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SUMMARY

Bowel movement frequency (BMF) directly impacts the gut microbiota and is linked to diseases like chronic
kidney disease or dementia. In particular, prior work has shown that constipation is associated with an
ecosystem-wide switch from fiber fermentation and short-chain fatty acid production to more detrimental
protein fermentation and toxin production. Here, we analyze multi-omic data from generally healthy adults
to see howBMF affects their molecular phenotypes, in a pre-disease context. Results show differential abun-
dances of gut microbial genera, blood metabolites, and variation in lifestyle factors across BMF categories.
These differences relate to inflammation, heart health, liver function, and kidney function. Causal mediation
analysis indicates that the association between lower BMF and reduced kidney function is partially mediated
by the microbially derived toxin 3-indoxyl sulfate (3-IS). This result, in a generally healthy context, suggests
that the accumulation of microbiota-derived toxins associated with abnormal BMF precede organ damage
and may be drivers of chronic, aging-related diseases.

INTRODUCTION

The gut microbiome influences human health in a number of

ways, from mediating early-life immune system development,1,2

to determining personalized responses to nutritional interven-

tions3,4 and influencing the central nervous system.5,6 Bowel

movement frequency (BMF), defined as the frequency of defeca-

tion, is a major determinant of the composition of the human gut

microbiota and can be affected by diet, hydration, physical activ-

ity, host mucus production, microbe- and host-derived small

molecules (e.g., short-chain fatty acids [SCFAs], bile acids, or

neurotransmitters), and peristaltic smooth muscle contractions

in the gastrointestinal tract.7–9 Aberrant BMFs have been impli-

cated in the development of various chronic diseases.10–12

Abnormally high BMF (e.g., diarrhea, defined as more than

three watery stools per day) has been associated with lower

gut microbiome alpha-diversity, inflammation, increased sus-

ceptibility to enteric pathogens, and poorer overall health.13–16

Abnormally low BMF (e.g., constipation, defined as fewer than

three hard, dry stools per week) has been associated with higher

gut microbiome alpha-diversity, an enrichment in microbially

derived urinary metabolites known to be hepatotoxic or nephro-

toxic, and an increased risk for several chronic medical condi-

tions, including neurodegenerative disorders and chronic kidney

disease (CKD).10,17–19 Indeed, constipation is a known risk factor

for CKD severity and end-stage renal disease progression.20,21

In one study, up to 71% of dialysis patients suffered from consti-

pation,22 while the prevalence of constipation in the general pop-

ulation was 14.5% in adults under 60 years old and 33.5% in

those over 60.23 A nationwide study of veterans found an incre-

mentally higher risk for renal disease progression in those who

reported increasingly severe constipation.24 However, while it

is clear that morbidity andmortality risk worsen with constipation

in those with active CKD, potential connections between BMF
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and the development of early-stage kidney disease are not yet

established.

Both constipation and CKD associate with declines in gut mi-

crobiota-mediated SCFA production and a rise in the production

of amino acid putrefaction byproducts, including several toxic

microbe-host co-metabolites, such as 3-indoxyl sulfate (3-IS),

p-cresol sulfate (PCS), p-cresol glucuronide (PCG), and phenyl-

acetylglutamine (PAG), which all have been implicated in CKD

progression.25–27 This is consistent with an established micro-

biota-wide transition from saccharolytic to proteolytic fermenta-

tion in constipated individuals due to the exhaustion of dietary fi-

ber in stool.10,28 Thus, while the potential relationship between

BMF and organ function in healthy populations is not fully under-

stood, the gut metabolic phenotype associated with lower BMF

suggests a connection.

In this study, we focus on categories of self-reported BMF in

a large population of generally healthy individuals with a wide

range of molecular phenotypic data in order to quantify the

phenotypic impact of BMF on blood plasma metabolites, blood

proteins, clinical chemistries, and gut microbiome composition

in a pre-disease context. By exploring the molecular phenotypic

consequences of BMF variation in a generally healthy cohort,

along with BMF-associated demographic, dietary, lifestyle, and

psychological factors, we aimed to identify early-stage bio-

markers and potential therapeutic targets for the monitoring

and prevention of certain chronic, non-communicable diseases,

like CKD.

RESULTS

A cohort of generally healthy individuals
3,955 Arivale Scientific Wellness program participants with BMF

data were initially considered in this analysis. Arivale, Inc. (USA)

was a consumer scientific wellness company that operated from

2015 until 2019. Briefly, participants consented to having their

health, diet, and lifestyle surveyed through an extensive ques-

tionnaire, along with blood and stool sampling for multi-omic

and blood plasma chemistries data generation (Figure 1). Any re-

spondents that indicated ‘‘true’’ or affirmatively to any of the

following questionnaire features were excluded from the analysis

(i.e., they were not considered ‘‘generally healthy’’): taking blood

pressure, cholesterol, or laxative medication or having self or

family history of bladder or kidney disease (i.e., kidney cancer,

bladder infections, polycystic kidney disease or PKD, kidney

stones, kidney failure, or kidney disease), inflammatory bowel

disease (IBD; both Crohn’s disease and ulcerative colitis), irrita-

ble bowel syndrome, celiac disease, diverticulosis, gastroesoph-

ageal reflux disease, or peptic ulcers (i.e., these individuals were

not considered ‘‘generally healthy’’; see supplemental informa-

tion and Table S1). There were 1,425 participants who met these

exclusion criteria and had necessary covariate data. Across all

Arivale participants that had available demographic and survey

information, 82.8% of those individuals identified as ‘‘White’’

(N = 2,562), 8.5% identified as ‘‘Asian’’ (N = 262), 3.2% identified

as ‘‘Black or African American’’ (N = 98), 0.2% identified as

‘‘American Indian or Alaska Native’’ (N = 9), 0.65% identified as

‘‘Native Hawaiian or other Pacific Islander’’ (N = 20), and 4.7%

identified as ‘‘other’’ (N = 144). 93.6% of these individuals iden-

tified as ‘‘non-Hispanic’’ (N = 2,897) and 6.4% identified as ‘‘His-

panic’’ (N = 198, 55.6% of which self-identify as ‘‘White’’). Re-

spondents were in the United States, predominantly from the

Pacific West, and their ages ranged from 19 to 89 years old.

65.1% were female with a mean ± SD body mass index of

27.15 ± 5.89 (Table S1). 1,062 of these individuals had gut micro-

biome data, 486 had blood metabolomics data, 823 had prote-

omics data, 1,425 had clinical chemistries data, and 1,420 had

survey data (derived from questionnaires). Self-reported BMF

values (responses to typical number of bowel movements per

week) were grouped into four categories (Figure 1), which we

labeled as ‘‘constipation’’ (%2 bowel movements per week),

‘‘low-normal’’ (3–6 bowel movements per week), ‘‘high-normal’’

(1–3 bowelmovements per day), and ‘‘diarrhea’’ (4 ormore bowel

movements per day). We first looked at potential associations

between BMF and relevant covariates: gender, age, BMI, esti-

mated glomerular filtration rate (eGFR), low-density lipoprotein

blood plasma levels (LDL), C-reactive protein blood plasma

levels (CRP), hemoglobin A1c blood plasma levels (A1C), and

the first three principal components of genetic ancestry (PC1,

PC2, and PC3) (N = 1,425; Figure 2). When BMF was coded as

an ordinal dependent variable and regressed using ordered pro-

portional odds logistic regression29 (POLR), only BMI (POLR,

false discovery rate (FDR)-corrected p = 1.82E�3), age (POLR,

FDR-corrected, p = 2.07E�3), gender (POLR, FDR-corrected

p = 3.68E�16), and the first three principal components of ge-

netic ancestry (PC1, PC2, and PC3; POLR, FDR-corrected

p < 0.0001) showed significant, independent associations with

BMF, with females, older individuals, and individuals with lower

BMIs tending to report lower BMFs (Figure 2). All covariates

listed earlier were included in downstream regressions, regard-

less of whether or not they showed an independent association

with BMF. The high-normal BMF group was chosen as the refer-

ence for all downstream regressions where BMF was encoded

as a categorical variable. eGFR was also regressed against

BMF and the other covariates to determine which were signifi-

cantly associated with eGFR, and the covariates with significant

p values included gender, age, BMI, LDL, A1C, PC1, PC2, and

PC3 (generalized linear modeling [GLM], p < 0.05).

