Supplementary Information for

Analysis of Highly Polar Anionic Pesticides in Food of Plant and Animal Origin by Ion Chromatography and Tandem-Mass Spectrometry with emphasis on addressing adverse Effects caused by Matrix Co-extractives

in Analytical and Bioanalytical Chemistry

Ann-Kathrin Schäfer¹*, Walter Vetter² and Michelangelo Anastassiades¹

¹ Chemisches und Veterinäruntersuchungsamt Stuttgart, Section of Residues and Contaminants, Fellbach, DE 70736, Germany

² University of Hohenheim, Institut für Lebensmittelchemie, Garbenstr. 28, Stuttgart, DE 70593, Germany

*corresponding author

Email address: Ann-Kathrin.Schaefer@cvuas.bwl.de

	Method presented	Adams et al. [1]	Raijski et al. [2]	Bauer et al. I [3]	Bauer et al. II [4]	Kurz et al. [5]
	here	[-]	[-]	[0]	L - J	[•]
Analyte	Glyphosate,	Glyphosate,	Glyphosate,	Ethephon,	Fosetyl,	Glyphosate,
scope	AMPA,	AMPA,	AMPA,	HEPA,	phosphonic acid	AMPA,
	NAGly,	N-acetyl-AMPA,	N-acetyl-AMPA,	chlorate,		glufosinate,
	glufosinate,	glufosinate,	NAGly,	perchlorate		fosetyl,
	MPPA,	MPPA,	fosetyl,			clopyralid
	NAGlu,	NAGlu,	chlorate,			
	fosetyl,	fosetyl,	perchlorate,			
	ethephon,	ethephon,	phosphonic acid			
	HEPA,	cyanuric acid,				
	cyanuric acid,	chlorate,				
	chlorate,	perchlorate,				
	perchlorate,	phosphonic acid,				
	phosphonic	clopyralid,				
	acid,	bialaphos				
	bromide,					
	trifluoroacetic					
	acid					
Use of IL IS	all except	Glyphosate	NAGhy	Ethenhon	Phosphonic acid	_
Use of 11-15	bromide	glufosinate	NAOIy	chlorate	i nospholite actu	-
	bronnide	MPPA NAGhu		nerchlorate		
		cyanuric acid		pereniorate		
		chlorate				
		perchlorate				
		peremorate				
Matrix scope	Plant and	Plant origin	Plant origin	Plant origin	Plant origin	Water
-	animal origin					
IC column	AS19 and	AS19 hydroxide	4\$19 and 4\$11	Metrosen A	Metrosen A	4524
	A\$19 and A\$24	AS19, Ilyuloxiue	hydroxide elution	bicarbonata in	bicarbonate in	hydroxide
and elution	hydrovide	elution	liyuloxide elutioli	water/ACN	water/ACN	elution
	elution			elution	alution	elution
	elution			elution	elution	
	ICith	IC with	IC mith	LC with with	I C with with	ICith
Chromato-	IC with	IC with	IC with	LC without	LC without	IC with
graphy	suppressor	suppressor	suppressor	suppressor	suppressor	suppressor
system						
	Trial 1	Trial	0.1.'	T-i-1 1	Trial 1	Trial 1
MS detection	Iripiequad	Iripiequad	Orbitrap	Iriplequad	Iripiequad	Iriplequad
Make-up	ACN at 1:2 of	ACN at 1:2.75 of	ACN at 1:1 of IC-	-	-	2-propanol
- 	IC-flow	IC-flow	flow			at 1·3
solvent	10 110 W	IC HOW	110 W			
						of IC-flow

Table S1: Brief comparison of the presented method in this manuscript to other IC-MS/MS methods [1-5].

Table S2: IL-IS used, concentration in spiking solutions, of which 100 μ L were added prior to extraction in validation experiments, concentration in 10 g and 5 g sample portion and measured mass transitions in MS/MS, see also [1].

