that for NGCC, indicating lower energy requirements per tonne of captured CO2

due to the higher CO2 concentrations. Despite this, the predominant cost component for

coal and cement remains the variable OPEX, accounting for approx. 47et−1
CO2

and 42et−1
CO2

,

respectively. This constitutes a contribution to the nCAC of around 72% for coal and 70%

for cement.
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The results highlight that the simple thermodynamic argument holds regarding total

energy demand. Still, the final net costs per CO2 (avoided) additionally depend strongly

on the available utilities and the specifics of the Case Study. Thus, considering our new

proposed Net Carbon Avoidance Cost (nCAC) definition is crucial for comparing the costs

for carbon capture applications.
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Figure S42| Breakdown of the nCAC of the top 20 materials for (a) NGCC power plants
using a TVSA process with 0.2 bar, (b) coal power plants and (c) cement plants using a
TVSA process with 0.6 bar in the UK . The costs are grouped into CAPEX (purple) and
OPEX (blue). For the OPEX, we have separated the fixed OPEX (dark blue), which is a
percentage of the CAPEX, and the variable OPEX (light blue), which mainly involves the
cost related to the energy requirements of the process. The black dots are the total nCAC
values.
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8.4 The investor’s perspective

So far, we have mainly restricted our comparison in terms of nCAC to power generation

and cement plants in the UK. In our platform, we can change the region, and we have also

computed the breakdown of the nCAC for the three CO2 sources, the three technologies,

and for the other four regions, i.e., the US (Figure S43), China (Figure S44 for Guangdong

and Figure S45 for Shandong), and Switzerland (Figure S46). Coal is not used for power

generation in Switzerland.

8.4.1 Different regions in the world

We arrive at the same conclusions concerning the preferred technologies for the US, China,

and Switzerland as in the UK. For the NGCC power plant, we obtain the lowest nCAC for

TVSA with a vacuum pressure of 0.2 bar. For the coal power plant and cement, the nCAC

for TVSA with a vacuum pressure of 0.6 bar is the lowest. A summary of these data for

these preferred technologies is given in Figures S47 to S49.

These figures show some interesting trends. For power generation, the calculation of the

CAC considers that, when possible, the energy required for carbon capture is supplied by the

host power plant, and this is the case for the top 20 materials (see Section 6.3). The higher

CAC in comparison to the CCC arises from the decrease in power output. On the contrary,

the region-dependent CO2-eq. emissions from the energy supply have a significant impact on

the CAC for cement plants. The higher increase in costs when comparing the CCC and the

CAC is observed for the GD region in China, which presents the highest CO2-eq. emissions

from the energy supply. The high CO2-eq. emissions from the energy supply is also reflected

in the CC, as illustrated in Figure S49.

Another important region-dependent factor on the CAC in the power plant cases is also

the CO2 intensity of the reference power plant. In our calculations of the CAC, we assume

that the reference power plant itself is the same (i.e., has the same direct CO2 intensity),

but we consider a region-dependent indirect CO2 intensity (e.g., for coal mining, production,
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or transportation). Consequently, the CAC values are very similar for the Chinese regions

despite the very different CC because the CO2 intensity of the reference power plant is very

similar in both provinces. In contrast, for the coal case, the indirect CO2 intensity of the

reference power plant is lower for the US, leading to smaller CAC values.

The nCAC is directly linked to the CC and accounts for the cost and region-dependent

CO2-eq. emissions associated with compensating for the parasitic load (see Section 6.3).

Hence, it is essential to take into account the impact of region-dependent CO2-eq. emissions

(i.e., the CC) and the regional electricity price when comparing the nCAC across different

regions.

Regions with high CC, such as China, present a higher increase in nCAC. This is par-

ticularly noticeable for the NGCC plant in the GD region in China (see Figure S47). For

regions with high electricity prices but substantially lower CC, such as Switzerland, the

nCAC becomes smaller than the CAC since the large CO2 avoided emissions compensate for

the increase in variable OPEX (see Figure S47).

In Figure S48, we see that for coal, the Carbon Capture Cost (CCC) in the two provinces

of China and the US are the lowest. However, the corresponding CO2-eq. emissions (i.e.,

the CC) in these two Chinese provinces are about 40% higher for the GD region and more

than 100% higher for the SD region than those in the US. The strong difference in CC in

the two Chinese provinces is counteracted by the lower electricity price in the SD region,

and consequently, we obtain similar nCAC, i.e., on average 57et−1
CO2

for GD and 59et−1
CO2

for SD. These values are about 13et−1
CO2

to 15et−1
CO2

higher than the one in the US, i.e.,

45et−1
CO2

.

For NGCC Case Studies, shown in Figure S47, the CCC is clearly highest in Switzerland,

mainly due to the highest CAPEX and OPEX. As Switzerland also has one of the highest

indirect CO2 intensities of the reference NGCC power plant, the CAC is still the highest in

Switzerland, whilst they stay lowest in the US. In contrast, the nCAC and CC in Switzerland

are the lowest amongst all studied countries because of the very low carbon intensity of the
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electricity grid, accounted for in the nCAC when evaluating the avoided emissions over the

lifetime of the plant.

For cement, we obtained the highest costs in Switzerland and the lowest costs in the US.

In Switzerland, the CC of the cement plant is higher than the CC of the NGCC power plant

due to the CO2-eq. emissions from the natural gas boilers used for the heat supply. As a

result, the low CC in Switzerland cannot compensate for the high OPEX and the nCAC

is still highest in Switzerland. For the other countries, the region-dependency of the CC

balances off the CAC and nCAC.

8.4.2 Utility prices

An important factor in the cost is the utility prices. In our calculations, we have used 2019 as

a reference. In 2022, the prices of utilities increased significantly because of global tensions.

In Figure S50, we show the effect of these increases in energy prices for the cement Case

Study in the UK. For cement, the nCAC has increased by about 50% to 54% .

S-146



0

50

100

150

200

nC
AC

in
/t C

O 2

NGCC TVSA02 NGCC TVSA06 NGCC TSA

0

50

100

150

200

nC
AC

in
/t C

O 2

coal TVSA02 coal TVSA06 coal TSA

2 4 6 8 10 12 14 16 18 20
rank

0

50

100

150

200

nC
AC

in
/t C

O 2

cement TVSA02

2 4 6 8 10 12 14 16 18 20
rank

cement TVSA06

nCAC nCAC_CAPEX nCAC_FixedOPEX nCAC_VariableOPEX

2 4 6 8 10 12 14 16 18 20
rank

cement TSA

Figure S43| Breakdown of the nCAC of the top 20 materials for (top) NGCC power plants,
(middle) coal power plants, and (bottom) cement plants in the US, for the technologies
TVSA with a vacuum pressure of 0.2 bar (left) and 0.6 bar (middle) and TSA (right). The
costs are grouped into CAPEX (purple), fixed OPEX (dark blue), which is a percentage of
the CAPEX, and variable OPEX (light blue), which mainly involves the cost related to the
energy requirements of the process. The black dots are the total nCAC values.
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Figure S44| Breakdown of the nCAC of the top 20 materials for (top) NGCC power plants,
(middle) coal power plants, and (bottom) cement plants in China (Guangdong province),
for the technologies TVSA with a vacuum pressure of 0.2 bar (left) and 0.6 bar (middle) and
TSA (right). The costs are grouped into CAPEX (purple), fixed OPEX (dark blue), which
is a percentage of the CAPEX, and variable OPEX (light blue), which mainly involves the
cost related to the energy requirements of the process. The black dots are the total nCAC
values. For TSA, not all materials in the top 20 resulted in an effective recovery above 0;
these materials have been omitted.

S-148



0

50

100

150

200

nC
AC

in
/t C

O 2

NGCC TVSA02 NGCC TVSA06 NGCC TSA

0

50

100

150

200

nC
AC

in
/t C

O 2

coal TVSA02 coal TVSA06 coal TSA

2 4 6 8 10 12 14 16 18 20
rank

0

50

100

150

200

nC
AC

in
/t C

O 2

cement TVSA02

2 4 6 8 10 12 14 16 18 20
rank

cement TVSA06

nCAC nCAC_CAPEX nCAC_FixedOPEX nCAC_VariableOPEX

2 4 6 8 10 12 14 16 18 20
rank

cement TSA

Figure S45| Breakdown of the nCAC of the top 20 materials for (top) NGCC power plants,
(middle) coal power plants, and (bottom) cement plants in China (Shandong province), for
the technologies TVSA with a vacuum pressure of 0.2 bar (left) and 0.6 bar (middle) and
TSA (right). The costs are grouped into CAPEX (purple), fixed OPEX (dark blue), which
is a percentage of the CAPEX, and variable OPEX (light blue), which mainly involves the
cost related to the energy requirements of the process. The black dots are the total nCAC
values. For TSA, not all materials in the top 20 resulted in an effective recovery above 0;
these materials have been omitted.
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Figure S46| Breakdown of the nCAC of the top 20 materials for (top) NGCC power plants
and (bottom) cement plants in Switzerland, for the technologies TVSA with a vacuum
pressure of 0.2 bar (left) and 0.6 bar (middle) and TSA (right). The costs are grouped into
CAPEX (purple), fixed OPEX (dark blue), which is a percentage of the CAPEX, and variable
OPEX (light blue), which mainly involves the cost related to the energy requirements of the
process. The black dots are the total nCAC values.
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Figure S47| Comparison of KPIs for NGCC in the five considered regions. The
figure shows the top 20 materials (ranked according to the nCAC using TVSA with a pressure
of 0.2 bar).
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Figure S48| Comparison of KPIs for coal in the four considered regions. The figure
shows the top 20 materials (ranked according to the nCAC using TVSA with a pressure of
0.6 bar).
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Figure S49|Comparison of KPIs for cement in the five considered regions. The
figure shows the top 20 materials (ranked according to the nCAC using TVSA with a pressure
of 0.6 bar).
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Figure S50| Comparison of the nCAC for cement in the UK using energy prices
from 2022 versus those of 2019. The figure shows the top 20 materials (ranked according
to the nCAC using TVSA with a pressure of 0.6 bar).
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8.4.3 The cost and replacement rates of the MOFs

One of the features of our PrISMa platform is that we predict the nCAC of materials that

have not yet been synthesized. Or materials that have been synthesized on the milligram

scale in the laboratory. This makes it difficult to estimate the costs reliably. In the LCA

KPI, MR:MM, the impact of mining of the metal and its abundance is accounted for. We

assume a uniform price of 30e kg−1 for all MOFs. This value is based on a recent analysis

of the cost of some MOFS.S77

In Figures S51 and S52, we compare how the cost of the MOF impacts the nCAC for

a more optimistic scenario in which the cost drops to 7.5e kg−1 and a more pessimistic

scenario of 70e kg−1. These figures show that the impact on the nCAC is rather modest;

about 4et−1
CO2

(7%) lower for the more optimistic scenario and about 7et−1
CO2

(12%) higher

for the scenario with the highest cost of the MOF.

The nCAC breakdown also shows that, compared to the base case, in the 7.5e kg−1

scenario, about 2et−1
CO2

(15%), 0.7et−1
CO2

(13%), and 1.6et−1
CO2

(4%) drops are observed

for the CAPEX, fixed and variable OPEX contributions, respectively. The decrease in the

CAPEX reflects the lower cost of the MOF. As the fixed OPEX is calculated as a percentage

of the CAPEX, approximately the same percentage decrease is observed. The change in

variable OPEX accounts for the cost of replacing the MOF every five years. For the 70e kg−1

scenario, about 3et−1
CO2

(23%) increase in the CAPEX contribution, 1et−1
CO2

(21%) increase

in the fixed OPEX contribution, and about 3et−1
CO2

(7%) increase in the variable OPEX

contribution are observed.

Our calculations assume that the sorbent is replaced every five years. In Figures S53

and S54 we show the effect of changing this replacement rate (2, 5, and 7 yr) on the nCAC.