Gut microbiome structure and composition across BMF
categories
We looked at a subcohort of individuals that met our health

exclusion criteria with 16S amplicon sequencing data from stool

(N = 1,062). Amplicon sequence variant richness (GLM, p =

2.85E�3, linear bBMF = �65.9E�3) and Shannon diversity

(GLM, p = 1.07E�3, linear bBMF = �3.25E�1) were negatively

associated with BMF, independent of the covariates listed

earlier, and with BMF encoded as an ordinal variable with a linear

coefficient (Figures 3 and S1). Pielou’s evenness, on the other

hand, was positively associated with BMF (GLM, p = 8.5E�3,

linear bBMF = 2.6E�3), independent of covariates (Figure 3).

Differential abundance analysis of commensal gut bacterial

genera across BMF categories was conducted using beta-bino-

mial regression30 (count regression for correlated observations

with the beta-binomial [CORNCOB]) with BMF encoded as a cat-

egorical variable with the high-normal group as the reference

category. Of the 135 genera that passed our prevalence filter
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(i.e., detection across R30% of individuals), 59 were signifi-

cantly associated with BMF (49 of which had genus-level taxo-

nomic annotations; see Table S1 for detailed list of b-coefficients

and p values), independent of covariates and following an FDR

correction for multiple tests on the likelihood ratio test p values

(FDR-corrected p < 0.05). We Z score normalized the centered

log-ratio (CLR) abundances of the 49 annotated genera across

all samples and then plotted the average Z score within each

BMF bin for each taxon as a heatmap (Figure 4). We also provide

supplemental boxplots, showing CLR abundances across BMF

categories, of the top 10 most abundant taxa and 10 taxa with

the smallest p values from the 49 mentioned earlier (Figures S1

and S2). In order of descending abundance, the following taxa

were significantly enriched in constipated individuals, compared

to the high-normal BMF category (Wald test, FDR-corrected

bBMF p < 0.05): Ruminiclostridium_9, Ruminococcaceae_UCG-

005,Ruminococcaceae_NK41214_group,Family_XIII_AD3011_group,

Romboutsia, Ruminocacceae_UCG-004, UBA1819, Negativiba-

cillus, DTU089, GCA-900066225, Candidatus_Soleaferrea,

Anaerotruncus, Defluviitaleaeceae_UCG-011, Eisenbergiella,

Pygmalobacter, Peptococcus, Hydrogenoanaerobacterium,

Anaerofustis, and DNF00809. Lachnospiraceae_ND3007_group

and Lachnospiraceae_UCG-004 were significantly depleted in

constipated individuals. Several more were associated with

Figure 1. Data collection strategy

Arivale participants were sampled for blood plasma and stool, in addition to filling out extensive diet, health, and lifestyle questionnaires. Clinical chemistries,

untargeted metabolomics, and proteomics data were generated from blood plasma samples. Gut microbiome 16S rRNA amplicon sequencing data were

generated from stool samples collected using at-home kits. BMF data were extracted from the questionnaire data as self-reported frequencies per week or day.
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Figure 2. Exploring covariate associations with bowel movement frequency (BMF)

Plotting covariates that showed a significant association with BMF: gender, age, BMI, and the first three principal components of genetic ancestry (PC1-PC3)

(A–F). POLR was used to regress BMF against the covariates (gender, age, BMI, eGFR, LDL, CRP, A1C, plus the first three principal components of genetic

ancestry in the cohort, PC1, PC2, and PC3). The result was that gender (p = 3.68E�16), BMI (p = 1.82E�3), age (p = 2.075E�3), and PCs 1–3 (p < 0.00001,

respectively) were significantly associated with BMF. In panels (B)–(E), center lines on boxplots represent the median, the top and bottom edges of the box

represent the interquartile range, the black dots show points more than 1.5 times the interquartile range from the ends of the box, and the whiskers show the

smallest or largest value within 1.5 times the 25th or 75th quartile, respectively.
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enrichment or depletion in the low-normal BMF category,

compared to the reference category (Figure 4; see supplemental

information). There was no significant difference between the

high-normal and diarrhea categories for any of the genera, which

could be due to low sample size in the diarrhea category (i.e., we

were likely underpowered to detect those associations).

Variation in blood metabolites across BMF categories
Blood metabolite vs. BMF regression analyses were run

using a GLM framework in LIMMA (linear models for microar-

ray and RNA-seq data), with BMF as a categorical indepen-

dent variable, along with the same set of covariates

mentioned earlier. Of the metabolites that passed our abun-

dance and prevalence filters (N = 956, see method details),

9 separate metabolites were significantly associated with

BMF (all 9 showed differential abundance between low-

normal and high-normal categories, which is the comparison

we were most powered for), independent of covariates and

following an FDR correction for multiple tests (GLM, FDR-cor-

rected p < 0.05; Figures 5 and S3). The annotated metabolites

tended to show a decreasing trend with increasing BMF, while

the unannotated metabolites and 3-IS showed more varied re-

lationships (e.g., monotonic and non-monotonic) with BMF

(Figures 5 and S3). PCS, PAG, PCG, and 3-IS were signifi-

cantly enriched in the low-normal BMF category, compared

to the reference category (Figures 5 and S3). 75 different me-

tabolites were significantly associated with eGFR, indepen-

dent of covariates and following the same FDR correction

for multiple tests (linear regression, FDR-corrected p < 0.05;

Figures 5 and S3). Only one of these eGFR-associated metab-

olites overlapped with any of the BMF-associated metabo-

lites: 3-IS.

Blood plasma chemistries across BMF categories
Of the 55 blood plasma chemistries filtered for prevalence (see

method details), 21 were significantly associated with diarrhea

(e.g., omega-6 fatty acid, homocysteine, total protein, and

bilirubin) and one (omega-6/omega-3 ratio in the blood) was

associated with the low-normal BMF category, relative to the

reference category, after adjusting for all covariates and for mul-

tiple testing (Figures 6 and S4; N = 1,425, GLM, FDR-cor-

rected p < 0.05).

Blood proteomics across BMF categories
None of the 274 blood proteins that passed our prevalence filter

(see method details) showed significant associations with BMF

after adjusting for all covariates and for multiple testing (N =

823, GLM, FDR-corrected p < 0.05).

