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1. Extended Methods 

Method S1 Seed sterilization and germination 

Seeds were washed for 10 min in ethanol (70%), rinsed 5 times in sterile distilled water, soaked 

in 3% (w/v) sodium hypochlorite, rinsed 5 times again and then left to imbibe in sterile distilled 

water at 4°C overnight. Sterilized seeds were incubated for germination on pre-soaked (sterile 

distilled water) filter paper (autoclaved) in Petri dishes for three days in the dark at room 

temperature. 

 

Method S2 Plant phenotypical traits 

Sampling took a total of four weeks for all wheat varieties to reach flowering stage. Height 

(from soil surface to head of longest stem) and ear length (length of longest ear) was measured, 

then soil was gently tipped from the pot onto a fresh polythene bag. Loose soil was discarded 

and non-rhizospheric soil carefully removed. After rhizosphere and rhizoplane samples had 

been taken, the remainder of the plant was dried (80°C, 24 h) and dry foliar plant biomass 

measured. 

 Plant height, ear length, and plant aerial biomass data were statistically analyzed with 

R Statistical Software v4.2.2 [1] in RStudio [2] using the kruskal.test and pairwise.wilcox.test 

function for non-normal data to investigate differences between fertilization and genome 

groups and pairwise interactions using the Benjamini & Hochberg procedure for multiple 

testing [3], respectively. Graphs were created in GraphPad Prism version 10.0.2 (171) for 

MacOS, GraphPad Software, Boston, Massachusetts USA, www.graphpad.com.  

 

Method S3 DNA extraction and PCR amplification 

Genomic DNA was stored at -80°C. Extractions were performed according to the 

manufacturer’s instructions but with the use of the FastPrep-24 5G machine (MP Biomedicals, 

Irvine, CA, USA) twice for 30 s at 5.5 m s-1. DNA purity and concentrations were established 

on a NanoDrop 1000 spectrophotometer (Thermo Fisher Scientific, Wilmington, DE, United 

States), and a Qubit 2.0 Fluorimeter using the dsDNA HS assay kit (Thermo Fisher Scientific), 

respectively. 

The V3-V4 region of bacterial 16S rRNA genes in samples were amplified using 

primers 314F (5’-CCTACGGGAGGCAGCAG-3’) and 806R (5’-

GGACTACHVGGGTWTCTAAT-3’) [4]. All PCR reactions were conducted with the 

http://www.graphpad.com/
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following setup: 15 µl 2x KAPA HiFi HotStart ReadyMix PCR (Roche, Basel, Switzerland), 

3 µl of each 0.5 µM forward and reverse primer indexed solutions, 9 µl PCR grade water, and 

3 µl DNA template (150 ng). PCR amplifications were performed on a C1000 Touch Thermal 

Cycler (Bio-Rad Laboratories, Hercules, CA, USA) under the following conditions: 95 °C for 

3 min; 30 cycles of 95 °C for 20 s, 55 °C for 15 s, 72 °C for 20 s; followed by 72 °C for 1 min. 

We included two negative control samples (blank DNA extractions) and two mock community 

samples. Indexed PCR products were cleaned with Agencourt AMPure XP beads (Beckman 

Coulter, Brea, CA, USA) and normalized to equimolar concentration prior to being pooled. 

The final pool was quantified, and quality assessed using SYBR green quantitative PCR assay 

with primers specific to the Illumina adapters (Kappa) and diluted to 12 pM. The library was 

spiked with PhiX control V3 library (5% v/v, 12.5 pM).  

 

Method S4 Bioinformatic analyses of 16S rRNA gene sequences 

The raw 16S rRNA gene amplicon sequences from the culture-independent data set and the 

culture-dependent data set were processed separately using QIIME (Quantitative Insights into 

Microbial Ecology) [5] 2 v2019.7. Paired-end reads were imported into QIIME 2 using the q2-

demux plugin for demultiplexing. Culture-independent sequences were merged using the 

vsearch [6] merge_pairs function which produced 6 million reads from 302 samples (median 

16,000 reads per samples) (298 samples, 2 negative controls, and 2 mock community samples). 