These results show that a shorter lifetime increases the nCAC significantly (ca. 4et−1
CO2

) while

extending the lifetime beyond five years has less impact (ca. 0.6et−1
CO2

). These conclusions

are similar to those obtained by Balogun et al. S211 .
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Figure S51| Effect of the cost of a MOF on the nCAC Comparison of the nCAC for
our reference case (cement in the UK, TVSA, 0.6 bar) and for the top 20 best-performing
materials using a MOF cost of 7.5, 30, and 70e kg−1.
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Figure S52| Effect of the cost of a MOF on the nCAC Comparison of the nCAC for
our reference case (cement in the UK, TVSA, 0.6 bar) for all materials that outperform MEA
using a MOF cost of 7.5, 30, and 70e kg−1.
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Figure S53| Effect of the replacement rate of a MOF on the nCAC Comparison of
the nCAC for our reference case (cement in the UK, TVSA, 0.6 bar vacuum) and for the top
20 best-performing materials using a replacement rate of the sorbent of 2, 5, and 7 yr.
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Figure S54| Effect of the replacement rate of a MOF on the nCAC Comparison of
the nCAC for our reference case (cement in the UK, TVSA, 0.6 bar) and for all materials
that outperform MEA using a replacement rate of the sorbent of 2, 5, and 7 yr.
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8.5 The chemist’s perspective

8.5.1 Materials across Case Studies

Our platform has ranked materials for various Case Studies and KPIs using three process

technologies, TSA, and TVSA with two vacuum levels. Ideally, one would like to use the

same top-performing material for all Case Studies. To get some insights if such material

exists, we look at our key KPIs (purity, productivity, nCAC, CC, and MR:MM). Figure S55

shows a Venn diagram in which the numbers indicate the total number of common structures

when considering overlapping KPIs. This analysis was conducted for the top 50, 100, 150,

and 200 materials using all the screening results from a subset of 22 Case Studies: the

source-sink-region-utility combinations where a preferred process configuration was selected

for each CO2 source (see Section 8.1).

Suppose we look at the diagram for the top 50. We see that, for instance, among the 22

Case Studies, 25 (= 23+1+1) materials are common in the top 50 in terms of productivity,

and 12 (= 3+1+1+2+4+1) materials in terms of CC; and one material in the top 50 for

both KPIs. Considering all five key KPIs, we see that not a single material is in common.

If we take the top 100, we find six materials in common with all KPIs, and we need to look

at the top 150 and 200 to have a more significant number (14 and 26, respectively).

8.5.2 Effect of the flexiblity

We have carried out molecular dynamics simulations on the top 60 of the structures with

the lowest nCAC. We assess the flexibility from the simulations by monitoring the standard

deviation (see Section 3.1.3). In Section 5.6, we have shown that differences between exper-

imental isotherms and the predictions of our simulations can be of one order of magnitude

in the Henry coefficient. We use a similar criterium to flag structures for which flexibility

might be an issue. Figure S56 shows that out of these 60 materials, eight are flagged. In

addition, there are eleven materials for which the UFF4MOF force field gives a very different
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structure after energy minimization compared to a minimization using DFT, which we use

as part of our workflow (see Section 3.1.1). Those structures most likely contain metals or

parts of the linker for which the UFF4MOF fails.
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Figure S56| Effect of the flexibility on the adsorption properties (a) ranking of the
materials in terms of the absolute error of the logH (b) ranking of the nCAC where materials
are labeled red if their standard deviation of the Henry coefficient is more than one order of
magnitude.

8.5.3 Identifying the adsorbaphores

We generate large data sets in the PrISMa platform. This data generation allows us to

use machine-learning methods to analyze the data. In particular, to identify the molecular

characteristics of the top performing materials (e.g., the adsorbaphoreS33). To identify these

characteristics, we first build a machine-learning model with the most general descriptors

used in the literature to characterize MOFs. From the analysis of the importance of the

features of these descriptors, we can then focus on the most essential features.

We conduct this analysis for our exemplary Case Study, i.e., carbon capture from a

cement plant located in the UK where a TSA technology is used, and the CO2 is sent for

geological storage. In the first step, we use a general featurization of the MOFs using atomic-
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property labeled autocorrelation functions (APRDF),S212 revised autocorrelation functions

(RACs),S21,S213 pore geometric features,S16 and persistence images and persistence homology

statisticsS214,S215 as implemented in mofdscribe.S86

Table S6: Hyperparameters ranges considered for the XGBoost models.S216

Parameter Range

learning rate 1× 10−2–0.25 (log)
λ 1× 10−8–100.0 (log)
α 1× 10−8–100.0 (log)
subsample 0.1 – 1.0
colsample_bytree 0.1–1.0
max_depth 1–9 (int)
n_estimators [7000, 15000, 20000]

We subsequently fit a gradient-boosted decision tree as implemented using XGBoostS216

to classify compounds as being below or above the MEA-based absorption benchmark in

terms of nCAC (see Figure 2(a)). We optimize the hyperparameters with the tree of Parzen

estimatorsS217 strategy as implemented in optunaS218 for 100 steps over the hyperparame-

ter ranges listed in Table S6. The model is subsequently tested ten times (re-tuning the

hyperparameters each time in an inner cross-validation loop) on a holdout set of 20% the

total dataset. We identify the average confusion matrix shown in Figure S57a and metrics

summarized in Table S7, indicating that the model is predictive.

Table S7: Classification performance of an XGBoost model trained on all features.
The F1 score measures classifier performance, with the perfect score being one and the worst
one being 0. It is defined as the harmonic mean of the precision (fraction of correct predictions
instances among all predictions for a class) and recall (fraction of true positives among all
positives). The κ score is a related metric that ranges from -1 to 1, where a score of 0 would
equal chance prediction, and one would be a perfect classifier.

Metric Mean Standard deviation

accuracy 0.76 0.03
F1 macro 0.75 0.04
F1 micro 0.76 0.03
κ 0.50 0.07
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Figure S57| (a) Average confusion matrix for an XGBoost model trained on all features and
(b) Average confusion matrix for an XGBoost model trained on persistence images.

We then perform a global feature importance analysis using the gain-based feature im-

portance inherent to the gradient-boosted trees. This analysis highlights that the features

derived from the persistence homology are very predictive (Figure S58). Since persistence

images, in principle, allow back mapping to structural features, we focus on the persistence

images and retrain the XGBoost model using only these persistence imagesS219 as features.

RACs

PH

APRDF

LSOP
GEOM

Figure S58| Overall gain feature importance of an XGBoost model trained on all features.

Note that the persistence images implementation in mofdscribe allows for chemical res-

olution by performing the analysis on substructures spanned by different chemistries (e.g.,

only metals, only C, H, N, O; see Fig. 4 in Jablonka et al. S86). We test the model ten times

on a holdout set (again 20%) and find the average confusion matrix shown in Figure S57b
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and summarized in Table S8. The performance is (within the error margins) equivalent to

the model trained on the full feature set.

Table S8: Classification performance of an XGBoost model trained on persistence
images. The F1 score measures classifier performance, with the perfect score being one and
the worst one being 0. It is defined as the harmonic mean of the precision (fraction of correct
predictions instances among all predictions for a class) and recall (fraction of true positives
among all positives). The κ score is a related metric that ranges from -1 to 1, where a score
of 0 would equal chance prediction, and one would be a perfect classifier.

Metric Mean Standard deviation

accuracy 0.73 0.02
F1 macro 0.72 0.02
F1 micro 0.73 0.02
κ 0.43 0.04

Given the good predictive performance, we compute SHAPley valuesS220 for the ten top-

performing MOFs after retraining the model on the full dataset. Shapley values attempt to

attribute importance to features such that the attributions add up to the full predictions

such that several desirable properties (efficiency, symmetry, dummy, and additivity) are

satisfied. We use SHAPley values since they allow for a local attribution (i.e., the most

relevant feature might differ for every structure). In the current analysis, we focus only on

positive contributions, i.e., favoring the below benchmark class compared to the average case.

Future analyses might also investigate the other class. We then extract the representative

cycles (generators of the point in the persistence diagram) closest (Euclidean distance) to

the most important pixel in the persistence images. This functionality is currently available

in a development version of mofdscribe.3

Interestingly, the representative cycle points us to the atoms responsible for the most

important feature determining whether a material performs better than the benchmark. This

collection of atoms can be referred to as the adsorbaphore. Examples of these adsorbaphores

are shown in Figures S59, S60 and S63. A common theme in the top-performing compounds
3Calling the featurizer.find_relevant_substructure(s, feature_name) method of the featurizer

will return the relevant substructure.
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is a geometrical rod of metal atoms, highlighted in these figures. Interestingly, these features

are often correlated with stacked delocalized systems (aromatic rings) with separation of 6Å

to 11Å (see, for example, Figures S60 and S62).
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X
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Z
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Figure S59| Most important substructure for RSM0851: The orange (Magnesium)
and red spheres (Oxygen) are the atoms that form the geometrical rod feature corresponding
to a top-performing material.

Prototypes To better understand the data distribution, we utilize the maximum mean dis-

crepancy (MMD) critic frameworkS221 (https://github.com/kjappelbaum/MMD-critic/)

to select so-called prototypes. Those prototypes are data points for which the distribution

optimally matches the original distribution:

MMD2 =
1

m2

m∑
i,j=1

k (zi, zj)−
2

mn

m,n∑
i,j=1

k (zi, xj)︸ ︷︷ ︸
mismatch between prototypes and data

+
1

n2

n∑
i,j=1

k (xi, xj) , (S72)

where k is a kernel function (in our case, the radial basis function kernel with γ = 0.026),

m is the number of prototypes (in our case 6), and n is the number of data points in our
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Figure S60| Important substructure for RSM1847: The brown (Carbon) spheres are
the atoms that form stacked ring patterns. Gray balls indicate Zn, green Mg, and red O.
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Figure S61| Important substructure for RSM2998: The green (Ba) and pink (Cd)
spheres are the atoms that form the geometrical rod feature corresponding to a top-
performing material.
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Figure S62| Important substructure for v0+bcu+N131+1164: The brown (carbon)
and red (oxygen) spheres are the atoms that form the geometrical rod feature corresponding
to a top-performing material. The side view in B shows the stacked aromatic rings. Pink
balls indicate Mn and blue balls nitrogen.
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Figure S63| Important substructure for v0+bcu+N131+742: The pink balls (Mn)
form a geometric rod.
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dataset. Hence, this method identifies those materials that are most representative (i.e., a

material with the most features in common) for a particular group.

For example, we can use this method to identify the prototypes of the materials with a

high Water resistance coefficient (WRC) and a nCAC better than MEA. These prototypes

are shown in Figure S64. The structures tend to have aromatic rings with a 6Å separation.

In addition, Figure S65 shows the materials with the lowest Water resistance coefficient

(WRC) and a CAC better than MEA. These are materials with Open metal site (OMS) and

functional groups containing halogens.

Significance test We also performed statistical tests to assess the impact of OMS on

water resistance. Comparing the two groups below and above the water resistance threshold,

we find that a t-test finds a significant difference (p < 0.01) between those groups in the

presence of OMS. There, we use the OMS definition in the mofchecker Python package

(https://github.com/kjappelbaum/mofchecker/tree/main/src/mofchecker).

S-167

https://github.com/kjappelbaum/mofchecker/tree/main/src/mofchecker


Figure S64| Prototypical structures for CAC better than MEA and good water resistance.
str_m3_o14_o16_pcu_sym.116 has a Zn-paddlewheel node with approx. 10Å separation between stacked
aromatic rings, str_m5_o1_o16_sra_sym.97 has a vanadium node with sulfate groups on the linker and
approx. 7Å separation between aromatic rings, RSM1276 is a Cd-structure with water coordinated on OMS
and Br-functionalized linkers, RSM2972 is a structure with OMS and CF3 functionalized linkers and approx.
8 tstacked aromatic systems, RSM2238 is a Cu-pyrazine compound, str_m3_o10_o29_pcu_sym.227 is Zn-
paddlewheel (bridged by N2H2 compound with large linkers with stacking distance of around 8Å)

.
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Figure S65| Prototypical structures for CAC better than MEA and bad water resistance. RSM1078 is a
Ho-compound with open coordination site at Ho, RSM0532 is a Tb compound with an open coordination site
at Tb, str_m4_o5_o14_acs_sym.104 is a Zn compound with OMS, RSM2636 is a Ga-phosphate compound
with the only carbon being in a chelating diethylenetriamine ligand, RSM1579 is K compound with strong
open metal site, RSM1361 is a Gd compound with OMS.

S-169



9 Impact of water

9.1 Direct impact of moisture on the capture performance

The impact of water on the capture performance can be quantified by comparing the ternary

(CO2/N2/H2O) separation and that for a hypothetical process without moisture which con-

siders only CO2 and N2 in the feed gas stream.

In Figure S66, the variation of the nCAC, productivity, and required specific thermal

energy for heating are plotted relative to the degree of moisture penetration into the col-

umn, α, for representative case studies with different feed CO2 concentration levels. The

data points are color-coded by the nCAC. Increased moisture penetration into the sorbent

bed decreases productivity and increases the regeneration heat consumption. Overall, the

presence of moisture entails a higher nCAC, with increasing α leading to more substantial

increases in cost. For the cement case study, this increase is at least of 5.0et−1
CO2

(8%).