Figure 3. Associations between gut microbiome alpha-diversity and BMF

(A) Richness of amplicon sequence variants (ASVs) across BMF categories (ordinal BMF variable, linear regression, p = 2.85E�3).

(B) Shannon diversity across BMF categories (ordinal BMF variable, linear regression, p = 1.07E�3).

(C) Pielou’s evenness across BMF categories (ordinal BMF variable, linear regression, p = 8.5E�2).

Center lines in the boxplots show the median, the ends of the boxes show the interquartile range, and whiskers show the span of points within 1.5 times the

interquartile range from the ends of the box.
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Self-reported diet, lifestyle, and anxiety and depression
histories associated with BMF categories and
demographic covariates
99 survey questions (see supplemental information; questions

with sparse data were filtered out) on health, diet, and lifestyle

were examined from 1,420 generally healthy individuals from

the Arivale cohort in order to identify covariate-independent as-

sociations with BMF. Tests were run using the ‘‘polr’’ package in

R (ordinal regression),29 including the same set of covariates

from the prior analyses, and with BMF coded as a categorical

variable with high-normal BMF as the reference group (Fig-

ure 7A). Response categories for each question ascended ordi-

nally in value or intensity (i.e., low to high), so that a positive as-

sociation represented an increase in that variable. Across the 99

questions, the top results with significant odds ratios related to

BMF categories were displayed relative to high-normal BMF

(Figure 7A), colored by the variable category (‘‘Diet/Lifestyle’’

or ‘‘Health/Digestion’’). BMI, age, gender, and other covariates

were also associated with many of these questionnaire-derived

features, independent of BMF (Figure 7A). In particular, females

tended to eat more vegetables and fruits in a week and had a

higher diarrhea frequency. Males, on the other hand, showed

higher weekly snack intake and easier bowel movements (Fig-

ure 7A). Unsurprisingly, constipation (lowest BMF range) was

negatively associated with reported ease of bowel movement,

and diarrhea was positively associated with self-reported diar-

rhea frequency (i.e., these were separate questions on the ques-

tionnaire) (Figure 7A). Those with higher weekly snack intake

were more likely to be in the low-normal BMF category, and

those with higher weekly vegetable intake, weekly fruit intake,

greater ease of bowel movements, and higher self-reported diar-

rhea frequency were more likely to be in the high-normal BMF

category (Figure 7A). Higher diarrhea frequency was significantly

associated with having a higher BMI and with being younger

relative to the rest of the cohort, while being older made one

more likely to report having greater ease of bowel movement

(Figure 7A). Finally, those with low LDL values (better cholesterol

health) were more likely to report higher fruit intake, and those

with lowCRP (low inflammation) valuesweremore likely to report

higher vegetable intake (Figure 7A). These findings showcase a

variety of common-sense dietary and lifestyle factors that could

be leveraged to manage BMF, cardiometabolic, and immune

health.

A subset of participants self-reported their history of depression

and anxiety, including ‘‘self-current,’’ ‘‘self-past,’’ and ‘‘family’’

history of depression and anxiety (N = 2,096, see supplemental in-

formation; 11 questions related to anxiety and 23 related to

depression). After logistic regression, 3 ‘‘true or false’’-response

questions related to history of depression in self and family history

appeared marginally significant (logistic regression, FDR-cor-

rected p < 0.1), with a self-reported ‘‘true’’ response to a ‘‘family

history of depression’’ showing amarginal associationwith consti-

pation (logistic regression, FDR-corrected <0.1), a self-reported

‘‘true’’ response to a ‘‘sibling history of depression’’ showing a sig-

nificant association with diarrhea (logistic regression, FDR-cor-

rected <0.05), and a self-reported ‘‘true’’ response to ‘‘recent

ailments in self-history of depression’’ showing a marginal associ-

ation with low-normal BMF (logistic regression, FDR-corrected

<0.1). Similarly, the same approach yielded a single marginal

association between a ‘‘true’’ response to ‘‘self-past history of

anxiety disorder’’ and low-normal BMF (logistic regression,

FDR-corrected <0.1). Each of these associations was relative to

the high-normal BMF reference category.

BMF-associated blood metabolites also associated with
kidney function in a generally healthy cohort
Using the nine BMF-associated metabolites (ordered in

ascending p value: PCS, X-23997, PAG, X-11850, PCG,

X-12216, 3-IS, X-11843, and X-21310), an analysis was per-

formed on all of the generally healthy Arivale participants with

paired BMF, eGFR, and blood metabolomic data (N = 572). Us-

ing ordinary least squares (OLS), eGFR was regressed against

BMF (encoded as a numerical variable between 1, 2, 3, and 4,

with 1 being constipation, 2 being low-normal, 3 being high-

normal, and 4 being diarrhea) and the nine BMF-related metab-

olites, which yielded a significant overall model (Figure S6B;

OLS, R2 = 0.082, p = 2.42E�7). Two of the BMF-associated me-

tabolites showed significant beta-coefficients in the model:

X-12216 and 3-IS (Figure S6B; OLS, bX-12216 = �1.98, p =

1.20E�2 and b3-IS = �9.69, p = 1.96E�5, respectively). These

negative coefficients indicated that higher baseline levels of

these blood metabolites were associated with lower kidney

function.

Finally, given that microbially derived 3-IS was independently

associated with both eGFR and BMF, we hypothesized that 3-IS

may be mediating, in part, the impact of BMF on eGFR. To test

this hypothesis, we ran a causal mediation analysis (using the

mediation library in R31; see STAR Methods) on the generally

healthy Arivale individuals with BMF, eGFR, and the blood me-

tabolomics data (N = 572; Figures 7B and S7). BMF categories

were merged into ‘‘Low’’ (low-normal BMF and constipation)

and ‘‘High’’ categories (high-normal BMF and diarrhea partici-

pants) in order to consolidate the BMF categories with very small

Ns (i.e., constipation and diarrhea). The total effect of the overall

model did not quite pass our significance threshold of alpha

<0.05 (total effect, p = 0.064), but we saw a significant average

direct effect (ADE) of BMF on eGFR (ADE = �4.458, p = 0.012)

and a highly significant average causal mediation effect

(ACME) of BMF via 3-IS on eGFR (ACME = 1.343, p < 2E�16;

Figure 7B).