	Concentration in	Concentration in	Concentration in	
Compound	spiking solutions in	10 g sample portion	5 g sample portion	Mass transition
	μg/mL	in mg/kg	in mg/kg	
Glyphosate ¹³ C ₂ ¹⁵ N	20	0.2	0.4	m/z 171 \rightarrow 63
AMPA ¹³ C ¹⁵ N	40	0.4	0.8	$m/z \ 112 \rightarrow 63$
N-Acetyl-Glyphosate	20	0.2	0.4	$m/z \ 213 \rightarrow 63$
(NAGly) ¹³ C ₂ ¹⁵ N				
Fosetyl D ₅	20	0.2	0.4	$m/z \ 114 \rightarrow 82$
Ethephon D ₄	20	0.2	0.4	m/z 147 \rightarrow 111
HEPA D ₄	20	0.2	0.4	m/z 129 \rightarrow 79
Glufosinate D ₃	20	0.2	0.4	$m/z \ 183 \rightarrow 63$
MPPA D ₃	20	0.2	0.4	$m/z \ 154 \rightarrow 63$
N-Acetyl-Glufosinate	20	0.2	0.4	$m/z \ 225 \rightarrow 63$
(NAGlu) D ₃				
Cyanuric acid ¹³ C ₃	20	0.2	0.4	$m/z \ 131 \rightarrow 43$
Chlorate ¹⁸ O ₃	20	0.2	0.4	$m/z 89 \rightarrow 71$
Perchlorate ¹⁸ O ₄	20	0.2	0.4	$m/z \ 107 \rightarrow 89$
Phosphonic acid ¹⁸ O ₃	20	0.2	0.4	$m/z 87 \rightarrow 85$
Trifluoroacetic acid ¹³ C ₂	10	0.1	0.2	$m/z \ 115 \rightarrow 70$

IC-MS/MS conditions [1,2]							
Column/Pre-column	Thermo Scientific Dionex IonPac AS19 2x 250 mm with AG19 2x 50 mm and AS24 2x 250 mm with AG24 2x 50mm						
Potassium hydroxide (KOH) gradient	Time Molarity of KOH in mmol/L						
for separation	0	15					
	8	15					
	13	36					
	21	36					
	21.5	70					
	25	70					
	25.5	15					
	30	15					
Flow rate (IC)	0.3 mL/min						
Injection volume	$5 \mu L$ of 5-fold diluted extracts in ultrap	ure water					
Eluent(source)	Thermo Scientific Dionex EGC 500 K	OH eluent generator cartridge					
Suppressor	Dionex ASRS 300; 2mm						
Temperature	Column oven: 32 °C, Suppressor: 15 °C	2					
Flow rate (of make-up solvent)	0.15 mL/min ACN (MS-grade)						
Ion source	ESI Turbo V ion source, negative mode	2					
Curtain gas (nitrogen) pressure	30 psi						
Ion Spray Voltage	-4500 V						
Gas supply	Gas 1 (nebulizer): 60 psi; Gas 2 (heater	r): 60 psi					
Temperature of Gas 2	600 °C						
LC-MS/MS Conditions HILIC/Toru	s: Method M1.6 of QuPPe-PO-Met	hod [1]					

Table S3: IC-MS/MS and LC-MS/MS conditions employed in this study.

LC-MS/MS Conditions PGC/Hypercarb: Method M1.3 of QuPPe-PO-Method [1]

