SUPPLEMENTARY INFORMATION

Direct Mass Spectrometric Analysis of Brominated Flame Retardants in Synthetic Polymers

Krista Grönlund¹, Ville H. Nissinen¹, Ilkka Rytöluoto², Milad Mosallaei², Joonas Mikkonen², Kirsi Korpijärvi³, Paavo Auvinen¹, Mika Suvanto¹, Jarkko J. Saarinen¹ and Janne Jänis¹*

¹Department of Chemistry, University of Eastern Finland, Yliopistokatu 7, 80130 Joensuu, Finland

²VTT Technical Research Centre of Finland Ltd., Visiokatu 4, 33101 Tampere, Finland

³VTT Technical Research Centre of Finland Ltd., Koivurannantie 1, 40400 Jyväskylä, Finland

*Corresponding author: janne.janis@uef.fi

 Table S1. Model compound formulations.

	Br target concentration	Experimental Br concentration (XRF)	Ratio	Target formulation		on
Sample	[ppm]	[ppm]	Exp. vs target	Polymer [mg]	BFR [mg]	Sb ₂ O ₃ [mg]
ABS-0	0	0 ± 2	_	10000.00	0.00	0.00
ABS-HBCD-1000	1,000	675 ± 10	0.71	9979.92	13.38	6.69
ABS-HBCD-2500	2,500	$1,\!982\pm20$	0.81	9949.81	33.46	16.73
ABS-HBCD-5000	5,000	$4,\!395\pm39$	0.89	9899.61	66.92	33.46
ABS-HBCD-10000	10,000	8,610 ± 73	0.86	9799.23	133.85	66.92
ABS-TBBPA-1000	1,000	982 ± 12	0.98	9974.48	17.02	8.51
ABS-TBBPA-2500	2,500	$2,251 \pm 22$	0.89	9936.19	42.54	21.27
ABS-TBBPA-5000	5,000	$4,\!484\pm39$	0.90	9872.38	85.08	42.54
ABS-TBBPA-10000	10,000	8,914 ± 77	0.89	9744.76	170.16	85.08
ABS-decaBDE-1000	1,000	916 ± 12	0.92	9981.99	12.00	6.00
ABS-decaBDE-2500	2,500	$2,109 \pm 21$	0.84	9954.99	30.01	15.00
ABS-decaBDE-5000	5,000	4,311 ± 38	0.86	9909.97	60.02	30.01
ABS-decaBDE-10000	10,000	$8,750\pm75$	0.87	9819.94	120.04	60.02
HIPS-0	0	9 ± 2	—	10000.00	0.00	0.00
HIPS-HBCD-1000	1,000	656 ± 10	0.66	9979.92	13.38	6.69
HIPS-HBCD-2500	2,500	$1,688 \pm 18$	0.68	9949.81	33.46	16.73
HIPS-HBCD-5000	5,000	$3,860 \pm 34$	0.78	9899.61	66.92	33.46
HIPS-HBCD-10000	10,000	$8,282 \pm 71$	0.83	9799.23	133.85	66.92
HIPS-TBBPA-1000	1,000	877 ± 11	0.88	9974.48	17.02	8.51
HIPS-TBBPA-2500	2,500	$2{,}033\pm20$	0.81	9936.19	42.54	21.27
HIPS-TBBPA-5000	5,000	$4,334\pm38$	0.87	9872.38	85.08	42.54
HIPS-TBBPA-10000	10,000	$8,609 \pm 75$	0.86	9744.76	170.16	85.08
HIPS-decaBDE-1000	1,000	793 ± 11	0.79	9981.99	12.00	6.00
HIPS-decaBDE-2500	2,500	$2,043 \pm 21$	0.82	9954.99	30.01	15.00
HIPS-decaBDE-5000	5,000	$4,148 \pm 37$	0.83	9909.97	60.02	30.01
HIPS-decaBDE-10000	10,000	8,773 ± 74	0.88	9819.94	120.04	60.02

Table S2. Utilized parameters	in DIP-APCI-MS	analysis.
-------------------------------	----------------	-----------