Figure 4. Heatmap of average Z scored CLR abundances within each BMF category for all annotated genera significantly associated with

BMF

46 significant taxa, in order of decreasing average relative abundance, with their Z scored, CLR-transformed abundances averaged within each BMF category

plotted as a heatmap. Covariates included gender, age, BMI, eGFR, LDL, CRP, A1C, and PCs 1–3. Asterisks denote the individual FDR-corrected significance

threshold for theWald test p value of the bBMF coefficient for each BMF category, relative to the high-normal reference category. Rowswithout asterisks showed a

significant overall model (FDR p value <0.05), despite a lack of significance for the individual coefficients. (***): p < 0.0001, (**): 0.0001 < p < 0.01, (*):

0.01 < p < 0.05.
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DISCUSSION

In this study, we delve into the multi-omic fingerprint of cross-

sectional BMF variation in a large, generally healthy population

(Figure 1). We find that aberrant BMFswere associated with vari-

ation in the ecological composition of the gut microbiota, plasma

metabolite levels, clinical chemistries, diet, lifestyle, and psycho-

logical factors (Figures 4, 5, 6, and 7A). Overall, we observe an

enrichment of microbially derived uremic toxins in the blood re-

sulting from protein fermentation in the guts of individuals with

lower BMFs. These toxins have been implicated in disease pro-

gression and mortality in CKD,21,32 and many of the same me-

tabolites have been associated with other chronic diseases,

like neurodegeneration.33,34

Of the core set of covariates used in our regression analyses,

only age, gender, BMI, and genetic ancestry PCs 1–3 were inde-

pendently associated with BMF, with females, individuals with

lower BMIs, and younger individuals showing lower average

BMFs (Figure 2). Consistent with these results, women are

known to be at higher risk of constipation and kidney dysfunc-

tion.35,36 In a prior study, individuals with lower BMIs were shown

to produce less motilin (i.e., a hormone involved in gut motility)

and were more likely to suffer from constipation.37 Lower

BMFs have also been linked to inflammation, oxidative stress,

and cardiovascular disease risk.38,39 The associations between

BMF and the first three principal components of genetic ancestry

indicate a relationship between host genetics and BMF variation,

which is further supported by a prior genome-wide association

study.40

Independent of these covariates, several gut bacterial genera

enriched in individuals with lower BMFs (CORNCOB, p < 0.001),

such as Christensenellaceae_R-7_group, Anaerotruncus, Blau-

tia, Family_XIII_AD3011_group (Anaerovoracaceae family), and

Methanobrevibacter, were previously found to be enriched in pa-

tients with Parkinson’s disease (PD), who often suffer from

chronic constipation41. Desulfovibrio, which has been shown to

be enriched in several disease states,42 was elevated at lower

BMF (Figure 4). Another set of genera were depleted in lower

BMF categories, such as Bacteroides, Lachnoclostridium, Lach-

nospiraceae_ND3007_group, Lachnospiraceae_UCG-004, and

Veillonella, which are all important contributors to SCFA produc-

tion.43–46 This reduction in SCFA producers is consistent with the

switch away from saccharolytic fermentation toward proteolytic

fermentation in the case of constipation.10 Reduced SCFA pro-

duction is known to weaken smooth muscle contractions

that drive peristalsis,47–49 acting as a positive feedback on

constipation.

Consistent with our microbiome results, we found gut micro-

biome-derived protein fermentation byproducts, like PCS,

PAG, and 3-IS, were enriched in the blood of individuals with

lower BMFs (Figure 5).50–52 PCS has been associated with dete-

riorating kidney function and damage to nephrons, as well as

cognitive decline and neuroinflammation.53,54 3-IS has been

associated with vascular disease and mortality in patients with

CKD.55 PAG has been associated with CKD progression and

mortality.26,27,50,51 Ultimately, we see an enrichment in micro-

bially derived uremic toxins in the blood of generally healthy in-

dividuals with lower BMFs.

Most of the clinical chemistry-BMF associations showed rela-

tive enrichment in the higher BMF category, and these features

tended to reflect hepatic and nephrotic function. For example,

high bilirubin can indicate liver disease from the overactive

breakdown of red blood cells, but interestingly, higher bilirubin

levels in serum coincide with a lower risk for CKD development

and progression, which coincides with our observation that the

lowest BMF categories had higher levels of uremic toxins but

Figure 5. Heatmap of average Z scored blood plasma metabolites levels within each BMF category for all metabolites significantly asso-

ciated with BMF

11 significant blood plasma metabolites, with average Z scores within each BMF category plotted as a heatmap. Significant associations were identified using

LIMMA, with FDR-corrected p values of the ratio test between the main model and the null model. Here, the covariates included gender, age, BMI, eGFR, LDL,

CRP, A1C, and PCs 1–3. Asterisks denote metabolites with significant bBMF coefficient(s) in the linear regression model after FDR correction. (***): p < 0.0001, (**):

0.0001 < p < 0.01, (*): 0.01 < p < 0.05.
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lower bilirubin levels.56 Other metrics, like creatinine levels and

linoleic acid levels, correlate positively with BMF and negatively

with kidney function.57–59 In fact, most of the laboratory values,

such as the mean corpuscular hemoglobin concentration, which

measures the concentration of blood cells, can indicate kidney

or liver disease.60 It is interesting to note that biomarkers indi-

cating kidney disease risk and progression were enriched at

lower BMFs and biomarkers indicating liver disease risk and pro-

gression were enriched at higher BMFs in a generally healthy

population, showing how aberrant BMF in either direction may

increase chronic disease risk.

In addition to demographic factors associated with BMF, the

questionnaire results indicate dietary and lifestyle factors that

are known to influence BMF, like fruit and vegetable intake

(i.e., sources of dietary fiber and polyphenols).36,38 We observed

a lower fruit and vegetable intake and an increased likelihood of

snacking in the low-normal BMF category compared to the high-

normal BMF category.23,36 We also found that constipation and

diarrhea were marginally (and in one case, significantly) associ-

ated with self-reported measures of depression and anxiety,

which aligns with prior work showing higher prevalence of anxi-

ety and depression (between 22% and 33%) on the Hospital

Anxiety and Depression Scale and the Mini International Neuro-

psychiatric Interview in patients with chronic constipation.61

Blood levels of 3-IS were independently associated with both

BMF and eGFR, which led us to the hypothesis that 3-IS may

mediate the potential influence of BMF on eGFR. Indeed, we

observed a significant ADE of BMF on eGFR (p = 0.012) and a

highly significant ACME for 3-IS (p < 2E�16; Figure 7B).

Together, these results indicate that aberrant BMF-associated

increases in 3-IS are associated with declining kidney function

in a generally healthy cohort, which is consistent with similar

Figure 6. Heatmap of average Z scored clinical chemistries within each BMF category for all chemistries significantly associated with BMF

22 BMF-associated chemistries, identified using LIMMA models with FDR-corrected p values of the ratio test between the main model and the null model, with

average Z scores within eachBMF category plotted as a heatmap. Here, the covariates included gender, age, BMI, eGFR, LDL, CRP, A1C, and PCs 1–3. Asterisks

denote FDR-corrected p value thresholds for metabolites with significant bBMF coefficient(s) in the linear regression model. (***): p < 0.0001, (**): 0.0001 < p < 0.01,

(*): 0.01 < p < 0.05.
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associations that have been observed between 3-IS and poorer

outcomes in patients with CKD.55

Bowel movement abnormalities, such as constipation or diar-

rhea, have been linked to diseases ranging from enteric infec-

tions16 tomany chronic diseases like CKD and IBD and neurode-

generative conditions like Alzheimer’s and PD.33,62,63 Indeed,

even in the context of our generally healthy cohort, we see the

build-up of microbially derived uremic toxins in the blood of indi-

viduals with lower BMFs. Perhaps, most concerning was our

observation that aberrant BMF-associated microbial metabolite

3-ISwas also associatedwith lower eGFR values. Our results un-

derscore common-sense dietary and lifestyle changes, like

increasing intake of fruits and vegetables, which may help to

normalize BMF and perhaps reduce BMF-associated risk. We

suggest that chronic constipation or diarrhea may be underap-

preciated drivers of organ damage and chronic disease, even

in healthy populations, although additional work is required to

rigorously quantify how BMF impacts disease risk.