In Figure 2 and Figure S67, we have observed that the top-performing materials (i.e.,

lowest specific energy consumption and nCAC) are also those materials that have the highest

productivity. It is interesting to focus on those materials for which the difference in produc-

tivity between the performance under wet and dry flue gasses is the smallest. One would

expect that these materials would also be top-performing for wet flue gasses. However, these

materials do not give us the lowest nCAC for cement plants Figure S66. One contributing

reason is that the actual wet productivity of these materials remains too low to be compet-

itive with other high-productivity materials, which are comparatively more susceptible to

competitive co-adsorption. In the subsequent section, we show that relative losses in CO2

capture productivity due to competitive co-adsorption by moisture are not especially signif-

icant at moderate feed CO2 concentrations. On the other hand, structures that minimize

the change in specific thermal energy for heating are among the best cost performers for a

similar degree of water penetration. This implies that these materials can be more efficiently

regenerated from water. For the NGCC case, the trends in the ∆KPIs are qualitatively
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similar. However, at the lower feed CO2 concentration, the impact of moisture is amplified

in magnitude. Increases in nCAC and in the required specific thermal energy for heating

range from 26.7et−1
CO2

(22.1%) and from 0.9 MJth per tonne CO2 (27%), respectively, which

is highly significant. This suggests a greater need to manage moisture at lower feed CO2

partial pressures.

9.2 Impact of moisture on the material rankings

In Figure S68, we compare the materials ranking for nCAC for both wet (nCACwet) and dry

flue gasses (nCACdry). In addition to the nCAC, we also show the ranking of some of the

properties of these materials. We also highlight (with green lines) the materials that drop

in ranking more than 100 places if we compare the wet nCAC with the dry one. Or (with

yellow lines) increase in ranking if we compare the dry nCAC with the wet one. Here, we

have to be careful as, in absolute terms, the wet nCAC is higher for all materials. Hence,

the materials we discuss here have limited their increase.

As can be expected, the top-performing materials for dry flue gasses all have a high CO2

working capacity under dry flue gas conditions (WCCO2,dry
). If we look at their performance

for wet flue gasses (nCACwet), we see that some of these materials remain in the group of

top 10 performers (purple lines), while the rest are excluded (red lines) and are replaced

by other materials (blue lines). As the feed CO2 concentration decreases, fewer structures

retain their top 10 ranking under wet conditions.

We also expect top-performing materials for wet CO2 capture to have relatively high wet

CO2 working capacities (WCCO2,wet
). For the cement and coal case studies, the materials

with the highest (WCCO2,wet
) are among those with the lowest nCAC under wet conditions.

WCCO2
is also a strong determinant for nCAC in the materials that significantly change in

ranking when moisture is considered. The materials that lose places in the nCAC ranking

due to moisture also lose places in ranking when WCCO2
is considered, and vice versa. The
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(a) Cement TVSA06

10 2 10 1 100

 [-]

0

5

10

15

20

25

30

nC
AC

 in
 

/t C
O 2

60

65

70

75

80

85

90

95

100

N
et

 c
ar

bo
n 

av
oi

da
nc

e 
co

st
 n

C
AC

 in
 

/t C
O 2

10 2 10 1 100

 [-]

0.0

0.5

1.0

1.5

2.0

2.5

 P
ro

du
ct

iv
ity

 in
 m

ol
CO

2/(
kg

h)

60

65

70

75

80

85

90

95

100

N
et

 c
ar

bo
n 

av
oi

da
nc

e 
co

st
 n

C
AC

 in
 

/t C
O 2

10 2 10 1 100

 [-]

0.0

0.2

0.4

0.6

0.8

1.0

1.2

 s
pe

ci
fic

 h
ea

t i
n 

M
J th

/k
g C

O 2
60

65

70

75

80

85

90

95

100

N
et

 c
ar

bo
n 

av
oi

da
nc

e 
co

st
 n

C
AC

 in
 

/t C
O 2

(b) Coal TVSA06
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(c) NGCC TVSA02

Figure S66| Scatter plots of the increase in nCAC, decrease in CO2 capture productivity,
and increase in specific heat demand for sorbent regeneration due to the presence of moisture
in the feed as a function of the fraction of bed that is moisture-loaded (α) for different
configurations. All configurations are assumed to operate in the UK.
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(c) NGCC TVSA02

Figure S67| nCAC versus productivity with color coding the recovery for different process
configurations in the UK. Materials with purity less than 96% are not shown.
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Figure S68| Comparison of the ranking of materials for CO2 capture from dry and wet flue
gases. (left column) The top 10 materials ranked based on nCACdry (red lines), nCACwet

(blue lines) are indicated. Materials ranked in the top 10 for both nCACdry and nCACwet are
shown as purple lines. (right column) Materials that drop (green lines) or increase (yellow
lines) in ranking more than 100 places, if we compare the wet nCAC with the dry one, are
also presented.
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materials that lose more performance have higher α and lower WRC, while the materials

that gain rankings have higher WRC and moderate to high rankings for α.

A higher α implies the fraction of the wet column is higher, and in the wet part, the

material loses capacity, as indicated by a low WRC. When WRC is high, the co-adsorption

uptake for CO2 remains at a similar level whether dry or wet operation, which makes α less

significant.

On average, the materials with lowest nCACdry have higher working capacities for H2O,

along with lower α, than the materials with lowest nCACwet. Note that WCH2O
and α are

inversely correlated (Refer to Section 6.2.4). Although the materials displaced in the ranking

have higher α, they do not necessarily show inferior WRC or WCCO2,wet
to either the retained

materials or the new top performers.

The abundance of low WRC materials among top nCAC performers in the cement and

coal case studies also suggests that low CO2-H2O selectivity does not critically undermine

performance when CO2 feed concentrations are relatively high. This is because the extent of

moisture penetration remains comparatively low (see Figure S69). Without prior desiccation,

the humidity levels of the feed gas are near saturation, which leads to water adsorption

uptakes considerably higher than those for CO2. Under our chosen regeneration conditions,

a non-negligible amount of sorbed water can be removed, and therefore WCCO2
remains

lower than WCH2O
. For these case studies, the relative molar amount of moisture in the

feed flue gas is ≈ 35 to 50% that of CO2) (see Figure S69). The dominant contribution to

α is the product of the ratio of feed concentrations and the ratio of working capacities for

CO2 and H2O(see Section 6.2.4). α remains < 10% of the column length for the majority

of the screened structures (1091 out of 1185 materials evaluated). Therefore, a pronounced

ranking improvement in α (leading to decreased moisture penetration) does not entail a

significant CO2 working capacity increase. This implies that materials with higher α may

face additional cost disadvantages beyond the suppression of CO2 uptake by moisture. For
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Figure S69| Illustration of the relative movement of concentration profiles in the solid dur-
ing the adsorption step for different feed concentrations corresponding to the cement (top),
coal (middle), and NGCC (bottom) case studies. L∗

H2O
and L∗

CO2
are the solid concentration

profiles at the beginning of the feed adsorption step. LH2O
and LCO2

are the solid concen-
tration profiles at the end of the feed adsorption step. Due to partial regeneration of the
bed during cyclic operation, the residual solid concentrations are typically nonzero. q∗H2O

and q∗CO2
are theH2O and CO2 uptakes, respectively, of the sorbent when equilibrated with

a gas mixture at the feed condition. (inset) Comparison of relative molar amounts of CO2

and H2O in the feed gas.
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example, we have observed (in section 9.1) that materials with higher α experience increased

additional energy costs for sorbent regeneration.

For NGCC case studies, the relative molar amount of moisture in the feed flue gas is 40%

higher than its molar CO2 content (see Figure S69). At the feed condition’s low CO2 partial

pressures, the CO2 equilibrium uptake reduces. Accordingly, the mean WCCO2
decreases on

the whole for the database and also for the top performers. A CO2 working capacity decrease

will counteract the impact of increasing relative moisture content in the feed on α. While

α generally increases for individual materials, the number of materials for which α remains

< 10% of the column length remains significant (937 out of 1185 materials). Therefore, it

remains feasible to identify a material that performs similarly otherwise but possesses a lower

α. On average, for the top 10 performers, the mean α increases from 5.1% for the cement

case study to 5.8% for the NGCC case study.

For the NGCC case study, there is very little overlap between top-performing materials

under dry conditions (lowest nCACdry) and those under wet conditions (lowest nCACwet)

Figure S68. The top performers for wet flue gasses have, in general, lower CO2 working

capacities, higher H2O working capacities, and lower α. The top performers for NGCC also

vary widely in WRC. However, compared to the cement and coal case studies, there is a trend

towards higher WRC in the top 10. This preference appears to be related to the correlation

of WRC and α, rather than any direct impact on WCCO2,wet
due to CO2-H2O competitive co-

adsorption. The materials that show the largest losses (gains) in nCAC rankings for NGCC

after considering moisture belong in clusters with high α, and low WRC. This is similar to

the materials displaced from the top 10 performers (lowest nCACdry) under dry conditions.

Clustering top performers into groups with distinct α and WRC levels holds potential

material design implications because the underlying phenomena driving such clusters are

associated with specific structural motifs (see Section 8.5.3). Importantly, the performance

of a particular group relative to the broader MOF space is case-dependent, with no assembly

of features showing clear superiority. Nevertheless, the strong correlations of the cost perfor-
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mance with respect to α and WRC highlight the importance of quantifying these properties

even for rapid screening efforts.
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9.3 Limits of the model

Two factors in our model can give “false positives.” First, our estimate of the water pene-

tration length (α) is too optimistic. The second factor is that the dry part of the column

remains completely dry during cyclic operations. In this section, we discuss the impact of

both factors.

9.3.1 Impact of mass transfer limitations on the wet performance

In our model, the CO2 working capacity is calculated using the penetration length of the

water concentration front as the weighting parameter (See Section 6.2.4), and under the as-

sumption of ideal breakthrough behavior in the adsorption step, i.e., negligible mass transfer

resistances.

Under non-ideal mass transfer conditions, the water penetration length will increase.

Thus, more of the bed will be subject to competitive co-adsorption. Based on multi-

component (binary CO2/H2O) dynamic column breakthrough experiments on zeolite 13X,

Wilkins et al. S57 observed up to 98% loading reductions at 74.4% relative humidity, which

implies a low WRC of 0.02 at a CO2 concentration of 15%.S57 By combining the CO2 equi-

librium information with literature water equilibrium data,S222 we can also estimate α values

of 0.15 (coal/cement) to 0.30 (NGCC) for zeolite 13X, which is at the 96th percentile and

94th percentile of all materials in the PrISMa database, respectively.

To investigate the sensitivity of the results to mass transfer spreading within our model,

we apply a conservative weighting parameter (three times the penetration length) and recal-

culate the platform KPIs for comparison (see Figure S70). By using such a high proportion-

ality constant, we can reproduce semi-quantitatively the productivity reductions observed in

literature-reported cyclic wet experiments (≈ 22% at lower feed moisture concentrations).S56

Based on the indicative values for WRC and α, our choice of proportionality constant implies

productivity loss of nearly 90% for wet NGCC capture by the zeolite 13X process due to

uptake suppression by moisture.

S-179



Mass transfer limitations impact performance disproportionately, with materials with

high α and low WRC being more affected (see previous section). Overall, working capacity

reductions of ≈ 20 to 25% are observed at the different feed CO2 concentrations. In com-

parison, the nCAC increases between 4 to 16%. The minimum nCAC increases for cement

from 51.6 euros to 57.7 per tonne (+12%). The highest working capacity within the top 10

performers decreases from 3.96 to 3.18 mol kg -1 ( −20%). For coal, the minimum nCAC

increases from 55.0 euros to 63.8 per tonne (+16%). The highest working capacity within the

top 10 performers decreases from 3.55 to 2.70 mol kg -1 (−24%). For NGCC, the minimum

nCAC increases from 142.1 to 147.7 euros per tonne (+4%). The highest working capacity

within the top 10 performers decreases 0.98 to 0.78 mol kg-1 (−20%).

Under non-ideal mass transfer conditions, the average α for the top 10 performers with

respect to nCACwet decreases from 5.1 to 4.2% for cement, 5.5 to 4.5% for coal, and 5.8

to 2.8% for NGCC. For cement and coal case studies, 7 out of the top 10 performers are

retained in the new top 10 rankings, with the rest ranking within the top 20 performers.

For the NGCC case study, 6 out of the top 10 performers are retained in the new top 10

performers after consideration of mass transfer limitations.

9.3.2 Impact of moisture slippage

Models for adsorption processes generally assume axially-dispersed plug flow.S223,S224 This

assumption permits the separation of the adsorber column into dry and wet zones during

cyclic operation because the mixing of the gas phase between different zones is substantially

limited. Yet, one cannot exclude that some water will permeate the dry zone during the cyclic

operation of the column due to hydrodynamic non-idealities such as near-wall channeling.S225

One can mitigate these effects by removing the accumulated water in the dry zone after

extended periods of operation, as discussed in some patent literature.S226–S230 The frequency

of this drying procedure will depend on the material. In our model, the cost of this drying

step has not been included. Therefore, it is important to exclude those materials from our
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Figure S70| Comparison of the nCAC (left) and CO2 working capacities (right) as a function
of α, in the absence (grey symbols), or presence (blue symbols), of mass transfer limitations.
The effect of mass transfer limitations is modeled by modifying the weighting parameter
with a proportionality constant of 3 during the calculation of wet co-adsorption uptake of
CO2.
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screening for which we expect a significant loss in performance due to the moisture ingress

and for which the nCAC increases significantly due to the need for such additional drying.

