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SUPPLEMENTARY METHODS 1 

 2 

Genomic ancestry prediction in Foundation Medicine cohort 3 

To generate a genomic ancestry prediction for each patient in cohort #2, single-4 

nucleotide polymorphisms (SNPs) targeted by CGP were superimposed with Phase 3 5 

1000 Genomes data and projected down to the top five principal components and used 6 

to train a random forest classifier to recognize five general ancestries: African, admixed 7 

American, East Asian, European, and South Asian [1]. 8 

 9 

Programmed death ligand 1 tumor proportion score in NSCLC of cohort #1 and 10 

cohort #2 11 

The PD-L1 TPS was determined for NSCLCs from DFCI, MSKCC and FMI by 12 

immunohistochemistry using validated anti-PD-L1 antibodies including E1L3N (Cell 13 

Signaling Technology, Danvers, MA), 22C3 (Dako North America Inc, Carpinteria, CA), 14 

and 28-8 (Epitomics Inc, Burlingame, CA), according to local institutional practice. 15 

 16 

Tumor mutational burden assessment in cohort #1 and cohort #2 17 

For cases from DFCI and MSKCC, TMB, defined as the number of somatic, 18 

coding, base substitution, and indel mutations per megabase (mut/Mb) of genome 19 

examined, was determined using OncoPanel and MSK-IMPACT,as previously 20 

described [2,3]. Regarding MSKCC NSCLC cases, comprehensive TMB data for 21 

harmonization from MSK MetTropism (MSK, Cell 2021) dataset were downloaded in 22 

cBioPortal. For NSCLC cases from DFCI and MSKCC, TMB distributions were 23 
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harmonized across the two sequencing platforms by applying a normal transformation 24 

followed by standardization to z-scores, as previously described [4]. TMB of cases from 25 

TCGA studies and China Pan-cancer according to each platform. For cohort #2, TMB 26 

was calculated by counting the number of non-driver synonymous and non-synonymous 27 

mutations across a 0.8–1.2 megabase (Mb) region, with computational germline status 28 

filtering, and reporting as mutations/Mb. This method has been previously validated for 29 

accuracy against whole exome sequencing [5]. 30 

 31 

Caris Life Sciences non-small cell lung cancer cohort 32 

Next generation sequencing 33 

NSCLC tumors molecularly profiled at Caris Life Sciences (Phoenix, AZ) between 34 

2017-2022 were examined for MET TKD mutations. Next generation sequencing (NGS) 35 

was performed on genomic DNA isolated from formalin-fixed paraffin-embedded (FFPE) 36 

tumor samples using the NextSeq or NovaSeq 6000 platform (Illumina, Inc., San Diego, 37 

CA). For the Nextseq sequenced tumors, a custom-designed SureSelect XT assay was 38 

used to enrich 592 whole-gene targets (Agilent Technologies, Santa Clara, CA). Further, 39 

for the NovaSeq sequenced tumors, 719 clinically relevant genes were enriched at a high 40 

coverage and read-depth, along with another panel designed to enrich for >20,000 genes 41 

at lower read-depth. All variants were detected with >99% confidence based on allele 42 

frequency and amplicon coverage, with an average sequencing depth of coverage of 43 

>500 and an analytic sensitivity to identify variants with a variant allele frequency of ≥5%. 44 

Genetic variants identified were interpreted by board-certified molecular geneticists and 45 

categorized as ‘pathogenic (P),’ ‘likely pathogenic (LP),’ ‘variant of unknown significance,’ 46 
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‘likely benign,’ or ‘benign,’ according to the American College of Medical Genetics and 47 

Genomics (ACMG) standards. When assessing mutation frequencies of individual genes, 48 

’pathogenic’ and ‘presumed pathogenic’ were counted as mutations. The copy number 49 

alteration (CNA) of each exon was determined by calculating the average depth of the 50 

sample along with the sequencing depth of each exon and comparing this calculated 51 

result to a pre-caliberated value. 52 

 53 

Tumor Mutational Burdern Estimation 54 

After excluding all variants previously described as germline alterations according 55 

to dbSNP151, Genome Aggregation Database (gnomAD) databases and those 56 

characterized as benign variants by Caris geneticists, tumor mutational burden (TMB) 57 

was calculated by counting non-synonmous, missense, nonsense, inframe 58 

insertion/deletion and frameshift mutations present in each tumor. A cutoff point of ≥10 59 

mutations per megabase was used to classify TMB-high (TMB-H) tumors, based on 60 

findings from the KEYNOTE-158 study [6]. 61 

 62 

Immunohistochemistry (IHC) for PD-L1 assessment 63 

IHC was performed on FFPE sections. Slides were stained using automated 64 

staining techniques in accordance with the manufacturer’s protocol and were further 65 

optimized and validated as per CLIA/CAO and ISO requirements. A board-certified 66 

pathologist evaluated all IHC results independently. The primary PD-L1 antibody clone 67 

was 22c3 (Dako). Tumor Proportion Score (TPS) was measured as the percentage of 68 

viable tumor cells showing partial or complete membrane staining at any intensity. A 69 
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tumor was considered PD-L1 positive if its TPS was ≥1% and PD-L1 high if its TPS was 70 