Compound	Mass Transition 1 (target)	Mass Transition 2	Mass Transition 3
Glyphosate	$m/z \ 168 \rightarrow 63$	$m/z \ 168 \rightarrow 150$	$m/z \ 168 \rightarrow 124$
AMPA	$m/z \ 110 \rightarrow 63$	$m/z \ 110 \rightarrow 79$	$m/z \ 110 \rightarrow 81$
NAGly	$m/z \ 210 \rightarrow 63$	$m/z \ 210 \rightarrow 150$	$m/z \ 210 \rightarrow 124$
Fosetyl	$m/z \ 109 \rightarrow 81$	$m/z \ 109 \rightarrow 63$	$m/z \ 109 \rightarrow 79$
Ethephon	m/z 143 \rightarrow 107	$m/z \ 145 \rightarrow 107$	$m/z \ 143 \rightarrow 79$
HEPA	$m/z \ 125 \rightarrow 63$	$m/z \ 125 \rightarrow 95$	$m/z \ 125 \rightarrow 107$
Glufosinate	$m/z \ 180 \rightarrow 63$	$m/z \ 180 \rightarrow 95$	$m/z \ 180 \rightarrow 85$
MPPA	$m/z \ 151 \rightarrow 63$	$m/z \ 151 \rightarrow 133$	$m/z \ 151 \rightarrow 107$
NAGlu	$m/z 222 \rightarrow 63$	$m/z \ 222 \rightarrow 136$	$m/z \ 222 \rightarrow 59$
Cyanuric acid	$m/z \ 128 \rightarrow 42$	$m/z \ 128 \rightarrow 85$	
Chlorate	$m/z 83 \rightarrow 67$	$m/z 85 \rightarrow 69$	$m/z 85 \rightarrow 67$
Perchlorate	$m/z 99 \rightarrow 83$	$m/z \ 101 \rightarrow 85$	$m/z 99 \rightarrow 67$
Bromide**	$m/z 81 \rightarrow 81$	m/z 79 \rightarrow 79	
Phosphonic acid	$m/z 81 \rightarrow 79$	$m/z \ 81 \rightarrow 63$	
Trifluoroacetic acid	$m/z \ 113 \rightarrow 69$	$m/z \ 113 \rightarrow 113^*$	

Table S4: Mass transitions of the analytes recorded with MS/MS, see also [1].

*no other transition available

** high collision energy was used [1]

Table S5: Overview of retention times and contents of exemplary anionic or potentially anionic matrix components in lemon, soybean, rhubarb, Swiss chard and cucumber according to literature [3] in mg/100g and concentrations in undiluted QuPPe extracts in mg/mL (assuming quantitative extraction). Values were calculated for 10 g sample, except for soybean, where 5 g were used.

		Lemon		Soyl	bean	Rhubarb		
Matrix component	Retention [−] time*	Literature [mg/100g]	QuPPe extract [mg/mL]	Literature [mg/100g]	QuPPe extract** [mg/mL]	Literature [mg/100g]	QuPPe extract [mg/mL]	
Citric acid	25.3	4683	23.4	-		130	0.7	
Malic acid	15.5	200	1.0			1250	6.3	
Phosphate	19.8			550	1.4	22	0.1	
Nitrate	10.9					215	1.1	
Chloride	6.1					60	0.3	
Sulfate	14.5							
Oxalic acid	16.1					270	1.4	

		Swis	s chard	Cuc	umber	
Matrix	Retention	Literature	QuPPe	Literature	QuPPe	
component	time*	[mg/100g]	extract	[mg/100g]	extract	
			[mg/mL]		[mg/mL]	
Citric acid	25.3			20	0.1	
Malic acid	15.5			240	1.2	
Phosphate	19.8	39	0.2	15	0.1	
Nitrate	10.9	487	2.4	19	0.1	
Chloride	6.1			37	0.2	
Sulfate	14.5					
Oxalic acid	16.1					

*Using ion chromatography on a AS19 column, and detection via conductivity

** using 5 g analytical portion

Table S6: Full table of effect of the make-up solvents ACN, methanol, 2-propanol at ratios of ~1:4 to ~5:4 compared to a constant IC flow rate of 0.3 mL/min. The % value of the peak areas were compared with injections in pure water (no make-up solvent), which was set at 100%. Each measurement was performed in triplicate and mean values (and relative standard deviation (RSD) in brackets) were given for the most prominent MS/MS transitions. The best values are highlighted in bold letters.