We assume a worst-case scenario to assess the effect of moisture slipping through to the

dry zone. The maximum amount of water that can accumulate in the dry zone is equal to

the water content of the wet zone after the regeneration step. We can now have the following

system, assuming the “dry” zone has this maximum water content. The difference with the

wet zone is that the water content will not increase during the adsorption step. From a

modeling point of view, this implies that we need to compute the pure component isotherms

in a material with “permanent” water present. Experimentally, it is impossible to measure

such an isotherm. However, in a molecular simulation, this can be done straightforwardly. We

compute the CO2 and N2 isotherms in a material with water molecules. In these simulations,

the water molecules can move in the material, but no Monte Carlo moves will be applied

that increase or decrease the number of water molecules.

To quantify these effects, we compare the performance of CALF-20 and zeolite 13X for

the cement reference Case Study. In Figure S71, we compare the CO2 isotherms of the

completely dry materials and the water “contaminated” dry materials. We see a marked

difference between the two sorbents. Water-contaminated zeolite 13X has almost completely

lost its capacity to capture CO2, while for CALF-20, we see only a small impact.

We can then simply estimate the Water resistance coefficient (WRC) of the water-

contaminated materials. The WRC assumes that water is displacing (1 − WRC) × 100%

of the CO2 molecules from the adsorption sites at adsorption conditions. As the water con-

tent is lower at desorption conditions, we assume that at these conditions, water is displacing

a corresponding fraction. This gives us a value of the Water resistance coefficient in a water-

contaminated material (WRC∗) that we can use to correct the adsorption capacity of the

dry zone for water contamination:

(1−WRC∗) =
qwater, desor

qwater, adsor

(1−WRC), (S73)
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Figure S71| Comparison of the CO2 isotherms in zeolite 13X (a) and CALF-20 (b) in dry
conditions (black circles) and after water “contamination” in dry conditions (blue circles).

where qwater, desor is the water content after the desorption step (cf. Section 3.1.2) and

qwater, adsor is the water content after the adsorption step (cf. Equation (S43)) The ratio

qwater, desor/ qwater, adsor depends on the adsorption-desorption conditions and is computed in

the process layer. We do not expect this linear relation to hold for materials with a very low

WRC; for these materials, the actual WRC∗ will be much lower.

In Figure S72a, we show the WRC as a function of qwater, desor/qwater, adsor. Materials that

have a strong affinity for water typically have a large qwater, desor/qwater, adsor and a low WRC.

Figure S72b shows the WRC∗ versus WRC. In both graphs, we have indicated some materials

(Zeolite 13X, Mg-MOF-74, CALF-20, and MIP-212) that are of interest for the discussion.

Zeolite 13X and Mg-MOF-74 have a strong affinity for water because of the cations and

Open metal site, respectively.S183,S231 For those materials, the water affinity is so strong

that moisture slippage significantly undermines the capacity of the sorbent. Therefore, the

viability of wet gas separation rests heavily on the plug-flow assumption made for the fluid-

flow behavior. In contrast, for CALF-20 and MIP-212, water contamination is far less of a

problem. Interestingly, for different reasons. CALF-20 has a relatively low WRC compared

to MIP-212. However, at the desorption conditions, the amount of water that remains in
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CALF-20 is lower (2%) than for MIP-212 (8%), which compensates for CALF-20’s lower

WRC.
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Figure S72| The effect of water on the adsorption capacity (a) the Water resistance
coefficient (WRC) as a function of qwater, desor/qwater, adsor and (b) the Water resistance coef-
ficient in a water-contaminated material (WRC∗) as a function of the WRC.

If moisture slipping through to the dry zone causes a significant decrease in the material’s

performance, a practical solution is to introduce a drying step after a certain number of cycles.

In such a drying step, water is removed from the dry part of the column. The frequency

and intensity (e.g., temperature and amount of desorbing inert gas) of this drying step will

depend on the material. In our model, we have not costed such a drying step. In any case,

such a drying step will only be carried out if it results in a lower nCAC than not using a

drying step. This allows us to make a worst-case estimate of the increase in nCAC caused

by water contamination. This worst case is presented in Figure S73. This figure shows that

there are a number of materials for which this drying step can be avoided (green materials).

In addition, there are materials that, without a drying step, perform worse than the MEA

benchmark (red materials).

Let us focus on the materials highlighted in Figure S72. The nCAC of “water-contaminated”

CALF-20 and MIP-212 is about 2et−1
CO2

and 3et−1
CO2

higher compared to their completely
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Figure S73| The effect of water contamination on the nCAC Worst-case estimate of
the increase in nCAC caused by water contamination. The green dots represent materials for
which the maximum increase is less than 10%, and for the red materials, the contamination
has such a large effect that the expected nCAC is above that of MEA. The blue materials are
in between these two thresholds. The materials highlighted in Figure S72a and Figure S72
are also shown as grey symbols.
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dry structures, respectively. In contrast, “water-contamination” increases the nCAC for zeo-

lite 13X and Mg-MOF-74 by ≈ 80et−1
CO2

and 37et−1
CO2

, respectively. This makes the nCAC of

Mg-MOF-74, which was previously a top-performing material, drop 100 positions in ranking

and makes zeolite 13X more expensive than the MEA benchmark.
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10 Process optimization

In our screening studies, we use a set of given process and process conditions in the PrISMa

platform, and we screen for the optimal materials for three process configurations (i.e., TSA

and TVSA at 0.6 bar and 0.2 bar). In this section, we investigate if further optimization of

the process will result in a significantly lower Net Carbon Avoidance Cost (nCAC) and will

change the ranking of the materials.

We first perform a sensitivity analysis of the model parameters to identify degrees of

freedom with strong impact on the Net Carbon Avoidance Cost (nCAC) (Section 10.1). The

resulting optimization problem is introduced in Section 10.2. The results of the process

optimization are shown in Section 10.3.

10.1 Tornado plot analysis

We perform tornado analysis to identify and prioritize the most significant factors that

can impact the Net Carbon Avoidance Cost (nCAC). In this analysis, we change those

variables and parameters related to the operation of the process, the design of the process,

the economics, and the life cycle assessment.

We have not included the material properties in the Tornado analysis. The only way

we change the material properties is to select a different material. In Section 5, we present

a separate analysis on how errors in predicting the material properties propagate in the

platform are important.

Figure S74 shows the Tornado plot if we make a 10% change of all relevant variables for

Mg-MOF-74 in a TVSA process with 0.6 bar vacuum to capture CO2 from a cement plant.

Mg-MOF-74 is among the top-performing MOFs.

Below, we list the variables, in decreasing order of importance, that are presented in the

Tornado plot. The value between brackets is the reference value we used in the calculation.
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Figure S74| Tornado plot for the parameters of all layers We computed the change
in nCAC caused by a ± 10% change in the parameters. The parameters are ordered in
decreasing impact on the nCAC. A red bar indicates a positive change in the parameter,
a blue bar indicates a negative change, and a purple bar indicates if both a positive and
a negative change have the same effect. The absence of a bar indicates that the change
considered results in a calculation outside the assumed ranges and is not calculated. The
LCA parameters only have a minor impact. Therefore, these results are not shown.
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For this material, we found that the ± 10% change in the LCA parameters has a minor

impact. Therefore, these variables are not further discussed here.

Compressor efficiency (TEA layer, ηp =0.86 [−]) Gives the polytropic efficiency of the

compressor for geological storage.

Electricity Cost (TEA layer, 131.7eMWh−1) The UK electricity cost of the grid at a

commercial rate.

CAPEX: Location Factor (TEA layer, 1 [−]) The location factor is used to multiply the

Total Direct Cost to consider the differences between countries (see Table S2).

Plant: hrs per year (TEA layer, 7997.88 h yr−1) Operating hours per year for approxi-

mately 91.3% capacity factor.

Column: Effective Saturation (Process layer, 1 [−]) Ratio of the actual adsorbed amount

to the maximum adsorption capacity of the column at the end of the adsorption step.

Natural Gas Cost (TEA layer, 24.63eMWh−1) Natural gas cost in the UK in 2019.

Column: Superficial Velocity (Process layer, 1.75m s−1) Superficial velocity of the flue

gas passing through the column.

Utility 1: Normal Inlet Temperature (TEA layer, 285 ◦C) Temperature of the waste

heat stream to be recovered at the host cement plant.

Column: Shell Tube Bundle Diameter Ratio (TEA layer, 1.01 [−]) Ratio of the shell

diameter to tube bundle diameter.

Discount Rate (TEA layer, 0.08 [−]) Discounted cash flow rate.

Column: Inside Diameter (TEA layer, 6.15m) Inside diameter of the column shell.

Column: Length (Process layer, 8m) Length of the column.
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Desorption Temperature (Process layer, THIGH =120 ◦C) is the temperature at which we

carry out the desorption step (see Section 3.2.1).

Plant: Life Time (TEA layer, 25 yr) Lifetime of reference plant.

Plant: Construction Time (TEA layer, 3 yr) Construction periods for reference plant.

Material: Specific Cost (TEA layer, 30e kg−1) Specific cost of the material.

Material: Life Time (TEA layer, 5 yr) Lifetime of the material, i.e., the interval that the

material needs to be replaced.

Cool Water Cost (TEA layer, 2em−3) Cost of drinking water.

Utility 1: Normal Mass Flow Rate (TEA layer, 46.2 kg s−1) Mass flow rate of the waste

heat stream to be recovered at the host cement plant.

Column: Heat Transfer Coefficient (Process layer, 0.04 kWm2K) Heat transfer coeffi-

cient from the heating or cooling medium to the column.

Desorption Pressure (Process layer, Pvac =0.6 bar) is the pressure at which we carry out

the desorption step (see Section 3.2.1 and Section 3.2.1).

Column: Bed Porosity (Process layer, 0.37 [−]) Ratio of the volume of void spaces be-

tween particles to the total volume of the bed.

Pellet porosity (Process layer, 0.35 [−]) Fraction of macropore void spaces within an ad-

sorbent pellet.

Interest Construction (TEA layer, 0.08 [−] Interest rate during construction.

Column: Tube Thickness (TEA layer, 0.0021m) Thickness of the tube wall in which the

material is packed.

Operator Cost (TEA layer, 61 180e yr−1) Annual wage of an operator.
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Waste Heat Recovery Unit: Heat Transfer Coefficient (TEA layer, 65Wm−2 ◦C−1)

Heat transfer coefficient of the waste heat recovery unit.

Adsorption Temperature (Process layer, 37 ◦C) Temperature at which we carry out the

adsorption step (see Section 3.2.1).

Column: Tube Inside Diameter (TEA layer, 0.025m) Inside diameter of the tube in

which the material is packed.

Intermediate Heating Temperature (Process layer, TMED =47 ◦C) is the pressure at

which we carry out the intermediate heating step (see Section 3.2.1).

Temperature Pinch (TEA layer, 7.5 ◦C) Minimum temperature difference between hot

and cold streams at any point in the heat exchanger.

Condenser: Heat Transfer Coefficient (TEA layer, 600Wm−2 ◦C−1) Heat transfer co-

efficient of the condenser.

Figure S74 ranks the parameters in decreasing effect on the nCAC. Most variables have

a red and a blue bar. However, for some parameters, such as Column: Effective Saturation

and Adsorption Temperature, we can only decrease or increase its value (e.g., an effective

saturation greater than 1 is infeasible), or it is outside the (physical) limits (e.g., an adsorp-

tion temperature lower than the minimum temperature cooling water can supply). For those

cases, we only see one bar.

The most notable finding from the tornado plot is that a 10% change in the specific cost

of MOF only leads to a minor change in nCAC (less than 1et−1
CO2

). The maximum effect

we observe on the nCAC is a change of about 5%. That we do not see that a small change

in one variable has an exponential effect on the nCAC does give us some confidence in the

robustness of the platform.

The Compressor efficiency has the largest impact in this case. This is due to the large

power consumption of the compressors. This compression is needed for geological storage.
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A 10% increase/decrease in polytropic efficiency will lead to a substantial change in the

compression work (S26). The compressor we have selected is state-of-the-art in industrial

compressors. Any gains/losses in efficiency will affect both the MEA and our process.