≥50%  71 

 72 

Oncogenic driver mutations in NSCLC 73 

Tumors positive for METex14 alterations were classified as those having likely LP/ 74 

P mutations in exon 14 of the MET gene or that were positive for METex14 alterations 75 

(determined by WTS). Oncogenic driver positive NSCLC harbored at least one of the 76 

following alterations: LP/P mutations in KRAS, EGFR, BRAF, ERBB2; copy number 77 

amplification of ERBB2 (≥6 copies), METex14 alterations, LP/P rearrangements in ALK, 78 

ROS1, RET, NTRK 1-3, or NRG1. 79 

 80 

Preclinical models   81 

Antibodies and compounds 82 

Antibodies against pMET (Tyr-1234; sc-101736; 1:1000) and MET (sc-161; 83 

1:1000) were purchased from Santa Cruz Biotechnology; phospho-ERK1/2 (#4370; 84 

1:1000); ERK1/2 (#9102;1:1000), phospho-AKT (#4060; 1:1000), AKT (#9272; 1:1000), 85 

HSP 90 (#4877; 1:1000), phospho-EGFR (#3777; 1:1000); EGFR (#4267; 1:1000); anti-86 

rabbit IgG HRP-linked antibody (#7074; 1:5000 or 1:10000), and anti-mouse IgG HRP-87 

linked antibody (#7076; 1:5000 or 1:10000) from Cell Signaling Technology. Crizotinib, 88 

capmatinib, tepotinib, cabozantinib, and osimertinib were purchased from Selleckchem. 89 

Elzovantinib (TPX-0022) was provided by Turning Point Therapeutics. 90 

 91 

Transfection and Luciferase assay 92 
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 Transfection experiments were performed using FuGENE HD Transfection 93 

Reagent (Promega) as per the manufacturer’s protocol. For luciferase assays, the 94 

pGL4.33[luc2P/SRE/Hygro] and pRL-TK vectors (Promega) were co-transfected with 95 

MET expression vectors. At 72 hours after transfection, the cells were lysed and 96 

subjected to either western blotting or luciferase assay. Luciferase activity was 97 

measured using the Dual-Luciferase Reporter Assay System (Promega). All 98 

experimental conditions were set up in 3 wells. 99 

 100 

Structural analysis 101 

Generation of the MET Models 102 

The cocrystal structure of MET with ATP (PDBID:3DKC) was used to build the 103 

simulation system. Initial modeling was done in the Schrodinger 2022-3. The protein 104 

preparation wizard was used to assign bond orders, add hydrogens, create disulfide 105 

bonds, and fill in missing side chains using the Prime module. Ionization and tautomeric 106 

states for heteroatom groups were generated using the Epik module at neutral pH (pH 107 

7.0 ± 2.0), and protonated states of titratable residues were determined by pKa 108 

calculations at physiological conditions (pH 7.0 ± 2.0) using the PROPKA module. A 109 

restrained minimization was also performed on all atoms using the OPLS4 force field 110 

[7]. The minimization was considered converged once heavy atom displacement was 111 

below 0.3 angstroms. Orientations of asparagine and glutamine were sampled at this 112 

step to optimize the hydrogen bonding network using the built in workflow. Waters within 113 

5.0 angstroms of the ATP and Mg+2 were retained [8,9]. This initial structure contained 114 

3 engineered residues at positions 1194, 1234, and 1235. As such, we used this 115 
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structure as a template for the generation of active state ATP bound MET kinase 116 

homology models for mutants. To model the wild type structure, the canonical sequence 117 

(Primary accession number: P08581) was used. Appropriate substitutions in the 118 

canonical sequence was done to generate the H1094Y, F1200I, and R1170Q models 119 

[10]. These three sequences were aligned using ClustalW to the structure of crystal 120 

structure. ATP, Mg+2 ion, and the one water molecule that chelates the Mg+2 ion were 121 

used as co-factors when building the homology models.  122 

 123 

ATP Parameterization 124 

The initial ATP bound in wild type MET crystal was used for parametrization. In 125 

this model, the triphosphate tail of ATP is fully deprotonated resulting in a -4 charge. We 126 

generated a force field based optimized complex for the initial geometry for the quantum 127 

mechanical calculations. The initial complex underwent a global unrestrained 128 

minimization using the OPLS4 forced field using the Prime minimization panel. An 129 

implicit (variable-dielectric generalized Born model) solvent model for water was used 130 

during the minimization. From this minimized complex, the ATP, Mg+2 ion, chelating 131 

water, residues 1209 and 1222 (residues with side chains that interact with the Mg+2 132 

ion), and residues 1159 and 1160 (residues that hydrogen bond with the ATP 133 

adenosine group) were extracted for quantum mechanical treatment. The three peptide 134 

fragments (residues 1159 and 1160, 1209, and 1222), were capped using acetyl group 135 

or N-methyl amide on the N and C terminus, respectively. These capping groups were 136 

orientated to retain the backbone angles of neighboring residues. This complex served 137 

as the initial coordinates for quantum mechanical calculations for charges.  138 
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This complex then underwent geometry optimization at the B3LYP-D3/6-139 