Limitations of the study
There are some important limitations to consider when interpret-

ing the results of this study. The generally healthy cohort studied

here was overwhelmingly ‘‘White,’’ predominantly female, and

from the West Coast of the USA, which limits the generalizability

of our results. In addition, the diet, lifestyle, and mood data were

self-reported and subject to biases and errors, although BMF

was binned into four coarse-grained categories in an attempt

to mitigate self-reporting bias. BMF is not synonymous with

transit time through the gut, which can be measured through

means like the ‘‘blue dye method,’’7 although BMF still appears

Figure 7. Ordinal regression odds ratio for health, diet, and lifestyle survey data vs. BMF and covariates, and causal mediation analysis, with
BMF as the treatment variable, 3-IS as the mediator variable, and eGFR as the response variable

(A) BMF categories are shown by question type (diet/lifestyle or health/digestion). ‘‘High-normal’’ BMF (7–21/week) is the reference. Vertical ticks showdirectional

associations in likelihood between variables across the horizontal axis. The center line (x = 1.0) indicates equal likelihood of increased values on either side.

Confidence intervals not crossing the line are significant associations (FDR p < 0.05).

(B) BMF affects eGFR directly (average direct effect, ADE) and indirectly (average causal mediated effect, ACME) through 3-IS (a metabolite). Both effects are

significant (N = 572); the total effect was not significant (N = 572; ADE = �4.458, p = 0.012; ACME = 1.343, p < 2E�16). The total effect and the proportion-

mediated terms did not pass our significance threshold of ɑ = 0.05.
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to be a useful and interesting measure of self-reported bowel

habit differences in this study. We had limited representation in

the constipation and diarrhea categories, which reflects the

‘‘generally healthy’’ nature of this cohort, but this also limited

our statistical power for detecting associations in these groups.

Detailed renal assessments beyond eGFR and clinical laboratory

chemistries were also not available in this study. Additionally, the

dietary variables that were associated with better BMF out-

comes (i.e., increased dietary fiber intake, in the form of fruits

and vegetables) are not devoid of clinical risk and may not be

appropriate for everyone. For example, high-fiber diets can

sometimes lead to bloating and inflammation in patients with

IBD.64 Furthermore, patients with CKD are often coached to limit

their intake of fiber-rich foods because they can contain high

levels of potassium and phosphorus.65 However, low-fiber diets

may act as a positive feedback on constipation and inflamma-

tion. This highlights the importance of intervening at the prodro-

mal stage, before disease manifests, when a healthy, largely

plant-based diet is well tolerated. While we find some evidence

for microbially derived, BMF-associated uremic toxins in blood

influencing kidney function in a generally healthy cohort, more

work is needed to establish a link between longer-term BMF

management and chronic disease risk. In themediation analysis,

we did not see a strong total model effect, despite seeing signif-

icant direct and mediation effects. This kind of result is expected

when the total and mediation effects are of a similar magnitude,

when there are opposing effect directions between treatments

and mediators, or when there are other more complicated ef-

fects (e.g., non-linear associations).66 Ultimately, future interven-

tion trials should be done to assess the potential for managing

BMF throughout the lifespan as a strategy to reduce chronic dis-

ease risk.
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Lead contact
Additional requests and information regarding resources, experimental materials, reagents, and assay vendors should be directed to

and will be fulfilled by the lead contact, Sean Gibbons (sgibbons@isbscience.org).

Materials availability
This study did not generate reagents.

Data and code availability
d Code used to analyze 16S rRNA gene amplicon sequencing data can be found at https://github.com/gibbons-lab/mbtools.

d Code used to run the statistical analyses described in this paper is available at https://github.com/Gibbons-Lab/Aberrant-

BMF-Cell-Reports .

d Qualified researchers can access the full Arivale deidentified dataset, including all raw data, supporting the findings in this study

for research purposes through signing a Data Use Agreement (DUA). Inquiries to access the data can bemade at data-access@

isbscience.org and will be responded to within 7 business days.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Institutional review board approval for the study
The procedures for this study were reviewed and approved by the Western Institutional Review Board, under the institutional review

board study number 20170658 for the Institute for Systems Biology and 1178906 for Arivale, Inc.

Generally healthy cohort
All study participants were subscribers in the Arivale ScientificWellness program (2015–2019) and provided informed consent for the

use of their anonymized, de-identified data for research purposes. Participants were community-dwelling, residents of Washington

State and California (which are slightly leaner and healthier than other parts of the USA), over the age of 19, non-pregnant, but were

not pre-screened for the presence or absence of any particular disease. Participants provided detailed questionnaire data that

included self-reported information about medical conditions and medications, along with blood and stool samples that were used

to generate blood plasma metabolomics, proteomics, clinical laboratory chemistries, and gut microbiome data (Figure 1;

Table S1). 3,955 individuals with at least one BMF data point available from the Arivale programwere initially considered for this anal-

ysis. Their data were merged in Python (Jupyter Notebooks) with those with eGFR data (N = 6,133) and those with available survey

(N = 5,764), ASVs (N = 3,694), proteomics (N = 2,859), clinical laboratory chemistries (N = 4,881), or metabolomics (N = 2,043) data

samples to yield dataframes representative of the cohorts at the intersections of these merges. The final dataframes for the regres-

sions for survey (N = 1,420), ASVs (N = 1,062), proteomics (N = 523), clinical laboratory chemistries (N = 1,425), and metabolomics

(N = 486) cohorts were used for downstream regression analyses (Figure S6).

REAGENT or RESOURCE SOURCE IDENTIFIER

Software and Algorithms

CustomPython and Jupyter Notebooks and

R markdown notebooks

This study https://github.com/Gibbons-Lab/Aberrant-

BMF-Cell-Reports

R and RStudio Posit.co67 https://posit.co/download/rstudio-

desktop/

CORNCOB R Package Martin et al.30 https://github.com/statdivlab/corncob

Bioconductor R Package Bioconductor30,68 https://www.bioconductor.org/install/

tidyverse R Packages tidyverse69 https://github.com/tidyverse/tidyverse/

LIMMA R Package Smyth et al.70,71 https://kasperdanielhansen.github.io/

genbioconductor/html/limma.html

POLR/MASS R Package Venables and Ripley et al.29 https://rdocumentation.org/packages/

MASS/versions/7.3-60.0.1
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Only baseline time point samples were used for each participant for the baseline ‘omics analyses. A 30% prevalence filter was

implemented across the gut microbiome, blood plasma metabolomics, proteomics, chemistries, and ordinal questionnaire data an-

alyses. Thismeant that each feature in the data could contain nomore than 70%missing data from the final cohort of samples in order

to be retained for downstream analysis. For microbiome analyses, a filtered subcohort of 1,062 individuals with ASV-level taxa

counts, BMF, gender, age, eGFR, BMI, LDL, CRP, A1C, and genetic ancestry data were selected. This filtering resulted in a total

of 135 genera. For the metabolomics analysis, a cohort of 486 participants with BMF, gender, age, eGFR, BMI, CRP, LDL, A1C,

PC1, PC2, and PC3, and blood metabolomics data were selected. 956 metabolites were retained for downstream analyses. 274

blood proteins that met the prevalence (R50%) filter in the cohort of 823 individuals were retained for downstream analyses. A R