Merged sequences were then denoised using DADA2 [7] v1.18.0 (via q2-dada2) where 

sequences were processed into amplicon sequence variants (ASVs) using default parameters. 

Culture-dependent sequences were merged and denoised using DADA2 for paired-end reads 

which produced 20 million reads from 196 samples (median 110,861 reads per sample) (193 

samples, 1 negative control, and 2 mock community samples) to produce ASVs. Samples with 

less than 100 reads were removed (n=17 from culture-independent dataset) and ASVs with less 

than 10 observations in the entire data set were excluded. Bacterial taxonomy was assigned to 

the genus level using the q2-feature-classifier [8] classify-consensus-vsearch [6] against the 

SILVA database [9, 10] (version 138). ASVs that were not classified as bacteria at kingdom 

level were removed and the resulting ASVs were aligned with mafft [11] and used to build a 

phylogenetic tree with fasttree [12] using the q2-align-to-tree-mafft-fasttree function via q2-

phylogeny. The resulting ASV tables, taxonomy assignments, and phylogenetic trees were 

exported for downstream analysis. 
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Method S5 Statistical analysis 

Statistical analyses were performed in R v4.2.2 [1] using RStudio [2] unless otherwise stated. 

The predictmeans package [13] was used to make pairwise comparisons from negative 

binomial generalized linear models (glm) based on fertilization and genome interaction (P < 

0.05). This generated predicted means for each group with average least significant difference 

(LDS) bars at 5% and back transformed means with 95% confidence internals from the 

negative binomial glm, as well as pairwise comparisons. The predicted mean plots were used 

to interpret differences and trends between samples based on the average LSD bar; the back 

transformed means showed the true proportional value. 

For all data tested by two-way analysis of variance (ANOVA) tests, normality was 

confirmed by quantile-quantile normality plots and Shapiro-Wilk tests [14] and homogeneity 

of variances was confirmed by residuals versus fits plots and Spearman’s test for 

heteroscedasticity. All two-way ANOVA tests used type III sums of squares. For statistical 

analysis of absolute abundances of rhizobacteria, outliers were removed using the ROUT 

method [15] in Prism10. 

Permutational multivariate analysis of variance (PERMANOVA) was used to detect 

significant changes in the bacterial community structure using pseudo-F value as a proxy for 

the strength of an individual factor (fertilization, soil, ancestral class, ploidy, genome, and plant 

species) on the bacterial community composition. Two PERMANOVA types were used: (1) 

permutation test under a reduced model, sum of squares type I (sequential) with 9,999 

permutations using fixed multifactorial design; (2) multifactorial, nested design 

PERMANOVA (type I) where plant species were nested in genome which were nested in 

ploidy. 

The R package DESeq2 v1.36.0 [17] was used to identify differentially abundant ASVs 

enriched in: 1) non-fertilized vs. fertilized wheats in the culture-independent dataset; 2) diploid, 

tetraploid, vs. hexaploid wheats in the culture-independent dataset; 3) diploid, tetraploid, vs. 

hexaploid wheats in the culture-dependent dataset, using the Wald test with a local fit type and 

adjusted P values to correct for multiple testing using the Benjamini-Hochberg procedure [3] 

at a significance level of < 0.0001 for (1) and < 0.05 for (2) and (3). The resulting data were 

used to produce volcano plots with the R package ggplot2 and ternary plots using the methods 

reported in Bulgarelli et al. (2012) [18], to visualize ASVs preferentially associated with 

fertilization or ploidy level, respectively. For phyla abundances, the cumulative baseMean 

values, which is the average of the normalized ASV count values, divided by size factors, taken 
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over all samples, from the DESeq2 results were plotted in Prism 10. The same data was used 

to plot genus abundances for culture-dependent ASVs classified to genus level, also in Prism 