The Electricity Cost is the second-highest ranked parameter, which underscores that

the total power consumption contributes to the overall cost considerably. Two parameters

associated with the plant’s location and operation, CAPEX: Location Factor and Plant: hrs

per year rank third and fourth, respectively. In Section 1, more details are given about the

sources from which the values of these four parameters were obtained. The tornado plot

shows the importance of monitoring changes in these (external) parameters.

The first TVSA process-related parameter is the Column: Effective Saturation, which

holds the fifth position. This shows the potential impact of mass transfer resistances, which

are not considered in the current thermodynamic model. In Section 9.3.1, we analyze the

impact of mass transfer in more detail.

For the optimization study, we focus on the most important design variables that we have

fixed in our screening study, but that would typically be optimized in a real process design.

To limit the number of variables in our optimization step, we focus on the most important

ones related to the process conditions (e.g., desorption temperature and pressure), column

specifications (e.g., column inside diameter and length), and utility limits (e.g., temperature

pinch).

For the considered case study, the impact of the parameters from the LCA layer is far

below that of those from the process and TEA layer. Hence, these parameters are not shown

in Figure S74. For the cement case, the environmental impacts are dominated by the use

phase. This high impact from the use phase is particularly dominant for good-performing

materials like Mg-MOF-74 because less material is required. Please note that the impact

of the parameters from the synthesis and disposal phase can change for other case studies,

materials, or environmental impact categories.
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In 8.4.3, we give a more detailed analysis of the impact of a more substantial change in

the cost of MOF and the impact of different MOF replacement rates.
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10.2 Problem formulation

The process optimization of the CO2 capture process, can be formulated as a Mixed-Integer

Nonlinear Program (MINLP) problem:

min
x

f(x)

s.t. h(x) = 0 → PrISMa model (S74)

g(x) ≤ 0 → Process constraints

xlb ≤ x ≤ xub ∈ Rn × Zm

In this optimization problem, a process-related objective function f(x) (e.g., the Net Carbon

Avoidance Cost (nCAC)) is optimized. For our PrISMa platform, the objective function

can be any KPI from the process, TEA, or LCA layers. The objective function depends

on the process degrees of freedom x, which can be continuous variables (e.g., pressure or

temperature levels) or discrete variables (e.g., the number of tubes in the column). If solely

continuous degrees of freedom are considered, the problem reduces to a Nonlinear Program

(NLP) problem. The objective function f(x) is minimized subject to equality constraints

h(x) representing the entire model of the PrISMa platform and inequality constraints g(x).

The inequality constraints can be limits on degrees of freedom (e.g., Pvac ≤ Pads) or on KPIs

(e.g., the minimal purity or recovery that has to be achieved). As a result, the optimization

problem identifies the optimal process degrees of freedom x that minimize the objective

function f(x) for a specific material.

This work considers the Net Carbon Avoidance Cost as the objective function of the pro-

cess optimization. From the tornado analysis (Section 10.1), we select 7 degrees of freedom

for TSA processes and 9 degrees of freedom for the TVSA process as given in Table S9. As

all degrees of freedom are continuous variables, the entire optimization problem reduces to

an NLP problem. The initial guesses, the lower bounds, and the upper bounds of the degrees
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of freedom are given in Table S9. The initial guesses are the parameters considered within

the screenings.

The upper bound of the desorption temperature Thigh and the lower bound of the adsorp-

tion temperature Tlow are limited by the heating/cooling utility and the pinch temperature.

The lower bound of Thigh is selected by considering 90% of the base value. Since there is no

benefit in heating the flue gas stream, we fix the upper bound of Tlow as the base value. To

ensure realistic industrial operations, we set the lower bound of the vacuum pressure Pvac to

be 0.1 bar.

The lower bound of the adsorption temperature Tlow depends on the water cooling system

design, which has a lower limit design temperature of 19.0 ◦C). The temperature range

considered for the water cooling system is from 5.0 ◦C) to 10.0 ◦C) and the temperature

pinch range is from 3.0 ◦C) to 7.5 ◦C). These ranges are reasonable within the design of heat

exchange systems and aim to show the gains of having an improved exchange design that

maximizes heat transfer. The lower bound of the adsorption temperature Tlow, assuming co-

current contact in the adsorption contactor, is set to 27.5 ◦C) to account for the temperature

increase in the water cooling system and the temperature pinch. The upper bound of the

desorption temperature Thigh depends on the design pressure of the steam supply to the

capture plant, which is set to 5.0 bar. This pressure ensures that the desorption temperature

Thigh can supply 150.0 ◦C after considering temperature losses and heat exchange. The

rationale for the temperature pinch is the same as for the adsorption temperature. The

temperature losses are set to a constant value of 3.0 ◦C following the EBTF guidelines.S75

With these considerations, the upper bound for the desorption temperature Thighis set to

150.0 ◦C, which is reasonable for materials stability.
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To ensure high purity and recovery of the resulting carbon capture processes, we limit

both KPIs as inequality constraints of the optimization:

Purity ≥ 96% (S75)

Recovery ≥ 90% (S76)

The purity limit is defined by the requirements of the CO2 sink, in this case, a CO2 storage

side. To ensure feasible heat transfer, we consider additional inequality constraints on the

temperature levels with 0.05K as extra margin to prevent numerical issues at the boundaries:

Tlow −∆Tpinch − Tcool,lim ≥ 0.05K (S77)

and

Theat,lim − Tloss −∆Tpinch − Thigh ≥ 0.05K (S78)

with Theat,lim = Tsat(5 bar) ≈ 151.8 ◦C and Tloss = 3K as defined in the TEA layer. The

other variables are described in Table S9. Moreover, for TVSA processes, we additionally

constrain the temperature difference between the intermediate temperature Tmed and ad-

sorption temperature Tlow to be larger than 5K:

Tmed − Tlow ≥ 5K. (S79)

The optimization problem is solved using the local optimization solver KNITROS232 and the

Sequential Quadratic Programming algorithmS233.
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Table S9: Overview of the selected process degrees of freedom x, initial guesses xinit, lower
bounds xlb, and upper bounds xub.

Degree of freedom Type Initial guess Lower bound Upper bound
Desorption temperature Thigh continuous 120 ◦C 108 ◦C 150 ◦C
Adsorption temperature Tlow continuous 37 ◦C 27.5 ◦C 37 ◦C
Column inside diameter dcol continuous 6.15m 6m 10m
Tube inside diameter dtube continuous 0.025m 0.025m 0.1m
Column length lcol continuous 8m 5m 9m
Temperature Pinch ∆Tpinch continuous 7.5 ◦C 3 ◦C 7.5 ◦C
Limiting cooling temperature Tcool,lim continuous 29 ◦C 24 ◦C 29 ◦C
Solely for TVSA
Vacuum pressure Pvac continuous 1.013 25 bar 0.1 bar 1.013 25 bar
Intermediate temperature Tmed continuous 47 ◦C 32.5 ◦C 65 ◦C

10.3 Optimization results

We apply the optimization for the cement plant case studies in the UK. We optimize the pro-

cess and TEA design variables for the top 30 materials in nCAC identified in the screenings

for the TSA process and TVSA process at 0.6 bar.

10.3.1 Optimization results for the TSA case

In these case studies, the CO2 sink is geological storage, which requires a purity above 96%.

In the screening of the TSA process, only four materials out of the top 30 materials in nCAC

achieve a purity above 96% (see Figure S75 and Table S10). After optimization, two addi-

tional materials give a purity above 96%. The optimization increases the purity for the other

25 materials (see Figure S75a), but not above the threshold of 96%. All degrees of freedom

are either at the bounds or limited by a constraint for these materials. For the six structures

that meet the purity requirement, trade-offs are observed for the desorption temperature

Thigh, adsorption temperature Tlow, and the limiting cooling temperature Tcool,lim, while the

other four degrees of freedom are still at the bounds.

Generally, the optimization decreases the nCAC on average by 9et−1
CO2

(see Figure S75b).

The Pearson correlation coefficient of 0.76 and Spearman correlation coefficient of 0.64 indi-

cate how well correlated the materials rankings are for non-optimized and optimized results.
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This result demonstrates that screening based on fixed parameters accurately captures the

trend regarding materials ranking. However, the potential exploit by the optimization de-

pends strongly on the material, leading to changes in the ranks. The subsequent optimization

can be used to fine-tune the ranking of the top materials.
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Figure S75|Comparison of the results without and with optimization for the
TSA process: Purity (left) and nCAC (right). Green dots indicate materials that achieve
purity above 96% after the optimization. The red lines represent the threshold in purity
required by the CO2 sink.

10.3.2 Optimization results for the TVSA case

In contrast to the TSA case, we achieve significantly higher purities with TVSA (see Fig-

ure S76 and Table S11). Without any optimization, we have 23 materials out of the top 30

materials in nCAC that achieve a purity above 96%. For the other seven materials, the opti-

mization increases the purity above 96% (see Figure S76a). Thus, all materials of the TVSA

top 30 meet the purity specification after the optimization. We observe trade-offs for the

desorption temperature Thigh, adsorption temperature Tlow, the limiting cooling temperature

Tcool,lim, the vacuum pressure Pvac, and the intermediate temperature Tmed. The other four

degrees of freedom are at the bounds for all materials. Generally, the optimization decreases
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Table S10: Results obtained from the optimization of the TSA case for the top 30 materials:
purity and nCAC with and without optimization as well as the optimized degrees of freedom
of the optimization. Acceptable purity is highlighted in bold.

Without optimization With optimization
Rank (Sim) Purity nCAC Purity nCAC Thigh Tlow dcol dtube lcol ∆Tpinch Tcool,lim

1 96.4 51.7 98.0 45.7 145.8 32.1 10 0.025 5 3 29
2 90.1 61.3 93.8 55.1 145.8 27.5 10 0.025 5 3 24.5
3 93.0 61.8 95.9 53.3 145.8 27.5 10 0.025 5 3 24.5
4 91.8 62.3 95.3 52.8 145.8 27.5 10 0.025 5 3 24.5
5 86.0 62.5 92.4 50.9 145.8 27.5 10 0.025 5 3 24.5
6 92.0 62.8 95.1 55.3 145.8 27.5 10 0.025 5 3 24.5
7 91.2 62.9 94.7 53.8 145.8 27.5 10 0.025 5 3 24.5
8 88.5 63.4 93.6 51.4 145.8 27.5 10 0.025 5 3 24.5
9 97.6 63.4 98.3 57.5 123.1 30.3 10 0.025 5 3 27.3
10 87.1 63.5 92.6 53.0 145.8 27.5 10 0.025 5 3 24.5
11 89.8 64.1 94.5 53.8 145.8 27.5 10 0.025 5 3 24.5
12 88.7 64.3 93.4 56.2 145.8 27.5 10 0.025 5 3 24.5
13 95.5 64.7 96.7 58.3 137.5 37 10 0.025 5 3 29
14 98.2 64.9 98.2 59.3 112.4 32.1 10 0.025 5 3 29
15 90.7 65.0 95.0 53.3 145.8 27.5 10 0.025 5 3 24.5
16 79.6 65.5 88.3 52.8 145.8 27.5 10 0.025 5 3 24.5
17 91.2 65.6 95.2 54.1 145.8 27.5 10 0.025 5 3 24.5
18 90.4 66.0 94.2 59.0 145.8 27.5 10 0.025 5 3 24.5
19 92.2 66.0 95.1 58.1 145.8 27.5 10 0.025 5 3 24.5
20 97.5 66.3 98.1 59.7 137.4 34.4 10 0.025 5 3 29
21 90.5 66.4 94.5 56.5 145.8 27.5 10 0.025 5 3 24.5
22 93.8 66.7 96.0 58.5 131.7 27.8 10 0.025 5 3 24.8
23 90.3 66.8 94.0 56.5 145.8 27.5 10 0.025 5 3 24.5
24 88.9 66.9 93.9 55.9 145.8 27.5 10 0.025 5 3 24.5
25 87.6 67.5 92.8 56.6 145.8 27.5 10 0.025 5 3 24.5
26 84.9 68.0 91.6 55.1 145.8 27.5 10 0.025 5 3 24.5
27 93.0 68.0 95.9 59.6 145.8 27.5 10 0.025 5 3 24.5
28 92.5 68.1 95.6 59.4 145.8 27.5 10 0.025 5 3 24.5
29 90.2 68.1 94.4 57.6 145.8 27.5 10 0.025 5 3 24.5
30 85.1 68.3 91.7 56.3 145.8 27.5 10 0.025 5 3 24.5
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the level of vacuum pressure Pvac (i.e., less vacuum needs to be applied and the absolute

vacuum pressure increases), compared to the 0.6 bar used in the screening, to reduce the

nCAC. Moreover, optimization tends to reduce purity for the 23 materials with purity above

96% after the screening. Interestingly, for six materials, the optimal vacuum pressure is at

the adsorption pressure of 1.013 25 bar (upper bound), and thus, no vacuum step is selected

by the optimization.