		Flow-rate of make-up solvent (external pump)*								
		0.08 mL	0.15 mL	0.23 mL	0.3 mL	0.38 mL				
		Make-up solvent flow-rate compared to								
Compound	Solvent	~1:4	2:4 (1:2)	~3:4	4:4(1:1)	~5:4				
•		S	hare of make-u	p solvent on tota	al flow after admi	xture				
		20%	33%	43%	50%	56%				
		Normaliz	ed peak areas (1	no make-up solv brackets	vent set at 100%);	RSD in % in				
Glyphosate	Acetonitrile	189% (7%)	180% (6%)	197% (5%)	175% (1%)	162% (3%)				
	Methanol	153% (5%)	123% (5%)	103% (2%)	86% (7%)	71% (7%)				
	2-Propanol	100% (19%)	150% (10%)	86% (1%)	87% (3%)	79% (4%)				
AMPA	Acetonitrile	196% (4%)	168% (3%)	201% (4%)	186% (5%)	175% (6%)				
	Methanol	144% (4%)	117% (4%)	107% (5%)	86% (1%)	65% (15%)				
	2-Propanol	105% (13%)	131% (5%)	98% (14%)	88% (9%)	100% (7%)				
NAGly	Acetonitrile	223% (5%)	169% (3%)	181% (12%)	138% (2%)	146% (7%)				
	Methanol	236% (7%)	232% (3%)	248% (9%)	201% (12%)	152% (11%)				
	2-Propanol	112% (20%)	182% (11%)	124% (10%)	136% (6%)	125% (8%)				
Fosetyl	Acetonitrile	206% (5%)	224% (3%)	236% (3%)	225% (8%)	216% (5%)				
	Methanol	150% (7%)	156% (1%)	163% (1%)	152% (1%)	132% (4%)				
	2-Propanol	55% (29%)	76% (21%)	95% (19%)	114% (12%)	109% (18%)				
Ethephon	Acetonitrile	181% (3%)	179% (2%)	177% (1%)	167% (3%)	146% (0.1%)				
	Methanol	136% (17%)	163% (2%)	161% (2%)	153% (2%)	114% (8%)				
	2-Propanol	97% (20%)	189% (8%)	118% (7%)	125% (14%)	101% (11%)				
HEPA	Acetonitrile	170% (2%)	169% (4%)	180% (4%)	175% (2%)	160% (3%)				
	Methanol	139% (5%)	151% (4%)	133% (4%)	117% (4%)	99% (6%)				
	2-Propanol	105% (17%)	182% (10%)	136% (4%)	144% (9%)	132% (10%)				
Glufosinate	Acetonitrile	146% (4%)	113% (2%)	116% (6%)	96% (4%)	84% (12%)				
	Methanol	126% (5%)	105% (4%)	103% (7%)	87% (7%)	68% (13%)				
	2-Propanol	101% (19%)	158% (10%)	127% (8%)	133% (2%)	134% (6%)				
MPPA	Acetonitrile	164% (6%)	153% (3%)	161% (4%)	147% (2%)	141% (7%)				
	Methanol	121% (9%)	134% (4%)	136% (3%)	123% (2%)	103% (7%)				
	2-Propanol	93% (18%)	155% (9%)	91% (3%)	94% (11%)	82% (9%)				

NAGlu	Acetonitrile	216% (5%)	141% (4%)	136% (9%)	112% (10%)	99% (16%)
	Methanol	208% (6%)	267% 0.2%)	380% (6%)	346% (9%)	263% (8%)
	2-Propanol	118% (13%)	183% (11%)	147% (2%)	154% (5%)	147% (7%)
Chlorate	Acetonitrile	200% (8%)	194% (4%)	209% (2%)	209% (4%)	208% (5%)
	Methanol	179% (7%)	216% (3%)	276% (3%)	262% (2%)	249% (3%)
	2-Propanol	124% (22%)	239% (5%)	197% (2%)	205% (8%)	184% (1%)
Perchlorate	Acetonitrile	434% (6%)	299% (14%)	251% (8%)	217% (5%)	219% (2%)
	Methanol	339% (6%)	329% (13%)	326% (13%)	218% (14%)	158% (9%)
	2-Propanol	169% (11%)	241% (2%)	178% (3%)	188% (6%)	179% (5%)
Phosphonic	Acetonitrile	188% 0.3%)	186% (1%)	190% (3%)	170% (5%)	158% (3%)
Acid	Methanol	182% (9%)	190% (4%)	169% (1%)	141% (3%)	114% (9%)
	2-Propanol	68% (18%)	89% (22%)	105% (16%)	122% (6%)	114% (15%)

