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eAppendix. Technical details of the statistical approaches  

1. The study city matching procedure 

Data used for matching 

The California sugar sweetened beverage (SSB) Tax Study is a policy evaluation study using a natural experiment 

design. The intervention arm consisted of four California cities that adopted the SSB excise tax between 2015 and 

2017 (Albany, Berkeley, San Francisco, and Oakland). The four intervention cities are all located in the greater San 

Francisco Bay area with distinct city-level characteristics. Potential control cities included 328 incorporated cities in 

California, where health care is covered by Kaiser Permanente (KP) and no SSB excise tax was in effect between 

2009 and 2020. Seventeen city-level covariates were collected: total population, population density , % population 

having KP membership, % males, % females, % population in each of the four age strata (≤ 19, 20-44, 45-64, ≥ 65), 

% population in each of the four race/ethnicity categories (Hispanic of all races, non-Hispanic African American, 

non-Hispanic white, non-Hispanic Asian and others), % population living below poverty line, and % population in 

each of the three education attainment levels (high school diploma/GED or lower, some college or associate degree, 

bachelor degree or higher). Except for % population having KP membership, all other covariates are public 

information using 5-year averages of U.S. Census American Community Survey prior to SSB tax implementation 

years.  

 

Matching 

Weighted Euclidean distance metrics were calculated using 14 of the 17 covariates by removing a redundant 

category from three factors (% males, ≥ 65 years old, bachelor’s degree or higher) and after standardization (i.e., 

dividing the raw value by the population standard deviation) using the formula 

𝑑(𝑝, 𝑞) =  √∑ 𝑤𝑖(𝑞𝑖 −  𝑝𝑖  )2

14

𝑖=1

 

 
where p=(p1, p2, …, p14), q =(q1, q2, …, q14) are two points in the 14-dimension Euclidean space, qi, pi, i=1, …,14 

are standardized matching dimensions, and wi = weight for dimension i. 

 

Weights were assigned to down weight percentages in the same factor (e.g., the three percentages for age strata each 

had a weight of .333) so that the total weight of a factor with more than one level was 1. All pairwise distance 

metrics between a treatment city and a potential control city were calculated.  Each intervention city was matched to 

10 control cities with generally the shortest distance metrics. Minor ad hoc adjustments were made to avoid overlap 

in selected control cities among different intervention cities and to ensure no control cities bordered any intervention 

cities. Specifically, first we excluded any matched city that was geographically adjacent to the intervention city and 

replaced it with the next available control city from the list ordered by Euclidean distance. Next, we examined 

controls to ensure that each control city was only matched to one intervention city. If a city was matched to multiple 

intervention cities, the match with the smallest corresponding Euclidean distance was maintained while the other 

was replaced with that intervention city’s next available control city from the list ordered by Euclidean distance.  

The final list of intervention and matched control cities is listed in eTable 1. 

 

Balance assessment 

Balance assessment was ascertained by examining the absolute standardized difference between the mean value 

(SMD) for matched control cities and the value of each covariate in the intervention city. Due to the small sample 

size and the finite study population of California cities, some covariates have moderately large SMD. We conducted 

a Monte Carlo simulation to assess the relative goodness of balance. Specifically, 100,000 ideal random samples of 

California cities were drawn (4 treated cities and 40 control cities in each random sample). The SMD of our chosen 

study sample is smaller than or close to the median SMD of the 100,000 ideal random samples. Details of the 

simulations are reported elsewhere. (Han and Sidell, 2024) Therefore, we concluded that in relation to an ideal 

simple randomization, the chosen study sample had acceptable levels of covariate balance.  
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eTable 1. List of the 44 study cities. 

Tax City Matched Comparison Cities 

Albany San Ramon, Dublin, Pleasanton, Santa Clara, San Rafael, Burlingame, Walnut Creek, Belmont, 

Claremont, Lafayette 

Berkeley Davis, Pasadena, Loma Linda, Sunnyvale, Fullerton, San Mateo, Tustin, Signal Hill, South 

Pasadena, Placentia 

Oakland Sacramento, Moreno Valley, Pittsburg, Stockton, Elk Grove, Rialto, Hayward, Fontana, San 

Leandro, Corona 

San Francisco San Jose, San Diego, Irvine, Anaheim, Fremont, Riverside, Long Beach, Chula Vista, Glendale, 

Bakersfield 

 

 

2. The stratified difference-in-differences (DID) method 

Overview 

The difference-in-differences (DID) method is a widely applied causal inference method, conventionally 

operationalized through an Analysis of Covariance (ANCOVA) longitudinal regression model. The key assumption 

of the DID method was that in the absence of any treatment, the trajectories of the mean outcome would have been 

parallel between any study arms (Lechner, 2011).  We adopted the DID method as the main analytic approach in this 

paper. However, the massive study sample from KP’s electronic health record (EHR) imposed a great challenge.  