For TVSA, the improvement in nCAC due to the optimization is slightly less than for

the TSA case (on average by 7.2et−1
CO2

—see Figure S76b). With a Pearson correlation

coefficient of 0.94 and a Spearman correlation coefficient of 0.90, the correlation between the

rankings from non-optimized results and optimized ones is even higher than for the TSA

case. Thus, the TVSA screening based on fixed parameters accurately captures the trends

between the materials and provides a very accurate material ranking compared to the one

obtained after optimization. Small rank changes can be observed among the top 30 materials,

which is within the model uncertainty. These results prove that our approach to screening

all materials for three process configurations is suitable and efficient for identifying the top

candidates for a given case study.

10.3.3 Comparison of the TSA and TVSA cases

For the cement case in the UK, 22 materials are contained in the top 30 rankings of both

the TSA and the TVSA processes. To compare both cases, we optimize the eight materials

contained in the TSA ranking but not in the TVSA ranking also for the TVSA process and

vice versa. Figures S77 and S78 compares the purity, recovery, and nCAC of the two process

configurations without and with optimization. The optimization reduces the large differences

in purity between TVSA and TSA. However, for the TSA process, the purity cannot be

increased above the threshold for most of the materials. For both processes, recovery of the

considered materials is above the threshold of 90% in the simulations and optimizations.
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Table S11: Results obtained from the optimization of the TVSA case for the top 30 materials:
purity and nCAC with and without optimization as well as the optimized degrees of freedom
of the optimization. Acceptable purity is highlighted in bold.

Without optimization With optimization
Rank (Sim) Purity nCAC Purity nCAC Thigh Tlow dcol dtube lcol ∆Tpinch Tcool,lim Pvac Tmed

1 99.0 51.6 98.7 45.6 145.8 32.1 10 0.025 5 3 29 1.01325 53.5
2 95.9 58.0 96 50.5 131.3 27.8 10 0.025 5 3 24.8 0.93 51.1
3 96.7 58.3 96.5 50.9 145.8 29.0 10 0.025 5 3 26.0 0.86 45.0
4 97.4 59.1 96.9 52.3 129.6 28.3 10 0.025 5 3 25.2 0.93 47.4
5 96.3 59.1 96 52.7 140.8 28.0 10 0.025 5 3 24.9 0.88 43.7
6 97.3 59.6 96.7 53.6 136.2 27.5 10 0.025 5 3 24.5 0.86 40.8
7 97.3 59.7 96.9 53.2 145.8 27.5 10 0.025 5 3 24.5 0.96 45.6
8 97.9 60.0 96.9 52.7 115.9 28.4 10 0.025 5 3 25.4 0.94 45.9
9 97.1 60.0 96.5 53.5 138.6 27.8 10 0.025 5 3 24.8 1.01325 45.5
10 97.6 60.3 96.9 53.7 132.8 27.8 10 0.025 5 3 24.7 0.94 44.7
11 93.4 60.5 96 52.5 130.1 27.5 10 0.025 5 3 24.5 0.80 53.1
12 96.9 61.1 96 53.8 124.7 28.4 10 0.025 5 3 25.3 1.01325 48.5
13 97.4 61.1 96.8 55.0 136.8 28.4 10 0.025 5 3 25.4 0.97 45.6
14 96.3 61.4 96.4 54.6 132.0 28.4 10 0.025 5 3 25.4 0.69 38.0
15 91.5 61.4 96 52.1 126.8 27.5 10 0.025 5 3 24.5 0.69 50.9
16 97.0 62.3 96.5 54.9 145.8 27.7 10 0.025 5 3 24.6 0.95 44.4
17 96.1 62.3 96 55.8 145.8 29.1 10 0.025 5 3 26.0 1.01325 44.5
18 96.9 62.5 97.1 55.2 109.0 27.5 10 0.025 5 3 24.5 0.59 33.2
19 95.1 62.5 96 54.6 145.8 29.5 10 0.025 5 3 26.4 0.78 42.9
20 95.9 62.7 96.3 53.5 113.4 27.5 10 0.025 5 3 24.5 0.61 33.9
21 93.0 62.8 96 55.2 128.3 27.5 10 0.025 5 3 24.5 0.65 48.0
22 97.0 62.9 96.2 55.5 145.8 30.6 10 0.025 5 3 27.6 0.92 44.9
23 97.2 63.3 96.3 56.1 135.8 27.5 10 0.025 5 3 24.5 1.01325 44.5
24 95.6 63.4 96 56.0 141.6 27.5 10 0.025 5 3 24.5 0.85 43.7
25 96.1 63.5 97.2 54.8 145.8 27.5 10 0.025 5 3 24.5 0.64 34.6
26 96.3 63.6 96 56.0 125.0 28.5 10 0.025 5 3 25.4 0.80 43.4
27 97.8 63.6 97.5 57.4 141.7 30.4 10 0.025 5 3 27.4 0.81 41.2
28 97.1 63.6 96.6 56.4 141.3 28.3 10 0.025 5 3 25.3 0.84 40.2
29 97.6 63.6 97.1 57.2 113.0 30.9 10 0.025 5 3 27.8 0.65 38.0
30 99.3 63.7 98.7 57.5 124.4 30.6 10 0.025 5 3 27.5 1.01325 46.6
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Figure S76|Comparison of the results without and with optimization for the
TVSA process: Purity (left) and nCAC (right). Green dots indicate materials that achieve
purity above 96% after the optimization. The red lines represent the threshold in purity
required by the CO2 sink.

However, the recovery of the TSA process is much higher than for the TVSA process. The

optimization increases recovery for the TVSA process, but TSA is still beneficial.

Interestingly, no strong preference for one process type can be identified based on nCAC.

While the nCAC tends to be lower for the TVSA process at 0.6 bar without optimization, the

benefit in nCAC is small after the optimization and very similar nCAC is obtained for TVSA

and TSA. The optimization increases the Pearson correlation coefficient of nCAC (TSA vs.

TVSA) from 0.69 (without optimization) to 0.99 (with optimization) and the Spearman

correlation coefficient from 0.51 to 0.99. Thus, for the materials that achieve the required

purity for TSA, the TSA process is preferred due to the higher recovery. In contrast, for the

materials that cannot achieve the required purity for TSA, the required TVSA process does

not lead to higher costs but lower recovery.
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Figure S77|Comparison of the TSA and TVSA process for the cement case in the
UK: Without optimization (left) and with optimization (right) for the two selected KPIs:
purity (top), recovery (bottom), the third KPI, the nCAC, see Figures S78a and S78b). Blue
dots are materials contained in the top 30 of both TSA and TVSA, orange dots are solely
contained in the top 30 of TSA, and pink dots are materials solely contained in the top 30
of TVSA.
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Figure S78| Comparison of the TSA and TVSA process for the cement case in
the UK: Without optimization (left) and with optimization (right) for the nCAC for the
other two selected KPIs: purity (see Figures S77a and S77b), recovery (see Figures S77c
and S77d). Blue dots are materials contained in the top 30 of both TSA and TVSA, orange
dots are solely contained in the top 30 of TSA, and pink dots are materials solely contained
in the top 30 of TVSA.

S-204



11 Feedback loops of the platform

11.1 Feedback to the materials layer

An important application of the PrISMa platform is that we can analyze the impact of un-

certainties in calculating material’s properties on the different KPIs. This analysis showed

the importance of the heat capacity of materials for accurately predicting the heating re-

quirements of the process. It also showed that the ranking of materials depended on how

the adsorption isotherms were fitted. This feedback from an earlier version of the platform

has resulted in the improvements described in the next subsections.

In addition, we use the platform’s output to optimize the different operation and process

design parameters. This optimization is described in Section 10.2. Another way to use the

platform’s feedback is to efficiently screen much larger databases using a machine learning

approach (see Section 11.2). In Figure S79, these feedback loops are shown schematically.

Figure S79| Lowering the cost of carbon capture: Two strategies were developed to
lower the nCAC. An iterative feedback strategy using Machine Learning to identify more top-
performing materials and an optimization strategy that minimized the nCAC by tweaking
process parameters.

S-205



11.1.1 Heat capacity

In the platform’s first version, we assumed the heat capacity (cp) to be the same for all MOFs.

The reason for this assumption was that the heat capacity was known only for very few

materials. We assumed a constant heat capacity equal to the one used in previous work.S234

The feedback from the platform informed us about how sensitive the heat requirements

by the process were to the exact value of the cp. To address this point, we studied the

dependence of the heat capacity on the detailed MOF structure and showed that one can

expect a difference in process energy requirements by as much as a factor of two.S25 Based on

this feedback, our current version of the platform uses a machine learning model to predict

the heat capacities of all materials (see Section 3.1.1).

11.1.2 Adsorption isotherms

The other important feedback of the platform to the process layer was related to the accuracy

at which we needed to compute the mixture adsorption isotherms. In the literature, one can

find different models (e.g., Ideal Adsorbed Solution Theory (IAST) or Extended Dual Site

Langmuir (EDSL)) that are used to predict mixture isotherms from the pure component

isotherms. We showed that the different models to fit the data impacted the ranking of

the materials for low CO2 concentrations in the feed gas stream.S44 As IAST provided a

much more accurate description (75% of the structures were shown to have better accuracy

than 7%) of the simulated mixture adsorption data, we used IAST for our mixture data

predictions.

11.2 Feedback to extend the materials database

In the PrISMa platform, we have screened about 1,200 curated MOF structures (see Sec-

tion 3.1.1). The computation at the materials level involves DFT calculations to optimize

the structure and get the charges on the atoms needed to carry out the various GCMC cal-

culations to compute the adsorption thermodynamics. We have a dedicated server for these
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calculations, which allows us to compute the thermodynamic data for about 50 materials

in a few days. Therefore, screening all trillion MOFs proposed by Lee et al. S37 is practi-

cally impossible. Hence, there are a large number of MOF structures that have remained

unexplored in the PrISMa platform.

Here, we use the PrISMa platform to leverage knowledge and develop a machine learning

model to classify whether a structure has a Net Carbon Avoidance Cost (nCAC) below a

given threshold. Such a classification model typically works well if the data is balanced.

Ideally, we would like to have an equal number of structures above and below the threshold.

However, we typically have a small number of top-performing structures.

To address this issue, we used a feedback loop in which we start with a sufficiently high

nCAC to carry out classification with reasonable certainty. From this classification, we select

those structures we expect to perform well. For these structures, we compute the complete

thermodynamic data. We use these data to retrain our model with a lower threshold. We

repeat this procedure for a few iterations until we reach the desired threshold. In this section,

we focus on cement in the UK using TVSA (vacuum pressure = 0.6 bar).

11.2.1 Detailed description of the methodology

Machine learning model A gradient boosting classifier model (CatBoostS235) was trained

using the results from the platform, i.e., for the MOFs in the PrISMa dataset. The available

training data was increased with each iteration of the feedback loop, beginning at 1,185

MOFs. Hyperparameter optimization was completed within an inner loop using Parzen esti-

mators via Optuna.S218 The number of Catboost iterations was selected based on a validation

set of 20% of the training data. The feature sets are available in Moosavi et al. S21 . Features

were selected based on their importance via feature importance tests on the validation set.

All features above a cut-off were used; the cut-off was chosen by calculating the feature

importance of samples from a Gaussian distribution.
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The model accuracy was evaluated on 80% of the data and then tested on the 20%. The

split was performed based on a stratified random split. Model accuracy varied per round

from 80 to 89%. Uncertainty metrics were generated using the virtual ensemble method.S236

Strategy for the feedback loop We used the above-mentioned machine-learning model

to screen large MOF databases. The BW20K, CoRE2019, and ARABG databases (see

Moosavi et al. S21 for details on databases and organized CIF files) were considered here.

The total number of MOFs in these databases is 29,291. The following feedback loop was

implemented (see Figure S80):

1. All the materials in the PrISMa database are run through the platform, and KPIs are

computed.

2. Our ML model is trained to predict whether the nCAC is higher or lower than a given

threshold.

3. As we initially set the threshold for a relatively high value of the nCAC, we use a set

of filters to shortlist materials that are expected to be top-performing:

• Filter 1: The nCAC prediction beats the threshold

• Filter 2: The material is porous to N2

• Filter 3: The material has high pure component CO2 uptake

• Filter 4: The material has a high predicted working capacity in the presence of

water.

4. The shortlisted MOFs are run through the platform.

5. The process is then repeated from step 2, and the threshold is decreased. The initial

threshold was set to 105et−1
CO2

, then reduced to 80et−1
CO2

in the second round, and

then to 70et−1
CO2

in the third round.