311G(d,p)++. Diffuse and polarizable functions were added to the basis set. Default 140 

parameters were chosen for Jaguar optimization [11,12]. The initial Hessian for the 141 

geometry optimization was calculated from the basis set. Backbones of the three 142 

peptide fragments (residues 1159 and 1160, 1209, and 1222) including capping groups 143 

were constrained in the X, Y, and Z axis keeping their position fixed.  The side chains of 144 

residues 1159 and 1160 were also held fixed. Due to the side chains of residues 1209 145 

and 1222 chelating the Mg+2, no constraints were applied to these side chains. Output 146 

of the geometry optimization was used as the initial coordinates for single point energy 147 

calculations for electrostatic potential charge (ESP) generation utilizing the B3LYP-D3 148 

with the 6-311G(d,p)++ basis set [13,14]. This was used in building the simulation 149 

system.   150 

 151 

Model System Generation 152 

Using CHARMM-GUI enhanced sampler, we generated input files for the 4 ATP 153 

containing MET, the active wild type, H1094Y, F1200I, and R1170Q systems [15,16]. A 154 

rectangular water box was fitted to the protein structure. The edge distance was 155 

specified as 12.5 angstroms. In addition to neutralizing ions, a KCl concentration of  150 156 

mM was used. This accounts for approximately 130 ions in each system. TIP3P was 157 

used as the water model for these systems. Parameters for ions were derived from the 158 

TIP3P leaprc file and included a 12-6 non-bonded correction. The FF19SB force field 159 

was used to parameterize protein residues [17]. Hydrogen mass repartitioning was also 160 
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used in these simulations to enable a 4-fs time step by redistributing heavy atom mass 161 

to the attached hydrogens.  162 

 163 

All-Atom MD Simulations 164 

All molecular dynamics simulations were performed in Amber 22 using reference 165 

GeForce RTX 3060 ti or 3080  ti GPUs. The PMEMD.CUDA program in AMBER22 was 166 

used to conduct all simulations [17]. The equilibration protocol was consisted of a two-167 

stage minimization protocol with the steepest descent (5,000 steps) and conjugate 168 

gradient (5,000 steps) for each model system. A restraint potential of 1.0 kcal/mol·Å2 169 

was applied to protein residues during the initial minimization to remove any potential 170 

steric clashes from K+ or Cl− ions, and water molecules. Equilibrium simulations were 171 

carried out after initial minimization calculations. These equilibration simulations were 172 

carried out for a total of 0.25 ns using an integration time step of 1 fs. Langevin 173 

dynamics was used to control the temperature of the system. Initial velocities were 174 

generated for a target temperature of 303.15K. Long-range electrostatics were 175 

calculated using the particle mesh Ewald method with a 9.0 angstrom cutoff. The 176 

SHAKE algorithm was used to treat the solvent molecules. Production molecular 177 

dynamics simulations were carried out for 1000ns with snapshots taken every 0.1 ns.  178 

  179 

Analysis of MD Simulations 180 

All analyses were performed on the last 500ns of the production trajectories. 181 

After removal of water and charged ions except for the Mg+2 ion, production trajectories 182 

were outputted in dcd and netcdf formats for follow-up analysis. The production 183 
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trajectories additionally had been saved with 1ns interval between each frame. The 184 

distance measurements were taken using CPPTRAJ  over the last 500 ns of the 185 

simulations. RMSF and RMSD values were also calculated using CPPTRAJ [18]. The 186 

MMPBSA.py utility in AmberTools was used to calculate the ΔG of binding based on a 187 

single trajectory MM/GBSA protocol. The last 500 frames of the reduced trajectories 188 

representing snap shots from 500 ns to 1000 ns at an interval of 1ns were used. ATP 189 

was used as the ligand in calculations. The Mg+2 ion was treated as part of the 190 

receptor. The ante-MMPBSA.py utility was used to generate the initial input files based 191 

on the parameterized complex [19]. These calculations were carried out using a 192 

modified GB mode} with the reference salt concentration of 0.15 M [20]. Statistical 193 

analysis was performed using GraphPad. A Mann–Whitney–Wilcoxon test was used to 194 

test interaction distances. 195 

 196 
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