Standard ANCOVA longitudinal regression models, including the many variants, could not pass the general 

falsification and validation tests for model specification and the fundamental parallel trajectory assumption. The 

standard ANCOVA regression might yield biased estimates for the SSB tax treatment effects as well as potentially 

false significance. To ensure unbiased estimates and avoid type I errors, we first stratified the full sample into 

independent subsamples of blocks. In each block, observed covariates were completely homogenous or almost so.  

The sample size in each block was reasonably small. Thus, adjusting for covariates was either not needed or could 

be adequately done within each block. Second, the trajectories of the mean outcome were fully nonlinear in each 

block. These two adjustments made the analysis in each block adequately verified. Finally, results from all blocks 

were aggregated to form the overall estimates and subgroup estimates. Details of these steps were as follows.  

 

Data, conventional DID, and validation and falsification tests  

We first introduced the standard notation for unsynchronized longitudinal data: the outcome data were denoted as 

Y(i,ti,j) for patient i=1,…,N, N≈3.9×105 and in year ti,j. Patient i had repeated measurements in a sequence of years 

{tij: ti,1, …, ti,Ti}. All years ti,j ranged between 1 and 10, where the first six years were pre-tax and the last four years 

were post-tax (ignoring the different timeline for Berkely for the sake of brevity). We required that the number of 

measurements in patient i be Ti ≥ 2, the first measurement time ti,1<7, and the last measurement time ti,Ti ≥ 7. Except 

for these requirements, all patients could have different numbers of measurement and different measurement times.  

The total number of measurements was ∑ 𝑇𝑖𝑁
𝑖=1  ≈ 2.2×106. Let Zi = 1 or 0 denote whether a patient in a treated city, 

and Xi denote the observed baseline covariate vector (birth year, gender, race/ethnicity, insurance status, and specific 

city of residence). Let I{condition} denote a dummy variable for the condition within the brackets. With this 

notation system, a basic ANCOVA model had the following mean function 

E[Y(i,ti,j)]  = α1 + Ziα2 + γt + µtZi I{t>6} + Xiβ, (1) 

where the parameter of interest was µ (i.e., the coefficient for the time by condition interaction). Other parameters in 

the mean function include the intercept α1 for mathematical purposes, the baseline difference between arms Ziα2, the 

adjusted covariate effect Xiβ, and the common trajectory γt, which would be followed by everyone in the absence of 

treatment. The variance components of the ANCOVA model besides Equation (1) included the random 

measurement error, the serial correlation within a patient, and potentially the clustering within a city, where the last 

two error components could be modeled by random effects, covariance terms, or the fixed-effect approach.  Each 

approach further had many technical variants. In the sequel, we focused on the mean function and omitted most 

tedious technical details in variance components.   

 

The main challenge for the DID approach was encountered in the two types of validation and falsification tests.  

First, a goodness-of-fit test checked if the working model underfitted the data. Due to the massive sample size and 

highly heterogeneous patients (390k patients, 2.2 million records), it was almost certain that a conventional 
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parametric regression could not adequately fit the data.  Minor enrichments of model (1), such as short-term shock, 

two-way interactions, parabolic or cubic time trends, or regression spline in time trends, were of little to no help.  

For example, a slightly enriched model for (1) was to replace the parameter of interest µtZi I{t>6} by two terms µ1Zi 

I{t>6} + µ2tZi I{t>6}, i.e., an instant shock and a long-term linear effect. Not surprisingly, the enriched model had 

significantly better goodness of fit than the working model by any reasonable goodness-of-fit test or model 

selection/comparison criteria. However, the enriched model itself also substantially underfitted the data and could 

use further expansion.   

 

Sometimes a model’s goodness-of-fit was deemed as a technical concern rather than a substantive jeopardy.  