In this way, we can leverage the availability of vast amounts of MOF structures.
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1: Run platform1: Run platform
2: Collect cost data

3: Train nCAC predictor

4: Use nCAC predictor 
on large MOF database

Low cost of capture 
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Figure S80| Extending the materials database: An iterative feedback strategy was
used to identify more top-performing materials with promising characteristics. The Machine
Learning (ML) model is a classifier model that is trained to predict whether a material has
a nCAC below a given threshold or not. Out of the materials from the large MOF database
with a predicted nCAC below the threshold, we make a short list for running the complete
PrISMa platform. We can use a lower threshold value for the nCAC for the next round or
iteration loop as we get more top-performing structures.
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11.2.2 Performance of the Machine learning model

The results of the first round are shown in Figure S81. The confusion matrix on the test set

shows that in 79.5% of the cases, the model correctly predicts whether the nCAC is above

or below the 105et−1
CO2

threshold.

Above Below
Predicted

Ab
ov

e
Be

lo
w

Tr
ue

317 0

0 374

(a)

Above Below
Predicted

Ab
ov

e
Be

lo
w

Tr
ue

79 21

16 101

(b)

Figure S81| Model performance: At each round, a model was trained to predict whether
the nCAC was above or below a given threshold value. The confusion matrices of the training
(a) and test (b) sets show the model performance for a nCAC threshold value of 105et−1

CO2
.

The accuracy of this model is 79.5% on the test set.

In Extended Data Figure 6(d), we show for each material of the large database (with

approximately 30 000 materials), whether it is above (grey) or below (purple) the threshold.

In this representation, two materials plotted close to each other have similar properties.

For each of these materials, we can also estimate the uncertainty of these predictions.

These results are shown in Figure S82a for materials below the threshold of 105et−1
CO2

and

in Figure S82b for materials above the threshold. In Figure S82a, the grey dots represent

materials that have an nCAC above the threshold, while in Figure S82b the grey dots are

the material with an nCAC below the threshold. In these figures, the color coding gives a

measure of the accuracy. For example, in Figure S82b, the large pink area is a part of the

chemical design space, for which we predict with high certainty that there are no interesting
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materials. We also see that the border between the two different areas contains the materials

with the highest uncertainty.

(a) (b)

Figure S82| Uncertainty of the Machine Learning model: The color coding gives the
uncertainty of the prediction for each material (a) the uncertainty at which we predict that
the nCAC is lower than 105et−1

CO2
and (b) that nCAC is higher than 105et−1

CO2
.

11.2.3 Results of the feedback loop

We started with the model described in the previous section and the feedback strategy

was performed three times, each growing the total number of MOFs with a low nCAC and

increasing the model’s ability to identify low nCAC MOFs.

After each round, the distribution of nCAC values is shown in Figure S84. The PrISMa

materials database contains 1,185 materials, 45% of which beat the nCAC benchmark of

105et−1
CO2

. By using the feedback strategy described previously, we obtained 138 shortlisted

new materials. When these materials were run through the platform, 137 of them beat

the nCAC benchmark of 105et−1
CO2

. These results demonstrate the ability to select top-

performing MOFs from large materials databases efficiently.
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Figure S83| Feedback strategy results after the first round: The starting dataset is
the PrISMa materials database, which contains 530 materials (45 %) which beat the nCAC
benchmark of 105 e /tCO2. A feedback strategy was used to identify more top-performing
materials with promising characteristics in large databases. The number of materials that
meet the benchmark is shown in a), and their absolute nCAC value is shown in b). Materials
selected by the feedback strategy are colored in purple.

In our screening, we cannot include some factors of practical importance (e.g., long-

term stability, mechanical properties, resistance against trace components). Hence, we may

identify a particular material as top-performing but which fails in practice. For these reasons,

we used in our discussion of the case studies the average nCAC of the twenty best-performing

materials instead of basing our conclusion on a single material. Hence, our high throughput

screening workflow must efficiently generate a large subset of good performers rather than

a very small selection of top performers.S237 The effectiveness of our feedback strategy can

be further demonstrated by counting the number of materials with a nCAC lower than

80et−1
CO2

, i.e., resulting from the second feedback Round; only 22% (260 MOFs) of the

PrISMa materials database meet this requirement while 86% (119) of the MOFs selected

using the feedback strategy do. Hence, we have almost quadrupled our chances of finding a

successful material.
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Figure S84| Iterative materials discovery: The iterative feedback strategy generates
subsets of MOFs. After each round, the model progressively improves and returns a subset
of MOFs with lower nCAC. Violin plots show the distribution of the nCAC for the MOFs
identified by the iterative feedback strategy after each round.

It is also interesting to evaluate if our ML model also works for the TSA process. The

advantage of a simple TSA process is that it gives a higher recovery, but we do not obtain

the required purity for most materials. In our PrISMa database, we only identified four

materials within the top 30 that meet the purity requirement, and after optimization, we

found two more structures (see Section 10).

Figure S85a shows that for the TVSA process many materials from our ML approach

obtain the required purity. Figure S85b shows that our ML approach identified two new

materials for the TSA process, without optimization. The top materials that were identified

using the iterative feedback strategy were optimized. The goal was to test their performance

in a TSA process. We selected all MOFs that achieved a purity over 93 % in the TSA process

(41 MOFs) and optimized them using the strategy outlined in Section 10. Figure S86 shows

that most MOFs move above the target purity of 96 %. The nCAC is also decreased to a

minimum of 46et−1
CO2

. In our initial screening study, we would discard TSA because there

are insufficient materials for a reasonable chance of success. These results indicate we may

have to revisit this conclusion.
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Figure S85| Feedback strategy results: The MOFs identified from the iterative feedback
strategy are superimposed against all PrISMa materials for (a) TVSA (vacuum pressure =
0.6 bar) (b) TSA.

Extended Data Figure 6(b) shows the distribution of nCAC for the different process

technologies and sources. The top 20 ML materials (in blue) are superimposed onto the

top 20 PrISMa materials (in red). A favorable nCAC distribution is observed for coal and

cement, whereas NGCC is seen as unfavorable. The iterative feedback strategy was trained

using results from a TVSA process (operating with 0.6 bar vacuum) taken from the flue gas

of a cement-producing facility. The concentration of CO2 from a coal flue gas is quite similar

to that of cement (14 % vs 18 %), whereas the concentration of CO2 from an NGCC flue gas

is much lower (4 % CO2). Extended Data Figure 4(a) shows that the ranking of materials

for cement and coal is similar but very different from NGCC. This already suggested that

we need to retrain our model for our NGCC Case Studies. Our ML model’s results are

consistent with this observation.
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Figure S86|Optimizing the best ML results: Fourty-one MOFs identified from the
iterative feedback strategy are optimized (Section 10) for their performance in a TSA process.
This figure illustrates that many ML-selected MOFs achieve low nCAC (a) and high purity
(b). Figure (c) shows the performance of the ML-selected structures per iterative round for
a TSA process in their optimized and non-optimized state. The optimization was set to
minimize nCAC with a purity above 96 % as a constraint.
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12 Experimental structures

In this section, we describe the experimental data that has been obtained and used to validate

the platform’s predictions. We focus on two materials: MIP-212 and CALF-20. MIP-212

is a novel MOF, and an initial screening on the platform suggested it would be promising

material. CALF-20 is currently used as sorbent in a commercial process to capture CO2

from a cement source.

12.1 MIP-212

12.1.1 Structure and synthesis

The novel bimetallic copper-aluminum MOF, denoted MIP-212 (MIP stands for Materials

from the Institute of Porous Materials of Paris), is formulated as [Al(μ2−OH)Cu(μ2−H2O)-

(PyC)2]·n-solvent, where PyC stands for the pyrazolate 4-carboxylate ligand. It can be

obtained as a purple microcrystalline powder from a one-pot synthesis reacting hydrated alu-

minum nitrate, hydrated copper nitrate, Pyrazole-4-carboxylic acid (H2−PyC) and sodium

hydroxide in a mixture of deionized water, ethanol, and acetic acid at 100 ◦C over 48 h. MIP-

212 crystalizes in an orthorhombic symmetry with Pmma (№51) space group (a = 6.8114Å,

b = 11.9985Å, c = 9.6021Å).

The structure of MIP-212 was solved from synchrotron high-resolution Powder X-ray

diffraction (PXRD) data, see Figure S87. It consists of two chains composed of AlO4(OH)2

and CuN4(H2O)2 octahedra along [100] crystallographic orientation. These chains are linked

by the pyrazole-4-carboxylate (PyC) hetero-functional ligand where the nitrogen atoms of

the pyrazole rings are coordinating the Cu2+ ions, and the oxygens of the carboxyl group are

coordinated to the Al3+ ions. Such crystallographic arrangement forms nanometric lozenge-

shaped channels, similar to MIL-53, but exhibiting two types of openings (labeled I and II)

with different chemical environments. In pore I, where the Cu-chains are the closest along

the c-axis, the Cu ions are coordinated by water molecules pointing to the center of the
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channels, and their removal upon sample activation can lead to the formation of OMS. It

is worth mentioning that in situ PXRD studies showed that only about half of these water

molecules can be removed upon activation at 240 ◦C under a vacuum. In pore II, where

the Al-chains are the closest along the c axis, the Al ions are coordinated by μ2−hydroxyl

groups (μ2−OH), pointing to the center of the channels. The diameters of both of them vary

between ca. 4Å and ca. 6Å (including Van der Waals radii) depending on whether the Cu

site is in its OMS form or fully coordinated by additional water molecules. More details on

this structure can be found in Mansouri et al. S238 .

Figure S87|Crystal structure of MIP-212: (a) 1D-chains of AlO4(μ2−OH)2 and
CuN4(μ2−H2O)2 polyhedral linked by the PyC-molecules. (b) View of the 3D structure
along the 1D channels. H-atoms are not shown for clarity. Color code: N, blue; O, red; C,
grey; Al, grey polyhedron; Cu, orange polyhedron.

MIP-212 can be obtained with very good crystallinity, which remains very well pre-

served after washing (water or organic solvents) and activation (up to 240 ◦C under vacuum)

steps (Figure S88.a). Interestingly, MIP-212 demonstrated a high CO2 uptake at ambi-

ent temperature and pressure (ca. 2.4mmol g−1 and 3.6mmol g−1 at 0.2 bar and 1 bar of

CO2, respectively) as shown in (Figure S88.b). The obtained experimental pure component

isotherms shown in Figure S88b were complemented with the computationally predicted

heats of adsorption, density, and heat capacity.

12.1.2 NMR-characterisation of residual water

To make a reliable model for the simulations, we need information about the number of

water molecules that are part of the structure. In the simulations, these water molecules
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Figure S88| Characterization of MIP-212: (a) Comparison of MIP-212 PXRD patterns;
and (b) single component CO2 and N2 isotherms measured at 298K.

are considered “permanent" ligands. The in situ PXRD has shown that (see Section 12.1.1)

about 50% of the water molecules stay in the structure. Here, we use solid-state NMR to

determine more accurately the number of water molecules that cannot be removed after the

activation procedure.

Experimental methods - deuterium exchange: To assign the chemical shift in 1H

NMR spectra, the synthesized material was washed with D2O a couple of times and immersed

in the excessive D2O overnight. Considering H2O is easily exchanged with deuterium, the

disappearance of the signal is associated with the exchange of deuterium in the material.

Experimental methods - solid-state NMR experiments: 1H solid-state nuclear mag-

netic resonance (1H NMR) spectra were collected with Bruker Avance NEO (1H Larmor fre-

quency 400 MHz) using a 1.3 mm probe. The activated materials are packed in a rotor under

an Ar glovebox and inserted into the magnet. The spectra were acquired with echo pulse at

an ultra-fast spinning rate between 60 kHz to 65 kHz. The quantitative proton measurements

were performed with a recycle delay of 5 s and deconvoluted by the software Dmfit.S239

S-218



Results The activation of MIP-212 achieves roughly 50-70% removal of water, yielding

Open metal site (OMS) for the adsorption. The remaining water in the activated sample

is determined by the ultra-high speed magic angle spinning 60 kHz to 65 kHz 1H solid-state

Nuclear Magnetic Resonance in Figure S89. The presence of metal ion Cu2+ contributes to

a paramagnetic chemical shift to higher and lower resonances. Notably, the comparison with

the deuterium exchanged sample (black, bottom) identifies H2O coordinating with Cu at

12.1 ppm (D), -55 ppm (G), -90 ppm (H), OH coordinating with Al at 1 ppm (E), and PyC

linker at 50 ppm (A), 30 ppm (B), 20 ppm (C), and 7 ppm (D). The spectral deconvolution

enables the integration of the protons associated with each and results in x = 30–50% of

water amount from the expected chemical formula AlCu(μ2−OH)(C8N4O4H4)(μ2−H2O)x.

Figure S89|NMR spectra of MIP-212: the 1H solid-state NMR spectra of the activated
MIP-212, with (black signal) and without (blue signal) deuterium exchange.