30% prevalence filter was applied to yield 1,425 samples with blood plasma clinical laboratory chemistries data, resulting in 55 fea-

tures retained for downstream analyses. Similarly, for ordinal regression of the questionnaire data (e.g., diet, lifestyle, and stress/pain/

health factors) using the respective R package, polr,29 we collated all the responses and filtered out questions that contained more

than 10% ‘‘NAs’’ (R90% prevalence; and for binary variables in downstream depression/anxiety analyses: R10% affirmative or

‘‘True’’ responses). We also excluded binary response variables for the general survey questionnaire analysis (separate from the anx-

iety/depression analysis, which leveraged binary response features), which are incompatible with ordinal regression, resulting in 138

variables across 1,420 participants, in addition to having paired data on age, gender, eGFR, BMI, BMF, CRP, LDL, A1C, PC1, PC2,

and PC3. The final features considered needed to retain at least 2 non-missing factors (or categories) and contain at least 10 re-

sponses per category, which resulted in 99 features. BMF data was captured from responses to a survey question on how many

bowel movements an individual has per week, on average. The available responses to this question were: (1) Twice per week or

less; (2) 3–6 times per week; (3) 1–3 times daily; or (4) 4 or more times daily. While the normal range of BMF encompasses both

the second and third responses to this question (i.e., between three times a week and three times a day),72 we chose to define 1–

3 times per day (high-normal) as the reference group for the purposes of regression.

Finally, we imposed disease-related exclusion criteria, in order to generate a ‘‘generally healthy’’ sub-cohort. These include any

participants who reported affirmative or ‘‘true’’ to a history of taking cholesterol, laxative, or blood pressure medication, as well as

those who reported a self- or family- history presence of the following diseases: bladder or kidney disease, inflammatory bowel dis-

ease (IBD), celiac disease, diverticulosis, gastroesophageal reflux disease (GERD), irritable bowel syndrome (IBS), or peptic ulcers

(see Table S1 in the supplemental information). 988 (25%) out of the initial 3,955 Arivale individuals with BMF data were excluded by

these filters.

METHOD DETAILS

Gut microbiome data
Fecal samples from Arivale participants were collected (described in Diener et al.13 and detailed here) from proprietary at-home kits

developed by two microbiome vendors (DNA Genotek and Second Genome). Using the KingFisher Flex instrument, the MoBio

PowerMag Soil DNA isolation kit73 (QIAGEN) enabled the isolation of stool DNA from 250 mL of homogenized human feces, after

performing an additional glass bead-beating step. Qubit measurement and spectrophotometry were also performed using an

A260/A280 absorbance ratio.

16S amplicon sequencing was run on a MiSeq74 (Illumina, USA) with either paired-end 300-bp protocol (DNA Genotek) or paired-

end 250-bp protocol (SecondGenome). The FASTQ files were provided by the Illumina Basespace platform after the phiX reads were

removed with basecalling. Length cutoffs of 250-bp for the forward reads and 230-bp for the reverse reads were employed. Any

reads with more than 2 expected errors or ambiguous base calls under the Illumina error model were eliminated. Over 97% of the

reads passed these filters, resulting in approximately 200,000 reads per sample.

Final truncated and filtered reads were then used to infer amplicon sequence variants (ASVs) with DADA2.75–77 Each sequencing

run separately resulted in its own error profiles. The final ASVs and counts were then joined, with chimeras removed using DADA2’s

‘‘consensus’’ strategy. After this step, �16% of reads were removed. Taxonomic assignment of ASVs was then achieved using the

naive Bayes classifier in DADA2 with the SILVA database (version 128).78

Nearly 90% of the ASVs were classified down to the genus level, which was the taxonomic level chosen for this analysis. 3,694

samples across 609 taxa were available from thesemethods, which were then filtered down to 135 taxa after using a 30%prevalence

filter. Samples were rarefied to an even depth of 13,703 reads prior to calculating alpha-diversity metrics (using the ‘‘rarefy_even_-

depth( )’’ function in the phyloseq R package79; rng seed = 111). ASV richness (Observed ASVs), Shannon Diversity, and Pielou’s

evenness were calculated. Merging with covariate data resulted in 1,062 samples with 135 taxa for downstream analyses.

Olink proteomics
Blood plasma proteomic data were generated by Olink Biosciences using the ProSeek Cardiovascular II, Cardiovascular III, and

Inflammation arrays. The proteins were filtered down to 274 proteins and 823 samples, retaining proteins with R50% prevalence

across samples and samples with the full set of covariate data. Post-filtering, NAN values were assumed to be below detection

and imputed to be the median across samples for that particular protein. The values used for the proteomics analysis were from pro-

tein readings previously batch-corrected and normalized based on the overlapping reference samples within the batch plates (i.e., a

set of Arivale plasma samples that are runwith each batch). The corrected valueswere also scale-shifted to the reference sample and
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the original delivered data (using the seventh run as a baseline). Olink’s Proximity Extension Assay (PEA), a 2-antibody-barcode tech-

nology,75,76,80 is used to tag protein biomarkers with a proximity probe (which binds specifically to the target protein biomarker) and

an extension probe (which carries a DNA barcode sequence) as described by Illumina in conjunction with Olink.81–83 Once both

probes bind to each other due to a protein-protein interaction or by proximity, they trigger the activation of the extension probe,

beginning the hybridization of the probe with a detection bead’s complementary DNA sequence. Each bead contains an individual

identifier, which allows target proteins to be decoded according to a barcode. These methods are also described further in Zubair

et al.75

Metabolon metabolomics
Metabolon obtained metabolomics data on the previously mentioned plasma samples using preparation, quality control, and collec-

tion methods described in previous studies.76 During sample processing, the plasma samples were thawed and proteins were

removed using methanol extraction. Samples were then divided into 5 fractions including a backup fraction. Organic solvents

were removed using TurboVap and measurements were then performed using high-performance liquid chromatography (HPLC)

and high-resolutionmass spectrometry (MS).84 Four separatemeasurements were performed using different fractions combinations:

positive-ion and negative-ion modes optimized for both hydrophobic and hydrophilic compounds. Batch correction was performed

using quality control samples (i.e., a set of Arivale plasma samples that were run with each batch) and abundance data were normal-

ized to these quality control samples. Metabolites were annotated according to 3 standards: Tier 1, matching to an internal standard;

Tier 2, matching to a published MS spectrum; or Tier 3, matching to a known chemical formula. Unknown metabolites were unan-

notated and labeled with an ‘‘X - ‘‘label followed by an identifier.85 956 total metabolites showed at least 70% prevalence across

486 samples. In this analysis, missing values were imputed to be the median of the non-missing samples for each metabolite,

and final downstream metabolites were log-transformed and merged with the full set of covariates.