* the flow-rate of AXP-MS pump was only adjustable to two decimals. Therefore, increments derived from the standard value of 0.3 mL (i.e. identical with the flow rate of the mobile phase) were rounded to two decimals)

Table S7: Validation data of target transitions in strawberry and milk using IC-MS/MS in comparison to LC-MS/MS (PGC and HILIC) (validated levels do not represent lowest successfully validated levels). Recoveries were determined using external matrix-matched calibrations using matching isotopically labelled standards for each analyte.

					IC		LC HILIC		LC PGC	
					(AS1	.9)	(Torus l	DEA)	(Hyperc	arb)
	Mass		Validated	No. of	Average	DGD	Average	DGD	Average	DGD
Analyte	transition	Matrix	Level in	repli-	Recoverv	RSD	Recoverv	RSD	Recoverv	RSD
j e e			mg/kg	cates	(%)	(%)	(%)	(%)	(%)	(%)
			0.05	5	107	2.5	109	4.3	107	5.4
AMPA	$m/z 110 \rightarrow 63$		0.1	5	102	2.1	101	1.8	98	5.1
Cyonuria agid	m/z 128 \rightarrow 12		0.05	5	97	6.5	*	*	104	3.7
Cyanui ic aciu	<i>MV2</i> , 120 / 42		0.1	5	101	8.3	*	*	98	4.0
Fthenhon	$m/7$ 143 \rightarrow 107		0.01	5	95	12	99	9.5	99	7.6
Ethephon	112 115 107		0.02	5	95	5.4	94	6.3	100	5.9
Fosetvl	$m/7 109 \rightarrow 81$		0.01	5	98	3.4	107	1.8	102	4.2
losetji		٢y	0.02	5	99	2.1	101	1.9	100	1.5
Glufosinate	$m/z 180 \rightarrow 63$	IJ	0.03	5	101	3.7	99	9.7	102	0.9
		ą	0.06	5	100	1.5	97	5.0	98	3.0
Glyphosate	$m/z \ 168 \rightarrow 63$	M	0.05	5	98	8.8	99	3.7	103	2.1
• •		L S	0.1	5	97	4.7	93	7.0	99	1.4
HEPA	m/z 125 \rightarrow 63	S	0.02	5	104	15	110	5.0	6/	20
			0.04	5	102	3.9 5.6	97	4.2 9.6	92	5.4 2.1
MPPA	$m/z \ 151 \rightarrow 63$		0.02	5	97	3.0	102 04	8.0 4.2	08	5.1 2.6
			0.04	5	103	3.0 4.3	94 122	4.2 2.0	90 105	2.0
NAGlu	$m/z 222 \rightarrow 63$		0.02	5	100	4.5	99	2.9 67	105	1.4
			0.04	5	99	4.2	108	3.2	100	1.5
NAGly	$m/z \ 210 \rightarrow 63$		0.1	5	103	5.1	100	2.0	101	0.9
AMPA	$m/z \ 110 \rightarrow 63$		0.05	5	97	3.8	99	6.6	102	4.2
Cvanuric acid	m/z 128 \rightarrow 42		0.05	5	98	12	*	*	111	8.5
Ethephon	m/z 143 \rightarrow 107		0.01	5	94	5.9	107	7.3	***	***
Fosetvl	m/z 109 \rightarrow 81		0.01	5	97	1.4	108	3.3	96	2.6
Glufosinate	m/z 180 \rightarrow 63		0.03	5	96	2.8	92	5.9	100	5.7
Glyphosate	$m/z \ 168 \rightarrow 63$		0.05	5	96	3.8	100	1.0	102	3.9
НЕРА	m/z 125 \rightarrow 63		0.02	5	100	7.1	97	7.4	106	8.7
MPPA	m/z 151 \rightarrow 63		0.02	5	97	1.5	102	5.4	97	2.7
NAGlu	m/z 222 \rightarrow 63		0.02	5	95	4.1	99	7.5	97	4.9
NAGly	$m/z \ 210 \rightarrow 63$	lk	0.05	5	97	3.6	101	6.9	95	5.9
	/ 01 70	Ii	0.05	5	94	2.3	90	10	**	**
Phosphonic acid	$m/z \ 81 \rightarrow /9$		0.1	5	101	1.8	93	11	**	**
Chlorete	/ 05 51		0.03	5	86	6.0	72	13	**	**
Cinorate	$m/z $ $\delta \rightarrow 51$		0.06	5	100	1.3	94	4.2	**	**
Donablanata	m/7 101 95		0.01	5	102	5.2	**	**	**	**
reremorate	$m/z \ 101 \rightarrow 85$		0.02	5	104	1.7	**	**	**	**
Promido	$m/770 \rightarrow 70$		5	5	98	3.8	85	3.7	**	**
DIOIIIIde	$m_{\chi} \rightarrow 19$		10	5	101	6.4	92	4.9	**	**
Trifluorgeotic soid	$m/7$ 113 $\rightarrow 60$		0.025	5	103	21.8	***	***	*	*
	m_{χ} 115 \rightarrow 09		0.05	5	102	1.3	***	***	*	*