12.1.3 Performance testing: Breakthrough curves

Experimental method The breakthrough experiments for MIP-212 were carried out in

a bespoke system shown in Figure S90. The piping system was built with 6.4 mm stainless-

steel tubing, Swagelok fittings, and a stainless-steel adsorption column (length 220mm,
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external diameter 9.5 mm, internal diameter 7.1mm) equipped with a heating unit. The

inlet gas composition was controlled with three mass flow controllers (Bronkhorst EL-Flow)

connected to carbon dioxide (99.8%), helium (99.996%), and nitrogen (99.998%) with a flow

range of 0.001mLn/min to 2.000mLn/min, 0.1mLn/min to 100mLn/min, and 0.1mLn/min

to 100mLn/min, respectively.

Before beginning the breakthrough tests, the MIP-212 sample was activated at 240 ◦C

for 7 h under a secondary vacuum. For dry breakthrough tests, 300mg of MIP-212 were

loaded into the column and held in place with glass wool (Merck). The system was then

purged with a Helium (He) flow (30mLn/min) to eliminate residual gases from exposure

to the atmosphere during the loading of the column. Helium (30mLn/min) is then passed

through the column whilst the column is heated at 240 ◦C, and this step was maintained for

a minimum of 1 hour to activate the MOF sample. Next, the system was cooled to 37 ◦C,

the adsorption temperature for the cement case study. The feed gas mixture (20% CO2 and

80% N2) was then passed through the column (10mLmin−1) during the adsorption step,

with a constant flow of He (20mLmin−1) going via the reactor bypass. The outlet mass

flow rate was measured by a Coriolis flow meter (Bronkhorst mini Cori-flow). The outlet

gas composition was monitored using a Hiden HPR-20 mass spectrometer, calibrated using

gas mixtures of known compositions.

For wet breakthrough experiments, N2 is passed through a temperature-controlled water-

filled bubbler to wet the gas stream (85 percent relative humidity). The system was properly

insulated and heated such that condensation of water did not occur. The temperature of the

lines, bubbler, and adsorption column was monitored through a series of K-type thermocou-

ples. The outlet mass flow rate was determined using the He reference flow method for the

wet breakthrough tests.S240 This was required to avoid condensation in the Coriolis meter.

It has already been shown that the two methods achieve similar results; hence, a comparison

between breakthrough profiles can be made.S241 Blank experiments were performed using the
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same conditions (dry & wet) and inlet flow rates using glass beads instead of the absorbate,

to account for the intraparticular and bed void space.

Figure S90| System used for dynamic breakthrough testing of MIP-212. MFC =
Mass Flow Controller; MFM = Mass Flow Meter; MS = Mass Spectrometer.

Results The results of the binary and ternary breakthrough experiments for MIP-212 are

presented in Figure S91.

For the wet experiment, the experimental breakthrough transient for CO2 starts at

≈2min. The outlet molar flow y(t)Q(t) reaches the feed rate yinQin at ≈5min, during

which ≈1.1mol kg−1 CO2 was adsorbed in the column. The concentration transient matches

substantially that of the dry experiment. The dynamic CO2 uptakes in both runs are ≈50%

lower than the corresponding single-component CO2 uptake (≈2.2mol kg−1) measured by

volumetry at 20 kPa and 37 ◦C. This is likely due to a combination of heat release upon CO2

and H2O adsorption and limited cooling available to the column exterior under the experi-

mental conditions. Besides, it is important to note that the volumetric CO2 isotherm was

measured on a sample pre-activated under dynamic vacuum at 240 ◦C, while for breakthrough

measurements, the activation was performed under hot gas flow, which may not be optimal

to remove all Cu-coordinated water molecules. Some material’s capacity may be recovered

by applying active cooling to the adsorber/heat-exchangers during cyclic operation.

S-221



The experimental breakthrough transient for H2O starts at ≈100 minute and completes

at ≈350 minutes, corresponding to an integral dynamic H2Ouptake of 13.5mol kg−1 at 37 ◦C.

The dynamic H2O uptake is ≈30% lower than the reference H2O uptake (≈19.0mol kg−1) for

the material at 85% RH and 37 ◦C based on gravimetric isotherm measurements. Between

6 min<t<310 min, a pronounced roll-up phenomena wherein y(t)Q(t) > yinQin is observed

for CO2, indicating substantial displacement by H2O due to competitive co-adsorption. The

same is observed for N2 in both the dry and wet runs as the most weakly adsorbed component

in the system.

The significant disparity between the breakthrough times of CO2 and H2O indicates

moisture penetration of < 5% of the bed length when the feed adsorption step is operated

to incipient CO2 breakthrough. This corroborates reasonably well with the maximum water

penetration length (approx. 2%) derived for MIP-212 for the TSA cycle modeled on the

PrISMa platform. The CO2/N2 selectivity on MIP-212 is evident from the rapid (<2min)

elution of N2 from the outlet of the column. This suggests a high likelihood of operating a

stable wet CO2 capture process under typical TSA regeneration conditions.

12.2 CALF-20

For CALF-20, we use the isotherm and heat of adsorption data reported in Nguyen et

al.S132 for structured CALF-20 particles (with 20 wt% polysulfone binder). To have a fair

comparison with other simulated materials, we apply the same particle structural properties

(i.e., 0% binder content and 0.35 macroporosity). For this, the CALF-20 isothermsS132

are scaled by discounting the 20% binder.S59 The crystal density is computed from the

experimental crystal structure.S59 The heat capacity value is estimated using our ML model

(see Section 3.1.1).
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Figure S91| Breakthrough curves of MIP-212 under wet (18 % CO2, 85 % RH,
balance % N2) and dry conditions (20 % CO2, balance % N2) .
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Acronyms

AiiDA Automated Interactive Infrastructure and Database for Computational Sci-

ence.

APOS at the Point of Substitution.

AS Adsorption Step.

BAT Best Available Technology.

BEIS Department for Business, Energy and Industrial Strategy of the UK govern-

ment.

CAC Carbon Avoidance Cost.

CAPEX Capital Expenditure.

CC Climate Change.

CCC Carbon Capture Cost.

COF Covalent Organic Framework.

COP Coefficient of Performance.

CoRE-MOF Computation-Ready Experimental MOF.

CS Cooling Step.

CSD Cambridge Structural Database.

CSS Cyclic Steady state.

DCF Discount cash flow rate.

DDEC Density Derived Electrostatic and Chemical net atomic charges.

DFT Density Functional Theory.

DMA Dimethylacetamide.

DMF Dimethylformamide.

EA Euro Area.
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EBTF European Benchmarking Task Force.

EDSL Extended Dual Site Langmuir.

EPC Engineering, Procurement and Construction.

FeOs Framework for Equations of State and Classical Density Functional Theory.

FG Foreground data.

FOB Free-On-Board.

GCMC Grand-Canonical Monte Carlo.

GWP Global Warming Potential.

HICP Harmonised Index of Consumer Prices.

HS Heating Step.

IAST Ideal Adsorbed Solution Theory.

IHS Intermediate Heating Step.

KPI Key Performance Indicator.

KPIs Key Performance Indicators.

LCA Life Cycle Assessment.

LCI Life Cycle Inventory.

LCIA Life Cycle Impact Assessment.

LCOC Levelised Cost of Capture.

LCOE Levelised Cost of Electricity.

LLE liquid-liquid-equilibrium.

LM Labour and Materials.

MEA Mono-Ethanol-Amine.

MINLP Mixed-Integer Nonlinear Program.

MIP Materials from the Institute of Porous Materials of Paris.
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ML Machine Learning.

MOF Metal Organic Framework.

MR:MM Material Resources: Metals/Minerals.

nCAC Net Carbon Avoidance Cost.

NGCC Natural Gas Combined Cycle.

NLP Nonlinear Program.

NMR Nuclear Magnetic Resonance.

NRTL nonrandom two-liquid model.

NVT Constant Number of Particles, Volume, and Temperature.

OMS Open metal site.

OPEX Operational Expenditure.

PrISMa Process-Informed design of tailor-made Sorbent Materials.

PXRD Powder X-ray diffraction.

SCR Selective Catalytic Reduction.

SMILES Simplified molecular-input line-entry system.

SPECCA Specific Primary Energy Consumption per CO2 Avoided.

SPT SMILES-to-Properties-Transformer.

TCR Total Capital Requirement.

TDC Total Direct Cost.

TEA Techno-Economic Analysis.

TraPPE Transferable Potentials for Phase Equilibria Force Field.

TSA Temperature Swing Adsorption.

TVSA Temperature Vacuum Swing Adsorption.

UFF Universal Force Field.

VS Vacuum Step.

S-226



WRC Water resistance coefficient.

WRC∗ Water resistance coefficient in a water-contaminated material.
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Symbols

A heat transfer area (m2m−3).

Atubes total cross-sectional area of the tubes per column (m2).

Cmaterial, repl cost of material replacement that is a function of years y (Me).

DCF discount cash flow rate.

Hads multi-component enthalpy of adsorption (kJ).

Ncolumns number of columns in the capture plant per train.

Ncomp number of components in the adsorption process that depends on the

case study.

Ntrains number of trains in the capture plant.

Nutility number of equipment needed in the entire capture plant per utility (i.e.,

power, heating, cooling).

Qsens sensible heat (kJ).

Qth input, ref thermal energy input of the reference power plant (MW).

THEX temperature of the heat exchanger media (K).

U heat transfer resistance (kJm−2 s−1K−1).

Vbed volume of the bed that is given by the total volume of the tubes in the

packed multi-tubular heat exchanger column (m3).

Ẇcc power output of the power plant with carbon capture (MW).

Ẇutility power requirement of a utility unit (MW).

Ẇref power output of the reference power plant (MW).

ṁCO2 avoided total mass flow rate of CO2 avoided from the capture plant consider-

ing the energy-related life cycle CO2-eq. emissions of the capture plant

(kgCO2/h).

ṁCO2 emissions, cc total mass flow rate of CO2 emissions of the energy supply by utilities

to the capture plant (kgCO2/h).
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ṁCO2 avoided NET total mass flow rate of CO2 avoided from the capture plant considering

the total life cycle CO2-eq. emissions of the capture plant (kgCO2/h).

ṁCO2 captured total mass flow rate of CO2 that is captured in the process (kgCO2/h).

ṅfeed, tot molar flow rate of the feed stream to the capture plant (mol s−1).

ṅfeed molar flow rate of the feed stream to the column (mol s−1).

ϵbed void fraction of the bed, in this case the tubes in the packed multi-

tubular heat exchanger column.

ϵpellet void fraction of the pellet.

γmix specific heat ratio of the mixture.

LCOEcc levelized cost of electricity for the reference power plant with carbon

capture (e/MWh).

LCOEref levelized cost of electricity for the reference power plant without CCS

(e/MWh).

MWCO2 molecular weight of CO2 (kgmol−1).

PEind,ref indirect primary energy consumption of the reference power plant per

unit electricity [MJ/MWh].

PEutility total primary energy consumption of a utility per unit energy [MJ/MWh].

TCRcc total capital required including interest during construction for the cap-

ture plant (e).

TCRref total capital required including interest during construction for the ref-

erence plant (e).

ρbulk bulk bed density (kgm−3).

ρcrystal density of the crystal (kgm−3).

ρpellet density of the pellet (kgm−3).

υout velocity of the gas leaving the column under vacuum (ms−1).

cp, bed heat capacity of the packed bed (kJm−3K−1).

cp, solid heat capacity of the solid (kJ kg−1K−1).
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cp heat capacity (kJ kg−1K−1).

eCO2 intensity, ref total CO2 intensity per unit of electricity or product produced for the

reference power plant without CCS (tCO2/MWh).

eCO2 intensity, utility CO2 intensity per unit of utility (i.e., power, heating, cooling) used

(tCO2/MWh).

eCO2 intensity, cc total CO2 intensity per unit of electricity produced for the reference

power plant with carbon capture including the energy-related life cycle

CO2-eq. emissions of the capture plant (tCO2/MWh).

hr(yr) capture plant operational hours per year (h).

msolid mass of the solid in the bed, in this case the tubes in the packed multi-

tubular heat exchanger column (kg).

qth, cooling specific thermal energy for cooling (kJmol−1).

qth specific thermal energy for heating (kJmol−1).

tcycle cycle time, the total time that is required to operate a complete cycle

of the process (h).

wel specific electrical energy required for the vacuum pump and the com-

pressor (kJmol−1).

effective recovery percentage of the amount of key component (in this case CO2) that is

avoided during the entire life cycle of the capture plant over to the one

that enters the column at AS and CS (%).

product quantity of key component (in this case CO2) that is recovered/produced

at HS per column (molCO2).

recovery percentage of the amount of key component (in this case CO2) that is

recovered at HS over to the one that enters the column at AS and CS

(%).
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