Ion sou	rce	Collision cell			
End plate offset	500 V	Collision energy	10.0 eV		
Capillary	4000 V	Collision RF	600.0 V _{pp}		
Corona	4000 nA	Transfer time	140.0 μs		
Nebulizer	2.0 Bar	Pre pulse storage	12.0 μs		
Dry gas 5.0 L/min		Flig	Flight tube		
Dry temperature	200 °C	Flight tube	9900.0 V		
Vaporizer temperature 150-450 °C		Reflector			
Transf	fer	Decelerator	882.0 V		
Deflection 1 Delta	40.0 V	Reflector	2500.0 V		
Funnel 1 RF 300.0 V _{pp}		Detector			
Funnel 2 RF	400.0 V _{pp}	TOF	2268.9 V		
Multipole RF	250.0 V _{pp}	Corrector			
Quadrupole		Fill	64.7 V		
Ion energy	5.0 eV	Extract	-611.1 V		
Low mass	100.00 m/z	Lens -6454.3 V			

Н	IPS	ABS		
Ion formula m/z		Ion formula	m/z	
C13H9	165.069877	$C_{11}H_{12}N$	158.096426	
C14H10	178.077702	$C_{14}H_{15}N_2$	211.122975	
C ₁₆ H ₁₅	207.116827	C ₁₉ H ₂₀ N	262.159026	
$C_{24}H_{24}$	312.187252	$C_{22}H_{23}N_2$	315.185575	
C25H24	324.187252	C25H26N3	368.212124	
C ₃₂ H ₃₁	415.242027	C ₃₀ H ₃₁ N ₂	419.248175	
C ₃₃ H ₃₂	428.249852	C ₃₃ H ₃₄ N ₃	472.274725	
C41H40	532.312453	C36H37N4	525.301274	
C49H48	636.375053	C ₄₁ H ₄₂ N ₃	576.337325	
C ₅₇ H ₅₆	740.437653	C44H45N4	629.363874	
C65H64	844.500253	C47H48N5	682.390423	
C ₇₃ H ₇₂	948.562854	C ₅₂ H ₅₃ N ₄	733.426474	
		C55H56N5	786.453023	
		C58H59N6	839.479572	
		C ₆₃ H ₆₄ N ₅	890.515624	

Table S3. Utilized calibration lists for HIPS and ABS samples.

Experimental m/z	Theoretical m/z	Error (ppm)	Observed ion	Ion formula	Proposed compound**	Observation time frame (min) ***
881.259062*	881.257073	2.26	M ⁺ ●	C ₁₂ HBr ₉ O	nonaBDE	5.5–7.0
959.170006*	959.167571	2.54	$M^{+\bullet}$	$C_{12}Br_{10}O$	decaBDE	5.5-7.0
270.234020	270.234202	-0.67	$M^{+\bullet}$	C ₂₀ H ₃₀	B5	7.0-8.5
324.281936	324.281153	2.41	M ⁺ ●	C ₂₄ H ₃₆	B ₆	7.0-8.5
378.328252	378.328103	0.39	$M^{+\bullet}$	$C_{28}H_{42}$	B7	7.0-8.5
432.375130	432.375053	0.18	M ⁺ ●	C ₃₂ H ₄₈	B ₈	7.0–8.5

C₃₆H₅₄

C40H60

 $C_{11}H_{10}N$

 $C_{14}H_{14}N_2$

 $C_{19}H_{19}N$

 $C_{22}H_{22}N_2$

C₂₇H₂₇N

 $C_{30}H_{30}N_2$

C₃₃H₃₃N₃

C₃₈H₃₈N₂

B9

 B_{10}

AS

 A_2S

 AS_2

 A_2S_2

AS₃

 A_2S_3

 A_3S_3

 A_2S_4

7.0-8.5

7.0-8.5

8.5-10.0

8.5-10.0

8.5-10.0

8.5-10.0

8.5-10.0

8.5-10.0

8.5-10.0

8.5-10.0

Table S4. Summary of selected signals observed in DIP-MS analysis of ABS-decaBDE sample (Br concentration of 1,000 ppm).

 $M^{+\bullet}$

 $M^{+\bullet}$

 $[M + H]^{+}$

 $M^{+\bullet}$

 $M^{+\bullet}$

 $M^{+\bullet}$

 $M^{+\bullet}$

 $M^{+\bullet}$

 $M^{+\bullet}$

 $M^{+\bullet}$

^{*} Instead of monoisotopic peak, the most abundant signal is reported in the table.

-0.02

0.30

-0.49

-0.58

0.59

1.04

0.35

-0.15

0.19

-0.66

486.422003

540.468953

156.080776

210.115150

261.151201

314.177750

365.213801

418.240350

471.266899

522.302951

486.421991

540.469117

156.080700

210.115029

261.151354

314.178076

365.213930

418.240289

471.266989

522.302608

 ** The observed polymer fragments were marked with abbrevition $A_a B_b S_s$, in which a, b, and s corresponds to the number of acrylonitrile, butadiene, and styrene monomers, respectively.