For themulti-linear regression and causal mediation analysis, those with paired eGFR, BMF-associatedmetabolomics results, and

BMF were filtered using the ‘‘generally healthy’’ exclusionary criteria and the previously mentioned prevalence filtering for metabo-

lomics. The remaining individuals (Figures 7B and S7; N = 572) were processed in a multi-linear regression (OLS) with eGFR � BMF

(encoded as a value between 1 and 4 with 4 being diarrhea or the highest BMF) + the obtained metabolomics values for the 9 BMF-

associated metabolites (Figure S6). The other multi-omics covariates (gender, age, BMI, CRP, LDL, A1C, and PC1-PC3) were not

considered for the subsequent mediation analysis (Figure 7B; N = 562), which was performed using a mediation model with the

mediate( ) function from the mediation package in R.31 Using this modeling function, the outcome model was specified as eGFR

� 3-IS + BMF (where BMF was encoded as a binary categorical variable, with ‘‘Low’’ including those with low-normal BMF and con-

stipation, and ‘‘High’’ containing those with high-normal BMF and diarrhea. ‘‘Low’’ was the control value for BMF and ‘‘High’’ was the

treatment value) and themediation model was assumed to be 3-IS�BMF. ACME and ADE values were obtained from themodel and

reported using the diagram in Figure 7B. A GLMwas also performed between eGFR� BMF, 3-IS� BMF, and eGFR� 3-IS to obtain

the b-coefficients and p-values for the relationships between the mediated variables (Figure 7B).

Blood plasma chemistries
LabCorp and Quest86 phlebotomists collected blood from Arivale participants using methods described previously by Wilmanski

et al. and others.13 Individuals were asked to abstain from alcohol, vigorous exercise, monosodium glutamate and aspartame at least

24 h prior to drawing of the blood, as well as fasting at least 12 h beforehand. Blood samples were collected for clinical chemistries,

metabolomics and proteomics at the same time, and within 21 days of stool sampling. BMI was calculated from weight and height

using the following formula BMI = weight ðkgÞ
ðheight ðmÞÞ2. 4,881 samples and 68 laboratory values were filtered down using the same prevalence

filtering as themetabolomics data. 1,425 samples and 55 chemistries were retained. The final 55 features were log-transformed, with

missing samples imputed to be the median value of the non-missing samples. These features were merged with the full set of co-

variates. eGFR was calculated based on the CKD Epidemiology Collaboration (CKD-EPI) creatinine Equation, as recommended

by the current guidelines of the National Kidney Foundation87: eGFRcr = 142 3 min(Scr/k, 1)a 3 max(Scr/k, 1)�1.200 3

0.9938Age 3 1.012 [if female], where Scr = standardized serum creatinine in mg/dL, k = 0.7 (female) or 0.9 (male), and a = �0.241

(female) or �0.302 (male).

Questionnaire data
3,482 self-reported questionnaire features were retrieved across 5,764 Arivale participants. After health and prevalence filtration, 138

features remained, which were subsequently filtered down again to 99 features by removing factored features with fewer than 10

responses per level and keeping features with at least 2 non-missing levels to the factor. Category responses were organized and

numbered to be ordinally ascending in magnitude or intensity, with relatively even-spaced differences in magnitude between cate-

gories wherever possible (i.e., for a factored feature with levels from 1, .,n, the level labeled ‘‘1’’ represented responses such as

‘‘Strongly Disagree’’, ‘‘Never’’, ‘‘None’’, or the lowest frequency/intensity, and the level labeled ‘‘n’’ represented responses such

as ‘‘Strongly Agree’’, ‘‘Always’’, or the greatest frequency or intensity). These features were merged with the full set of covariate data.
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Depression and anxiety health history data
We used logistic regression to scrutinize associations between 23 (anxiety) and 35 (depression) binary (‘‘true’’ or ‘‘false’’) self-re-

ported questions based on ‘‘self-current’’, ‘‘self-past’’, and ‘‘family’’ histories of depression or anxiety, with depression or anxiety

encoded as a binary dependent variable, and BMF encoded as a categorical independent variable, and with the standard set of

covariates.

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical analyses
Using Python (Jupyter Notebooks)88 and R (RStudio)67 linear regressions were performed. The response variables were either:

centered log ratio-transformed bacterial genus data, log-transformed plasma metabolomics data, batch-corrected plasma prote-

omics data, log-transformed plasma chemistries data, or ordinal response variables from questionnaire data, depending on the anal-

ysis. For the blood proteomics, plasma chemistries, and metabolite associations, generalized linear regression models were run us-

ing the LIMMA package in R.70 BMF was encoded as a categorical variable (or in the case of analyzing alpha-diversity, it was also

computed as an ordinal variable with a linear model coefficient) with categories: 1 = constipation (1–2 bowel movements per week),

2 = low-normal (3–6 bowel movements per week), 3 = high-normal (1–3 bowel movements per day), and 4 = diarrhea (4 or more bowel

movements per day). To begin characterizing themain variables in the cohorts: BMF and eGFR, a POLR regression29 (N = 1,425) was

performed on BMF (encoded as an ordinal variable with categories ‘‘Constipation’’, ‘‘Low Normal’’, ‘‘High Normal’’, and ‘‘Diarrhea’’

BMF in ascending order of magnitude)� eGFR + other covariates (gender, age, BMI, CRP, LDL, A1C, PC1, PC2, and PC3). Similarly,

a GLM (N = 1,425) was computed for eGFR � BMF (also encoded ordinally) + other covariates (gender, age, BMI, CRP, LDL, A1C,

PC1, PC2, and PC3). These were used to determine the significant covariates affecting each subsequent analysis (Figure 2). Next, in

each baseline regression, the following covariates were all included: gender, age, BMI, eGFR, CRP, LDL, A1C, PC1, PC2, and PC3.

Gut bacterial genus-level counts were modeled with a beta-binomial distribution using the CORNCOB package in R.30 For the ques-

tionnaire data (ordinal response categories across diet, exercise, stress, pain, and other lifestyle factors), polr in R was used for the

ordinal regression analysis (POLR).29 For the anxiety and depression data, which were binary in response (‘‘True’’ or ‘‘False’’; Non-

responders to each feature were not considered and features were filtered to have at least 5 non-missing responses for each binary

outcome), logistic regression was performed using the ‘‘glm(family = ‘‘binomial’’)’’ function in R. All questionnaire and anxiety/depres-

sion response modeling results were FDR-corrected for significance. Finally, for the Arivale cohort, the initial time point or baseline

value for eGFR was obtained alongside the initial or earliest time point sample for the BMF-related metabolites. eGFR was regressed

against the BMF-associated metabolites in an OLS-based linear regression to determine visible effects of these metabolites on our

available samples. Finally, a mediation analysis was run using the mediate( ) function in the mediation library available for R31 on the

individuals whomet the ‘‘generally healthy’’ exclusion criteria with paired eGFR, BMF, and 3-IS data. BMFwas the treatment variable,

3-IS was themediator, and eGFRwas the response variable. ACME, ADE, total effect and proportion mediated were determined with

nonparametric bootstrap confidence intervals.
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SUPPLEMENTAL FIGURES AND TABLES 1 

Covariates: Mean ± standard deviation, or % across Arivale: 
Gender 65.1% Female 
BMI 27.2 ± 5.89 
Age 46.36 ± 12.96 
eGFR 89.07 ± 20.20 
CRP 2.40 ± 4.76 
LDL 114.17 ± 33.77 
A1C 5.49 ± 0.57 
Highlighted exclusionary criteria: 

Percent with self-reported kidney disease: 3.00% (119 out of 3,955 participants with BMF data 
available withheld from cohort) 
 

Percent IBS or IBD: 3.23% (128 out of 3,955 participants with BMF data 
available withheld from cohort) 

Exclusionary features (988 out of 3,955 participants with BMF data, or 25% of the initial BMF cohort, 
answered affirmatively to any of these and were excluded from the analyses. The final N of remaining 
participants after merging with covariates was N = 1,425 for the final baseline cohort): 