10. 
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2. Extended Results 

Result S1 Plant phenotypical traits 

Fertilization had the biggest impact on plant biomass and ear length (Kruskal-Wallis: 2 = 

74.64, df (degrees of freedom) = 1, P < 0.0001 and 2 = 72.3, df = 1, P < 0.0001, respectively) 

compared to genome (2 = 10.9, df = 4, P = 0.0283 and 2 = 14.54, df = 4, P = 0.0058, 

respectively) (Fig. S7A and S7B). Wheat genome significantly influenced plant height (2 = 

39.5, df = 4, P < 0.0001) with genotypes BB (85.0  12.7 cm, n = 5) and AABB (71.6  15.8 

cm, n=32) being taller than genotypes: AA (52.3  20.9 cm, n = 15), AABBDD (51.6  15.2 

cm, n = 84), and DD (42.5  7.2 cm, n = 8) (Wilcoxon rank sum test with Benjamini-Hochberg 

correction, P < 0.05) (Fig. S7C). Fertilization had no effect on plant height (2 = 0.7, df = 1, P 

= 0.4048) (Fig. S7C). 

 

Result S2 Functional bioassay analysis of culturable isolates 

In general, rhizoplane bacteria that tested positive for solubilization of plant macronutrients: 

organic N (casein), inorganic phosphate (Ca3(PO4)2), potassium (potash feldspar), and plant 

micronutrient: iron (FeCl3 • 6H2O) had a statistically higher relative abundance in isolate 

libraries cultured from non-fertilized compared to fertilized wheat samples, from all wheat 

genotypes (analysis of deviance: P < 0.05) (Fig. S12) (Data S5). The general trend for P, K, 

and Fe -solubilizing bacterial isolates was an increase in abundance from unplanted soil, AA, 

BB, and DD wheat rhizoplane and a decrease in abundance from AABB and AABBDD 

rhizoplane samples with a significantly lower proportion of isolates cultured from AABB and 

AABBDD wheats grown with fertilizer (Fig. S12). In contrast, there were no statistical 

differences in abundances of zinc (ZnO)-solubilizing bacteria caused by fertilization or by 

genotype (Zinc in Fig. S12) (Data S5). 
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3. Extended Discussion 

There was no clear difference between ploidy levels in terms of rhizobacterial species richness, 

diversity, evenness, and phylogenetic diversity for a given fertilization regime. This has been 

observed previously with alpha diversity indices related to domestication [19]. This was also 

the case for prokaryotic diversity in maize rhizosphere and rhizoplane microbial communities 

with there being no difference between teosinte, inbred, and modern maize [20], as well as for 

the Shannon and Simpson index in wild versus domesticated rice [21]. A study did show that 

polyploid wheats harboured greater rhizosphere bacterial diversity than diploid wheats but that 

this trend was more pronounced in field plots compared to pot experiments and that results 

varied based on field sampling year [22]. In fact, our results showed there to be higher 

phylogenetic diversity in the rhizoplane of hexaploid wheats compared to diploid wheats under 

non-fertilized conditions (Data S1) which does support these findings. Another study also 

showed a similar result between diploid (T. monococcum), tetraploid (T. turgidum), and 

hexaploid (T. aestivum varieties and T. spelta) wheat cultivars; there was no difference between 

rhizobacterial richness and diversity in wheat sampled at 21 weeks post germination when the 

first side shoot was visible however, when sampling at an earlier growth stage (emergence of 

first leaf 10 weeks post germination) alpha diversity was higher in hexaploid when compared 

with diploid and tetraploid wheats [23]. Additionally, root bacterial richness and diversity was 

significantly higher in wild wheat roots compared to land and inbred races of wheat at two-

weeks post germination [24]. This suggests that the initial phase of microbial colonization is a 

better stage to assess differences in rhizobacterial alpha diversity between wheats when based 

on ploidy status. This would explain the similar rhizobacterial alpha diversity results in this 

study of wheats sampled at late-stage development (flowering). 
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