*** The observation time frame refers to temperature ramp program utilized in the DIP-MS analyses: time frames 5.5–7.0 min, 7.0–8.5 min and 8.5–10.0 min correspond to approximately 350, 400 and 450 °C, respectively.

Experimental m/z	Theoretical m/z	Error (ppm)	Observed ion	Ion formula	Proposed compound**	Observation time frame(min) ***
530.469526	530.469347	0.34	M^{+ullet}	C35H62O3	Irganox 1076	5.5-7.0
662.446238	662.445849	0.59	$M^{+\bullet}$	C42H63O4P	Irgafos 168 oxide	5.5-7.0
881.257641*	881.257073	0.64	$M^{+\bullet}$	C ₁₂ HBr ₉ O	nonaBDE	5.5-7.0
959.167551*	959.167571	-0.02	$M^{+\bullet}$	$C_{12}Br_{10}O$	decaBDE	5.5-7.0
270.233973	270.234202	-0.85	M ⁺ ●	C ₂₀ H ₃₀	B5	7.0-8.5

 $C_{24}H_{36}$

 $C_{28}H_{42}$

 $C_{32}H_{48}$

C₃₆H₅₄

C₁₆H₁₅

C₂₄H₂₄

C₃₂H₃₁

 B_6

 B_7

 B_8

B9

 S_2

 S_3

 S_4

 S_5

7.0-8.5

7.0-8.5

7.0-8.5

7.0-8.5

8.5-10.0

8.5-10.0

8.5-10.0

8.5-10.0

Table S5. Summary of signals observed in HIPS-decaBDE sample (Br concentration of 1,000 ppm) during the DIP-MS analysis.

 $M^{+\bullet}$

 $M^{+\bullet}$

 $M^{+\bullet}$

 $M^{+\bullet}$

 $[M + H]^{+}$

 $M^{+\bullet}$

 $[M + H]^{+}$

520.312282 520.312453 -0.33 $M^{+\bullet}$ C40H40 Instead of monoisotopic peak, the most abundant signal is reported in the table.

-0.28

0.02

-0.15

-0.19

0.03

0.09

-0.63

324.281153

378.328103

432.375053

486.422003

207.116827

312.187252

415.242027

324.281062

378.328110

432.374988

486.421913

207.116834

312.187281

415.241766

** The observed polymer fragments were marked with abbrevitions B_b and S_s, in which b and s corresponds to the number of butadiene and styrene monomers, respectively.

*** The observation time frame refers to temperature ramp program utilized in the DIP-MS analyses: time frames 5.5–7.0 min, 7.0–8.5 min and 8.5–10.0 min correspond to approximately 350, 400 and 450 °C, respectively.

Figure S1. Averaged mass spectrum (time frame of 5.5–7.0 min) from DIP-MS measurement of HIPS sample without any BFRs.

Figure S2. Total ion chromatograms from DIP-MS analysis of decaBDE (top), TBBPA (middle) and HBCD (bottom). The utilized APCI vaporizer temperature program is presented as a red line in the upmost chromatogram.

Figure S3. Total ion chromatograms from DIP-MS analysis of HIPS-decaBDE and ABS-decaBDE samples having Br concentrations of 1,000 ppm.

Figure S4. Averaged mass spectrum (time frame of 5.5–7.0 min) from DIP-MS measurement of ABS-TBBPA sample (Br concentration 1,000 ppm).

Figure S5. Averaged mass spectrum (time frame of 5.5–7.0 min) from DIP-MS measurement of ABS-HBCD sample (Br concentration 1,000 ppm).

Figure S6. Averaged mass spectrum (time frame of 5.5–7.0 min) from DIP-MS measurement of HIPS-TBBPA sample (Br concentration 1,000 ppm).

Figure S7. Averaged mass spectrum (time frame of 5.5–7.0 min) from DIP-MS measurement of HIPS-HBCD sample (Br concentration of 1,000 ppm).

Figure S8. Normalized intensity of m/z 959.168 (decaBDE) versus m/z 207.117 (styrene dimer) compared to the mass fraction of decaBDE based on XRF data. The MS data was collected using a small sample size (<0.1 mg) and the error bars represent standard deviation of the mean between five parallel measurements.