
Supporting Appendix 1: Cylinder Thinning Model

Here, we give a detailed derivation of our analytic model for the thinning
dynamics of the intracellular bridge during the last stage of cytokinesis. This model is a
simple extension of the model first used by Entov and Hinch (1) to describe elastic
effects in the thinning of a polymeric liquid bridge. We begin by approximating the
intercellular bridge as a perfect cylinder of radius a(t). The cortical stretch modulus, Sc,
gives rise to a Laplace pressure across the cortex, which is proportional to the mean
curvature.   For a sphere of radius R, the Laplace pressure is
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For a cylinder, the Laplace pressure is

P =
a

Sc . [2]

If we approximate the two daughter cells as perfect spheres and the bridge as a perfect
cylinder, we find the Laplace pressure P is larger inside a 1-µm radius bridge than the
4-µm radius daughter cells, thus the Laplace pressure tends to squeeze materials from the
bridge into the two daughter cells.  If we associate a viscosity µ with flow of the material
from the bridge into the daughter cells, then dimensional analysis gives a characteristic
velocity U* for the outflow

U* = 
µ
cS  . [3]

In the rest of the appendix, we derive simple, analytic expressions, which describe
bridge-thinning dynamics precisely, provided the geometry of the furrow remains
cylindrical. We consider two extreme scenarios. First, we examine the thinning dynamics
driven by a contractile radial stress exerted by myosin II, which acts against compressive
stresses from the two daughter cells. This thinning dynamics is a combination of a linear
decrease and an exponential decay, with the exponential decay preceding the linear
decrease. Second, we examine the thinning dynamics associated with elastic stresses
associated with materials inside the intercellular bridge. Here, a dominance of elastic
stresses results in an exponential decay.  In both cases, we retain the stretch modulus Sc in
the analysis.

For the first scenario, we begin with volume conservation.  As the cylinder thins
and lengthens, volume conservation requires that the decrease in volume due to radial
thinning in a volume element with length Δz in the cylinder, ∂ /∂ t(πa2Δz),  is balanced by
volume flux, -[(π a2Uz) zz

z
Δ+| ], out of  the two ends of the same volume element.  Here Uz

denotes the axial velocity inside the cylinder. Simplifying the expression and taking the
limit of Δz going to 0, we obtain
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where the axial strain rate e(t) is unknown.  In addition to volume conservation, the
viscous flow in the thinning bridge must satisfy boundary conditions on the cylinder
surface and at the two ends of the cylinder. These are the conditions that the fluid stresses
should be continuous across a fluid interface.  The full expression can be found in any
textbook on fluid mechanics (2).  Because of the extreme simplicity of the bridge
geometry, the boundary conditions reduce to radial stress balance across the cylinder and
axial stress balance across the ends of the cylinder. The radial stress balance has the form

σrr +
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∂ = P + µe(t), [5]

where σrr is the actively generated radial stress on the bridge surface, P is the fluid
pressure and Ur is the radial velocity.  We also assume σrr is entirely contractile,
corresponding to a radial force exerted inwards.  In arriving at the right hand side of 5,
we made use of the fact that the velocity field should be incompressible, so that
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which relates the radial derivative of Ur to the axial derivative of Uz.  In our problem,
6 is simply

( ) 0)(
1

=+
∂
∂

terU
rr r . [7]

Integrating 7 with respect to r, we find
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Because the centerline radial velocity Ur (r = 0) must be bounded, c0 = 0. This finding
means )/2()/( terUr −=∂∂ , hence the right hand side of Eq. 5.

At the end of the cylindrical bridge, where the bridge joins onto a daughter cell, the axial
stress balance takes the form

− σzz = – P + 2µe(t), [9]

where σzz is the compressive axial stress exerted by the daughter cell at the ends of the
cylinder.  If we take 9 as an equation for the pressure and substitute it into Eq. 5, we then
obtain the following expression for the axial strain rate e(t)
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Substituting 10 into 4 yields
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Note if σrr = σzz = 0, then a(t) = a0 –  (Sc/6µ) t.  The radius thins linearly over time with
a characteristic velocity proportional to U*, consistent with the earlier dimensional
analysis.

Now suppose both of the applied stresses are constant over the time, 11 can be
integrated to yield

a(t) = a0e-(Δσt)/6µ – 
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where Δσ = σrr - σzz > 0 and we have used the initial condition a(t = 0)=a0.  Eq. 12
describes a thinning dynamics which is a combination of linear decrease and exponential
decay.  The linear decrease component can be seen most easily by considering the
situation where Δσ/(6µ) is small.  In that case, Taylor expansion of 12 shows that the
bridge thinning dynamics reduces to a linear thinning at leading order, as
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Here, the effect of the applied stress enters only as a correction to the linear dynamics.  In
short, depending on the magnitude of Δσ, the thinning dynamics changes continuously
from a linear decrease to an exponential thinning.  One trend, however, is robust and does
not depend on the magnitude of Δσ:  the dynamics always looks more exponential at the
beginning, when a(t) is large.  As a(t) decreases, the linear decrease becomes more
obvious.

We now turn to the second scenario: the buildup of elastic stresses inside the
thinning bridge. We begin with the simplest possible model of elastic effects.  The
material in the bridge is assumed to be isotropic and that the deformation lies within the
linear elasticity regime. More precisely, we assume that the deformation is purely an
axial stretch, denoted by Az, and behaves as

€ 

∂Az

∂t
 = 2e(t)Az(t) – 

€ 

Az(t)
τ

, [14]



where τ is an elastic relaxation time.  Using Eq. 4 to substitute for e(t) in 14 and
after rearrangement, we find 14 can be rewritten as
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Upon integrating 15 with respect to t and using the initial condition Az(t = 0) = 1, we find
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To get a(t), we assume in addition that the elastic stress is sufficiently large so that the
viscous stress associated with flow inside the bridge is negligible in comparison.  In other
words, the elastic stress completely balances the Laplace pressure due to the surface
stretch modulus
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where g is the elastic modulus.  Substituting 16 into 17 yields
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The bridge radius decays as a near exponential with the characteristic decay time given
by the relaxation time of the elastic stresses.  Note in arriving at 18 we have simplified
the dynamics considerably.  A more complete treatment, which considers the dynamics at
earlier times where viscous stresses are comparable with elastic stresses, can be found in
Entov and Hinch (1).  They found that when both effects are considered, the thinning
dynamics first appears linear and, then, approaches an exponential decay as a(t) becomes
small.

Eqs. 12 and 18 were used to compare theoretical furrow thinning dynamics to
observed furrow-thinning dynamics for wild-type and mutant cytokineses in Fig. 4.
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