Self - current history - bladder infection 
Self - current history - kidney disease 
Self - current history - kidney infection 
Self - current history - kidney stones 
Self - current history - bladder/kidney - other 
Self - current history - polycystic kidney disease (PKD) 
Self - current history - urinary incontinence 
Self - current history - kidney cancer 
Self - current history - celiac disease 
Self - current history - colonic Crohn’s disease 
Self - current history - diverticulosis 
Self - current history - gastroesophageal reflux disease (GERD) 
Self - current history - ileal Crohn’s disease 
Self - current history - irritable bowel syndrome (IBS) 
Self - current history - inflammatory bowel disease (IBD) 
Self - current history - ulcerative colitis 
Self - current history - peptic ulcer 
Self - laxatives usage 
Self - anticoagulation or cholesterol drugs usage 
Self - blood pressure drugs usage 

 2 

Table S1. The modeling covariates and exclusionary criteria, related to results in Figures 3 

2-7. Out of the 3,955 total Arivale participants that had BMF data, 3.00% self-reported kidney 4 

disease (the kidney-related questions in the exclusionary features) and 3.23% self-reported IBS 5 

or IBD. An initial baseline cohort of 3,132 participants that had health history survey questionnaire 6 

data was available. The participants that answered affirmatively to the exclusionary features were 7 

removed from the analysis, resulting in 25% of the initial cohort with BMF data being filtered down 8 

to N = 1,561, and subsequently, a final baseline cohort of 1,425 individuals after merging for 9 

covariates. 10 

 11 
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Figure S1. The top 10 most abundant genera significantly associated with BMF (A-J), 13 

related to Figure 4. Significant genera from the CORNCOB analysis in order of decreasing CLR-14 

transformed abundance. The line in each plot denotes significant differences from the reference 15 

category (“High Normal” BMF), and asterisks denote FDR-corrected significance threshold. (***): 16 

p < 0.0001, (**): 0.0001 < p < 0.01, (*): 0.01 < p < 0.05. The horizontal axes are annotated as four 17 

BMF categories: “Constipation” (BMF = 1-2✕ per week), “Low Normal” (BMF = 3-6✕ per week), 18 

“High Normal” (BMF = 1-3✕ per day) which is the reference category in regression, and “Diarrhea” 19 

(BMF = 4✕ or more per day). 20 

 21 



 

 22 



 

Figure S2. The top 11-20 most abundant genera associated with BMF (K-T), related to 23 

Figure 4. Significant genera from the CORNCOB analysis in order of decreasing CLR-24 

transformed abundance. The line in each plot denotes significant differences from the reference 25 

category (“High Normal” BMF), and asterisks denote FDR-corrected significance threshold. (***): 26 

p < 0.0001, (**): 0.0001 < p < 0.01, (*): 0.01 < p < 0.05. The horizontal axes are annotated as four 27 

BMF categories: “Constipation” (BMF = 1-2✕ per week), “Low Normal” (BMF = 3-6✕ per week), 28 

“High Normal” (BMF = 1-3✕ per day) which is the reference category in regression, and “Diarrhea” 29 

(BMF = 4✕ or more per day).  30 



 

 31 

 32 

Figure S3. Significant BMF-associated plasma metabolites boxplots (A-I), related to Figure 33 

5. Significant plasma metabolites from the LIMMA analysis. The horizontal axes are annotated as 34 

four BMF categories: “Constipation” (BMF = 1-2✕ per week), “Low Normal” (BMF = 3-6✕ per 35 

week), “High Normal” (BMF = 1-3✕ per day) which is the reference category in regression, and 36 

“Diarrhea” (BMF = 4✕ or more per day). Red significant comparison lines across each plot denote 37 

significant differences from the reference category (“High Normal” BMF), and asterisks denote 38 

FDR-corrected significance threshold. (***): p < 0.0001, (**): 0.0001 < p < 0.01, (*): 0.01 < p < 39 

0.05.   40 
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Figure S4. Significant BMF-associated clinical chemistries boxplots (A-I), related to Figure 42 

6. Significant clinical chemistries from the LIMMA analysis. The horizontal axes are annotated as 43 

four BMF categories: “Constipation” (BMF = 1-2✕ per week), “Low Normal” (BMF = 3-6✕ per 44 

week), “High Normal” (BMF = 1-3✕ per day) which is the reference category in regression, and 45 

“Diarrhea” (BMF = 4✕ or more per day). Red significant comparison lines across each plot denote 46 

significant differences from the reference category (“High Normal” BMF), and asterisks denote 47 

FDR-corrected significance threshold. (***): p < 0.0001, (**): 0.0001 < p < 0.01, (*): 0.01 < p < 48 

0.05.   49 
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Figure S5. The remaining significant BMF-associated clinical chemistries boxplots (J-U), 51 

related to Figure 6. The remaining significant clinical chemistries from the LIMMA analysis. The 52 

horizontal axes are annotated as four BMF categories: “Constipation” (BMF = 1-2✕ per week), 53 

“Low Normal” (BMF = 3-6✕ per week), “High Normal” (BMF = 1-3✕ per day) which is the reference 54 

category in regression, and “Diarrhea” (BMF = 4✕ or more per day). Red significant comparison 55 

lines across each plot denote significant differences from the reference category (“High Normal” 56 

BMF), and asterisks denote FDR-corrected significance threshold. (***): p < 0.0001, (**): 0.0001 57 

< p < 0.01, (*): 0.01 < p < 0.05.   58 

 59 

A)       
   B) 



 

Figure S6. A) Flow Chart for Cohort Selection of Baseline Population, related to the 60 

Generally-healthy cohort section of the STAR Methods. B) OLS regression resulting from 61 

eGFR ~ BMF-associated metabolites + BMF, related to Figure 7B. A) Individuals with the full 62 

complement of covariate data (gender, age, BMI, and CRP, LDL, A1C, and PCs 1-3) were further 63 

filtered for having available baseline data for each of the following: surveys, microbiome profiles, 64 

proteomics, clinical chemistries (e.g. complete blood count, or CBC; and comprehensive 65 

metabolic panel, or CMP) and metabolomics. The “generally-healthy” exclusion criteria were then 66 

imposed (38.5% excluded; see Method Details), along with sparsity or non-missingness 67 

minimums for the features in the ‘omics data (≥ 30% prevalence for gut microbiome data, 68 

metabolomics and clinical chemistries; ≥ 50% prevalence for proteomics; and ≥ 90% prevalence 69 

and ≥ 10% affirmative for binary responses in the survey questions). These filters resulted in the 70 

final sub-cohort numbers shown on the right side of the figure in blue outlines. Additionally, the 71 

eGFR and BMF data frames were merged with the metabolomics data frame and filtered by the 72 

“generally-healthy” exclusionary criteria for the 9 BMF-associated metabolites eGFR regression 73 

and mediation analysis. B) The p-value for the overall generalized-linear model (eGFR ~ BMF-74 

related metabolites) was significant (N = 572, p = 2.42E-7, R2 = 0.082) and so were the p-values 75 

of the individual β-coefficients for 3-IS (β3-IS = -9.69, p = 1.96E-5), BMF (denoted “bowel”; βBMF = 76 

-3.99, p = 7.88E-3), and X - 12216 (βX - 12216 = -1.98, p = 1.20E-2). 77 
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