However, the placebo test for DID was always deemed as crucial to partially justify its validity. The rationale of the 

placebo test was to conduct the DID analysis in the pre-tax period only by setting a fake and shortened post-tax 

period, e.g., using years 1 to 5 as pre-tax and year 6 as the fake post-tax period. Since no treatment was in effect, the 

placebo test was expected to be insignificant if the parallel trajectory assumption was not violated. Nevertheless, it 

was almost certain that any conventional parametric regression to DID could not pass the placebo test. Lastly, the 

massive dataset also made it challenging to fit most conventional models and perform these tests computationally: a 

single mixed-effect model could take more than several days to fit in SAS Studio Enterprise 9.4.  

 
Our stratified and saturated DID 

Stratification: as recommended by the official user manual of SAS/STAT software, we partitioned the sample into 

mutually exclusive subsamples or blocks to reduce the total computational burden, where blocks were defined by 

intervention city, race and ethnicity, sex, birth years, and insurance status jointly. For example, a block was 

Hispanics, males, having Medicaid or other public health insurance, born between 2005 and 2006, living in San 

Francisco or its 10 matched control cities. Another block was white, females, any insurance, born between 2006 and 

2010, living in Oakland or its 10 matched control cities. In the end, we used 104 blocks for the analysis of the child 

BMI percentile outcome. Each block had a reasonably small sample size, usually between 10,000 to 100,000 

records. Moreover, the observed covariates were either constant or had minor differences within each block so that 

goodness-of-fit for covariates was no longer a concern.   

 

Saturated DID: within each block there was still the daunting task to adequately model the mean trajectories to pass 

the placebo test. We employed a fully nonlinear and saturated parametrization based on the robust DID approach in 

the econometric literature (Conley and Taber, 2011; Rambachan and Roth, 2023). Let Y(g)
(i,k,j) denote the outcome 

for patient i in city k at time j, 1≤j≤10, k=1 for the treated city and k=2,…11 for control cities, and the superscript 

(g) denoted a distinct block independent of all other blocks. Note that all blocks had exactly 11 cities as presented 

here. The saturated DID for block g is 

   E[Y(g)
(i,k,j)] = λ(g)

k,j + Xi
*(g)β(g).  (2) 

where each city had a fully flexible trajectory λ(g)
k,1, λ(g)

k,2, …, λ(g)
k,10, and the term Xi

*(g)β(g) adjusted for the few remaining non-

constant covariates. Statistically, the 110 distinct parameters λ(g)
k,j in block g were the highest-order interaction term that could be 

applied to the mean function. All variance components were modeled separately for each block as well. Thus, the collection of all 

block-level models composed a very large-scale parametrization with roughly 110 x 104 ≈ 1.1 ×104 parameters, resulting in a “n-

p ratio” of roughly 190, i.e., 190 data points per unknown parameter for estimation. (Note: the actual number of parameters is 

slightly more than this due to the variance components and the few covariate terms). We used the following placebo test for 

model (2)  

H0 : [λ1,6
(g)

− 1

5
∑ λ1,𝑗

(g)5
𝑗=1 ] − [∑ 𝑣𝑘

(g)
λ𝑘,6

(g)11
𝑘=2 − 1

5
∑ ∑ 𝑣𝑘

(g)
λ𝑘,𝑗

(g)11
𝑘=2

5
𝑗=1 ] = 0, 

where control cities had weights vk
(g), k=2, …,11. These weights were equal to 0.1 by default (i.e., 10 controls 

equally weighted). Causal effect contrasts were estimated only if the placebo test could pass, i.e. fail to reject H0. In 

the event that the placebo test failed to pass, we made one or more of the following adjustments, including splitting 

the block, combining the block with an adjacent block, or combining and re-splitting the block with adjacent 

block(s). Failure to pass the placebo test might also result from one or more control cities whose trajectories were 

substantially different from other control cities and the treated city. In these cases, we set vk
(g) = 0 to exclude these 

control cities and adjusted the weights or the remaining control cities in this block. For example, if we decided to 

exclude one control city in a block, then this excluded city’s weight was 0 and the other 9 control cities weight was 

changed to 0.1111.  

 

After passing the placebo test, the causal effect for a post-tax year t, 10 ≥ t ≥ 7, was the following linear contrast 

𝐿𝑡
(g)

=  [λ1,𝑡
(g)

− 1

6
∑ λ1,𝑗

(g)6
𝑗=1 ] − [∑ 𝑣𝑘

(g)
λ𝑘,𝑡

(g)11
𝑘=2 − 1

6
∑ ∑ 𝑣𝑘

(g)
λ𝑘,𝑗

(g)11
𝑘=2

6
𝑗=1 ]. 