* not included in this method

** not measured

*** validation at that level not successful

Analyte		IC-MS/MS		LC-MS/MS PGC (Hypercarb)			
	LOQ [mg/kg]*	>LOQ	<loq***< th=""><th>LOQ [mg/kg]*</th><th>>LOQ</th><th><loq***< th=""></loq***<></th></loq***<>	LOQ [mg/kg]*	>LOQ	<loq***< th=""></loq***<>	
AMPA	0.01	0	0	0.01	0	2	
Cyanuric acid	0.05	8	0	0.005	31	11	
Ethephon	0.01	2	0	0.01	1	3	
Fosetyl	0.01	1	2	0.01	1	4	
Glufosinate	0.01	0	3	0.01	0	0	
Glyphosate	0.01	0	5	0.02	0	1	
HEPA	0.01	0	6	0.01	2	0	
MPPA	0.01	1	3	0.01	2	2	
NAGlu	0.02	0	2	0.02	1	0	
NAGly	0.02	0	0	0.02	0	0	
Bromide**	5	1	21	5	0	19	
Chlorate	0.005	27	1	0.01	15	20	
Perchlorate	0.005	36	8	0.01	17	19	
Phosphonic acid	0.01	76	13	0.05	32	17	
Trifluoracetic acid	0.02	31	30	-	-	-	

Table S8: Number of positive findings in routine analysis of incurred residues in market samples, using IC-MS/MS (AS19) and LC-MS/MS (Hypercarb) by analyte.

*the LOQ indicated here refers to fruits and vegetables and refers to the lowest successfully validated level

**the LOQ was arbitrarily set at 5 mg/kg due to the natural background levels of bromide; values "<LOQ" were in the range between >0.5 and <5 mg/kg

*** Identified analytes at semiquantitative levels (<LOQ, but typically not lower than 10%LOQ)

Fig. S1: LC/MSMS chromatograms of ten pesticide standards (**a**) on a Torus DEA (HILIC) column and (**b**) a Hypercarb (PGC) column. Compounds: a) glyphosate, b) AMPA, c) NAGly, d) glufosinate, e) MPPA, f) NAGlu, g) fosetyl, h) ethephon, i) HEPA, j) cyanuric acid, each at $0.1 \mu g/mL$ in solvent

