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1 LATENT SEQUENTIAL VARIABLE MODEL
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Figure 1. Schematic of the LSVM part of SLAC. Solid and dashed lines denote the generative and
inference model pathways, respectively. The gray circles represent observed data, and the white circles
denote latent variables. The figure is adapted from (Lee et al., 2020).

The sequential latent variable model (SLVM) of the SLAC consists of an inference model and a generative
model (see Fig. 1). The inference model in a sequential latent-variable model typically aims to approximate
the posterior distribution of the latent variables given the observed data. It tries to infer the hidden states z
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based on the observed inputs x and initial states s. The inference models the probability distributions of the
latent variables z1 and z2 at different time steps. qϕ denotes the variational distribution parameterized by ϕ,

z11 ∼ qϕ(z
1
1 | x1, s) (1)

z21 ∼ pϕ(z
2
1 | z11) (2)

z1t+1 ∼ qϕ(z
1
t+1 | xt+1, z

2
t , at) (3)

z2t+1 ∼ pϕ(z
2
t+1 | z1t+1, z

2
t , at). (4)

The generative model, on the other hand, describes how the observed data is generated from the latent
variables. The generative model is the probability distribution of both the initial latent states and their
transitions over time, as well as the likelihood of the observations given the latent states, with pϕ indicating
the parameterized generative distribution.

z11 ∼ p(z11) (5)

z21 ∼ pϕ(z
2
1 | z11) (6)

z1t+1 ∼ pϕ(z
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t+1 | z2t , at) (7)
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2
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2
t , at) (8)

xt ∼ pϕ(xt | z1t , z2t ) (9)

yt ∼ pϕ(yt | z1t , z2t ). (10)

We have the evidence lower bound (ELBO):

log pϕ(x1:t+1|a1:t) ≥
[

E
(x1:T ,a1:T−1)∼D

[
E

z1:T∼qϕ

T−1∑
t=0

(
log pϕ(xt+1 | zt+1) (11)

−DKL

(
qϕ(zt+1 | xt+1, zt, at) ∥ pϕ(zt+1 | zt, at)

))]]
.

For ease of notation, we have q(z1 | x1, z0, a0) := q(z1 | x1, s) and p(z1 | z0, a0) := p(z1). The ELBO
provides a lower bound to the log-likelihood of the observed data, which is computationally intractable to
compute directly. It is composed of two terms: the expected log-likelihood of the observed data given the
latent variables, and the Kullback-Leibler (KL) divergence between the variational distribution and the
prior distribution of the latent variables. Minimizing the KL divergence can be interpreted as enforcing the
variational distribution to be as close as possible to the prior, while maximizing the expected log-likelihood
ensures that the model accurately captures the distribution of the observed data. To predict the adherence,
we have log pϕ(yt+1|zt+1) as a regularisor in the loss function.

The objective is to compute the parameters ϕ that minimize the KL divergence between the variational
and prior distributions of the latent variables, subject to certain constraints. These constraints are related
to the expected log-likelihood of the data under the model and are represented by the inequalities with
thresholds ξ. These thresholds ensure that while minimizing the losses, the model also satisfies a minimum
standard for score prediction and adherence classification performances.
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Latent variable models, such as Variational Autoencoders (VAEs) (Kingma and Welling, 2014; Rezende
et al., 2014) and their variants (e.g., SLAC), often encounter challenges (Sønderby et al., 2016; Kingma
et al., 2016). Furthermore, a higher ELBO does not always lead to enhanced predictive performance, as
discussed by Alemi et al. (2018); Higgins et al. (2017). However, the integration of scheduling strategies
inspired by constrained optimization methods has been shown to significantly improve the training of
latent variable models (Rezende and Viola, 2018; Klushyn et al., 2019; Sun et al., 2024). Consequently, we
formulate the training of our model into an optimization problem

min
ϕ

E
(x1:T ,a1:T−1)∼D

[
T−1∑
t=0

[
DKL

(
qϕ(zt+1 | xt+1, zt, at) ∥ pϕ(zt+1 | zt, at)

)]]
(12)

s.t. E
(x1:T ,a1:T−1)∼D

[
E

z1:T∼qϕ

[
T−1∑
t=0

− log pϕ(xt+1 | zt+1)

]]
≤ ξscore (13)

E
(x1:T ,a1:T−1,y1:T−1)∼D

[
E

z1:T∼qϕ

[
T−2∑
t=0

− log pϕ(yt+1 | zt+1)

]]
≤ ξadherence (14)

where ξ is a baseline error, in Eq. (13) we have regression with Gaussian distribution, and in Eq. (14)
we use cross-binary entropy loss for classification. To solve the optimization problem, we incorporate
the constraints into the objective function using Lagrange multipliers λ. We apply methods from (Chen
et al., 2022) to adapt λ. This allows the model to balance the importance of the constraints relative to the
divergence terms, which can help in avoiding common pitfalls in training such as suboptimal local minima
and posterior collapse.

To avoid over-fitting, we incorporate dropout (Srivastava et al., 2014) and Mixup (Zhang et al., 2017).
Subsequent research has extended the application of Mixup to latent variable models, specifically within
the latent space (e.g., (Chen et al., 2020)). However, considering our need for data augmentation across all
data dimensions, not limited to latent variables, we have selected to implement the original Mixup method
in our experiments.

2 LSTM

The primary objective of this study is to forecast yt from historical data, formulated as yt = f(x1:t, y1:t−1, s).
To align this approach with the SLVM of SLAC for score prediction, an additional term xt+1 is also
predicted,

(xt+1, yt) = f(x1:t, y1:t−1, s) (15)

where f is a function represented by an LSTM. The loss consists of the cross entropy for adherence
classification and the Normalized Mean Squared Error Loss (NMSE) for score prediction.

In our scenarios, SLVM stands out due to its inherent flexibility over traditional sequential models like
LSTM. This flexibility is primarily observed in its predictive capabilities. SLVM can predict yt and use
this prediction to influence the subsequent xt+1. In contrast, LSTM only predicts a pair of yt and xt+1

simultaneously, implying that we cannot use yt to alter xt+1. Although it is possible to modify the LSTM
model to predict a pair of yt and xt, this approach encounters a similar issue for yt: it cannot predict yt
using the information from xt.
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3 ARCHITECTURE AND COMPUTATION

In this study, computational experiments were performed using an NVIDIA GeForce GTX 1080 Ti GPU,
with the implementation done in PyTorch, version 2.1.0.

The SLVM model’s architecture featured 32 hidden dimensions each for variables z1 and z2. Its encoder
and decoder were symmetrically structured, each comprising five layers with 128 units. The primary
activation function was LeakyReLU, set with a negative slope coefficient of 0.2. Both the encoder and
decoder’s mean output layers were linear, while the STD layer utilized a Softplus activation. For binary
classification tasks, a Sigmoid activation was used for output.

The LSTM architecture included a hidden dimension size of 128, with two LSTM layers. The output
activation function for score prediction was linear, and as in the SLVM model, a Sigmoid function was
used for binary classification outputs.

Both models shared the same optimization settings. They used the RAdam (Liu et al., 2019) optimizer
with a learning rate of 0.001. The batch size was set at 64, and a gradient clipping value of 0.8 was applied
to ensure training stability. To prevent overfitting and enhance model generalization, a dropout rate of 0.05
was introduced. Additionally, both models incorporated Mixup as a data augmentation during training.
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