© 2024 Young DR et al. JAMA Network Open. 

The causal effect for the overall effect across four post-tax years was the following linear contrast 

𝐿⬚
(g)

= 1

4
∑ 𝐿𝑡

(g)10
𝑡=7 . 

All causal effect contrasts and the placebo test statistics were estimable under the general linear hypothesis inference 

framework (McLean et al., 1991).   

 

Aggregation operation 

Aggregated point estimates and standard errors were calculated by taking the overall mean of the block estimates 

weighted by proportion of distinct subjects in the intervention city w(g),  

 

𝐿𝑡 = ∑ 𝑤⬚
(g)

𝐿𝑡
(g)

𝑔 , and 𝐿 = ∑ 𝑤⬚
(g)

𝐿⬚
(g)

𝑔 . 

 

Subgroup (race/ethnicity, age, and sex) point estimates were calculated using the same method above but with the 

summation over blocks sharing the common subgroup characteristics and weights standardized to sum to one among 

these blocks. By statistical independence among blocks, the SE of the contrasts Lt, L, and subgroup effects were 

square roots of the sum of squared SEs from all blocks involved. We applied the Wald’s z test inference to calculate 

95% confidence intervals and p-values for the aggregated results.  

 

The full technical details and software codes of the stratified saturated DID approach will be reported elsewhere and 

are available upon requests. All data analysis by the DID approach was conducted using PROC MIXED in SAS 

Studio Enterprise version 9.4 (SAS Institute Inc., Cary, NC, USA). 

 
3. The synthetic control approach 

The synthetic control approach served as sensitivity checks to verify the substantive findings by the DID approach.  

Compared with the DID approach, the synthetic control approach used slightly different input data, imposed distinct 

causal inference assumptions, and used fundamentally different estimators.   

 

Data used in the synthetic control analysis  

The synthetic control method analyzes aggregated data at the city-level. All available patient-level outcomes from 

the EHR, minus the invalid records as described in the method section, were summarized by city and calendar year 

using means. We did not require more than one repeated measure in the sensitivity analysis by the synthetic control 

method. The analytic data for the synthetic control method included mean outcomes from 44 cities (4 intervention 

and 10 controls for each intervention city). The average annual number of youth in each intervention city and the 

corresponding matched control cities are displayed below. 

  Albany Berkeley Oakland San Francisco 

Intervention city 1,148  3,365  16,876 18,607 

Control cities 28,339  22,699  107,851  158,037  

 

Estimation 

We used the synthetic control method (SCM) developed by Abadie, et al. (2010) to estimate the impact of SSB taxes 

on outcomes the year the policy was put into effect and the years following. This method identifies a set of weights, 

where the weighted average of the control cities’ characteristics and city-level outcomes in each pre-intervention 

year matches with the those of the intervention city. The weighted average of the control cities’ outcomes is referred 

to as the synthetic control. The intervention effect was estimated as the difference between the observed outcome in 

the intervention city and the estimated outcome in the synthetic control during the post-tax phase.  

 

To calculate the weights in the synthetic control, a symmetric and positive semidefinite matrix needs to be specified 

to standardize all city-level matching variables. We specified a diagonal matrix, where the entries were the inverse 

of the variances of the pre-intervention year outcomes and demographic summaries weighted by a scalar factor that 

prioritizes the predictive power of the pre-intervention outcomes (specified below). We used a standard quadratic 

programming approach to estimate the synthetic control weights (Goldfarb, Idnani, 1982, 1983; Turlach, 

Weingessel, 2019). 

 

The success of the synthetic control methods also relies on the assumption that the pre-intervention outcomes lie 

within the convex hull of the control city pre-intervention outcomes. When deviations to this assumption were 
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encountered in our data, we considered the following transformations of the outcomes (Abadie, 2021): 1) subtracting 

the mean of each city’s pre-intervention outcomes; 2) subtracting each city’s intercept (outcome in the first year of 

under study); 3) subtracting each arm’s intercept; and 4) first order differencing. If a transformation was needed, we 

chose the transformation that resulted in the best alignment between the intervention city and synthetic control 

outcomes in the pre-intervention period. We performed estimation and inference of the intervention effects on the 

transformed outcomes. 

 

Separate SCM analyses were conducted for each pre-planned analysis (i.e., overall and subgroup analyses) and each 

outcome. Subgroup estimates may not sum up to the overall estimate due to the lack of constraints among separate 

SCM analyses.  