Fig. S2: (a) IC-MS/MS (AS19; 5-fold diluted QuPPe extract) and (b) LC-MS/MS (PGC; 10-fold diluted QuPPe extract) chromatograms of phosphonic acid and phosphate in an extract of a fruit preparation for infants with phosphonic acid being contained at a level ~ 0.01 mg/kg and natural contents of phosphate. While the target transition of phosphonate ($m/z \ 81 \rightarrow 79$) is largely unaffected by phosphate, the qualifier transition ($m/z \ 81 \rightarrow 63$) is strongly interfered by phosphate and therefore useless in case of a partial co-elution of phosphate and phosphonate. The resolution on the PGC column can vary depending on the column condition. The particular example represents an extreme case, combining not only a very poor resolution, but also a very low phosphonate level and the presence of phosphate at very high levels

Fig. S3: Average normalized peak areas (n=3) of glyphosate according to the applied flow rate of the make-up pump. Values measured without the make-up pump (flow rate 0 mL/min) function as reference and are set at 100%

Fig. S4: Average retention times (t_R in min) of glyphosate and NAGly in undiluted and differently diluted lemon extracts (n=3)

References

- [1] Adams S, Guest J, Dickinson M, Fussell RJ, Beck J, Schousten F. Development and validation of ion chromatography-tandem mass spectrometry-based method for the multiresidue determination of polar ionic pesticides in food. J Agr Food Chem. 2017;65(34):7294 – 7304.
- [2] Rajski L, Galiano FJD, Cutillas V, Fernández-Alba AR. Coupling ion chromatography to Q-orbitrap for the fast and robust analysis of anionic pesticides in fruits and vegetables. J AOAC Int. 2018;101(2):352-359.
- [3] Bauer A, Luetjohann J, Rohn S, Kuballa J, Jantzen E. Ion chromatography tandem mass spectrometry (IC-MS/MS) multimethod for the determination of highly polar pesticides in plant-derived commodities. Food Control. 2018;86:71-76.
- [4] Bauer A, Luetjohann J, Rohn S, Kuballa J, Jantzen E. Determination of fosetyl and phosphonic acid at 0.010 mg/kg level by ion chromatography tandem mass spectrometry. J Agr Food Chem. 2018;66(1):346-350.
- [5] Kurz A, Bousova K, Beck J, Schoutsen, Bruggink C, Kozeluh, Kule L, Godula M. Routine analysis of polar pesticides in water at low ng/L levels by ion chromatography coupled to triple quadrupole mass spectrometer. Application note 666. 2017. https://lcms.cz/labrulezbucket-strapi-

h3hsga3/AN_666_IC_MS_Polar_Pesticides_Water_AN_64945_EN_e84581b9a7/AN-666-IC-MS-Polar-Pesticides-Water-AN64945-EN.pdf. Accessed 10 Apr 2024.

- [6] Anastassiades M, Wachtler A-K, Kolberg DI, Eichhorn E, Marks H, Benkenstein A, Zechmann S, Mack D, Wildgrube C, Barth A, Sigalov I, Goerlich S, Dörk D, Cerchia G. Quick Method for the Analysis of Highly Polar Pesticides in Food Involving Extraction with Acidified Methanol and LC- or IC-MS/MS Measurement I. Food of Plant Origin (QuPPe-PO-Method), Version 12.2, 21.12.2023. https://www.eurlpesticides.eu/userfiles/file/EurlSRM/EurlSrm_meth_QuPPe_PO_V12_2.pdf. Accessed 10 Apr 2024.
- [7] Wachtler A-K, Wildgrube C, Mack D, Barth, Anastassiades M, Scherbaum E, Vetter W.
 Analysis of Highly Polar Pesticides in Food of Plant and Animal Origin by IC-MS/MS:
 13th EPRW 2020, PD-87: https://www.eurl-

pesticides.eu/userfiles/file/EurlSRM/EPRW%202020%20-%20PD87.pdf. Accessed 10 Apr 2024.

[8] Souci, Fachmann, Kraut: Food composition and nutrition table. Online Database. Accessed 10 Apr 2024.