 

Inference 

We used the permutation test approach for inference by Abadie et al. (2010) and Bottmer et al., (2023). We applied 

30 rounds of permutations. In all permutation rounds, the real treated city was relabeled as a control city and one 

control city was relabeled as a treated city. We further shifted the timeline by one year. Specifically, for intermediate 

years during the post-tax period, we shifted the timeline one year before and after the actual time. For the last year 

during the post-tax phase, we shifted one year and two years before the actual time. By the exchangeability 

assumptions in Abadie et al. (2010) and Bottmer et al., (2023) and under the null hypothesis with no treatment 

effect, the 30 rounds of permutations and the actual study design are a random sample of the null distribution with 

mean 0. The test statistic for inference is the ratio between the post-intervention root mean squared prediction error 

(RMSPE) and pre-intervention RMSPE (Abadie, 2021, equation 12). The test statistic is only a two-sided test since 

the RMSPE does not have directional information. We obtained p-values based on the permutation distribution of 

each of these test statistics, separately. 

 

Although the EHR data had a massive number of patients and records, the synthetic control method is based on the 

sparse aggregated city-year data (44 cities by 10 or 12 years). The relatively small numbers of cities and years 

greatly weakened the statistical power in drawing inference. The p-value of the RMSPE test is a two-sided discrete-

valued function with the step size of 0.033 since there are only 30 rounds of permutations to calculate the p-value. 

Thus, our sensitivity analysis has limited power to declare statistical significance for the usual p-value cutoff such as 

0.01 or 0.05.   

  

Combining findings across all intervention and control cities 

To combine average intervention effects across the four tax cities, which we refer to as aggregated intervention 

effects, we calculated a weighted average of the four point estimates for each treated city, where the weights were 

defined using the average annual number of children in each intervention city (excluding 2020) (Krief, et al., 2016; 

Robbins, et al., 2017). Inference was performed using the permutation approach described previously, where the test 

statistics were the aggregated intervention effects. 

 

Results 

The eFigure visualizes the synthetic control analyses by tax cities and the three outcomes. The trends of all 

outcomes in the pre-tax phase were generally well matched between a tax city and its synthetic control. This 

observation suggests that the SCM was successfully implemented to the aggregated data. In the post-tax phase, the 

synthetic control’s trend in the BMI percentile outcome was notably higher than the tax city’s observed trend, 

suggesting a beneficial treatment effect in lowering the BMI percentile. By contrast, the post-tax trends in the 

obesity and obesity/overweight status outcomes did not have clear and consistent distinctions between tax cities and 

synthetic controls, suggesting the lack of a treatment effect on these two outcomes.  

 

The eTable 2 provides detailed estimates and p-values of the SCM analyses. The point estimates are generally 

similar to the main results. Since the SCM approach is fundamentally different from the DID approach in the main 

analysis, we considered that the similarity in estimates is strong evidence to the robustness in the quantitative results. 

P-values from the SCM are generally larger than those from the corresponding DID analyses, which is expected due 

to the poor statistical efficiency of the SCM.  
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eFigure. Average outcome in each study year for each tax city and corresponding 
synthetic control 
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eTable 2. Overall and subgroup intervention effects using the synthetic control method, aggregated over the 4 

intervention cities with permutation-based p-values 

  

BMI percentile   

Overweight or  

obese (%)   Obese (%) 

  Effect p-value   Effect p-value   Effect p-value 

Overall -1.18 0.10   -0.93 0.17   -0.72 0.37 

Age                 

     2-5 -2.88 <0.03   -0.18 0.53   -0.10 0.37 

     6-11 -1.17 <0.03   -0.59 0.23   -0.23 0.57 

     12-19 -1.09 0.13   -0.81 0.03   -0.38 0.10 

Sex                 

     Female -1.10 0.13   -0.57 0.50   -0.47 0.37 

     Male -1.20 <0.03   -0.61 <0.03   -0.45 0.13 

Race/ethnicity                 

     Asian -0.86 0.27   -0.80 0.13   -0.30 0.17 

     Black 0.84 0.33   -0.57 <0.03   -0.39 0.08 

     Hispanic -0.38 0.23   -0.04 0.90   -0.32 0.63 

     White -1.33 0.20   0.09 0.87   0.06 0.50 

p-values are based on permutation testing based on the ratio between the post-intervention root mean squared 

prediction error (RMSPE) and pre-intervention RMSPE (Abadie, 2021, equation 12), as described in the eMethods. 

 


