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Supplementary Figures with Legends
Supplementary Figure S1. Generation of a conditional knock-in mouse model for the Enl-T1 mutation.
Supplementary Figure S2. Impact of Enl mutation on the peripheral blood and spleen.

Supplementary Figure S3. Characterization of Enl-T1 allele expression and concurrent mutations in

heterozygous knock-in Enl-T1 mouse model.

Supplementary Figure S4. UBC-cre-ERT2/Enl floxTV* mice develop aggressive acute leukemia

following tamoxifen treatment.

Supplementary Figure S5. Enl mutation leads to expansion of myeloid cells in mice in the leukemic

phase.

Supplementary Figure S6. Enl mutation leads to the decrease of B220*CD19* B, CD4*T, CD8" T cells

in mice in the leukemic phase.

Supplementary Figure S7. Impact of the Enl mutation on the bone marrow, peripheral blood, spleen, and

thymus in mice in the pre-leukemic phase.

Supplementary Figure S8. Enl mutation perturbs the normal hematopoietic hierarchy and leads to

abnormal expansion of myeloid progenitors in mice in the leukemic phase.

Supplementary Figure S9. Enl mutation does not lead to the expansion of myeloid progenitors in mice

in the pre-leukemic phase.
Supplementary Figure S10. Enl mutation promotes self-renewal properties of HSPCs.

Supplementary Figure S11. Enl mutation-induced up- and down-regulated genes are related to distinct

biological functions.
Supplementary Figure S12. Enl mutation leads to a gain of myeloid differentiation signatures in HSPCs.

Supplementary Figure S13. Mutant ENL-induced H3K27ac signals correlate with upregulation of

development and inflammation associated transcriptional programs.
Supplementary Figure S14. HSPCs gain H3K27me3 during differentiation in wildtype mice.

Supplementary Figure S15. Differentiation-associated gain of H3K27me3 is impaired in Enl-mutated

hematopoietic cells.
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Supplementary Figure S16. ENL mutants form condensate at key target genes and increase gene

expression in HSPCs.

Supplementary Figure S17. Condensate formation property correlates with mutant ENL’s oncogenic
function in human CD34* HSPCs.

Supplementary Figure S18. Expression levels of different FLAG-ENL transgenes in LSK cells.

Supplementary Figure S19. Condensate formation property correlates with mutant ENL’s oncogenic

function in GMP cells.

Supplementary Figure S20. Disrupting condensate formation by the H116P mutation reduces ENL-T1-

induced increases in chromatin occupancy of FLAG-ENL, H3K27ac, and p300 at a subset of target genes.
Supplementary Figure S21. Impact of mutant ENL on leukemia development and condensate formation.

Supplementary Figure S22. Small molecule inhibition of the acetyl-binding activity of mutant ENL

suppresses chromatin function and Hoxa cluster gene activation in LSK cells.

Supplementary Figure S23. Small molecule inhibition of the acetyl-binding activity of mutant ENL
impairs its chromatin and transcriptional function in HSPCs.

Supplementary Figure S24. Small molecule inhibition of the acetyl-binding activity of mutant ENL
inhibits its impact on the self-renewal property in HSPCs.

Supplementary Tables

Supplementary Table S1. Genes differentially expressed between Enl-T1 and Enl-WT LSK cells.
Supplementary Table S2. Genes differentially expressed between Enl-T1 and Enl-WT GMP cells.
Supplementary Table S3. Genes differentially expressed between Enl-T1 and Enl-WT L-GMP cells.
Supplementary Table S4. Genes differentially expressed between Enl-T1 and Enl-WT cKit*"Macl* cells.
Supplementary Table S5. Genes differentially expressed between Enl-T1 and Enl-WT cKitMacl™ cells.
Supplementary Table S6. Shared Enl-T1 up-regulated DEGs in LSK, GMP, and L-GMP cells.
Supplementary Table S7. Expression of Hoxa genes in Enl-WT and Enl-T1 hematopoietic populations.

Supplementary Table S8. GSEA gene sets used in Supplementary Figure S12.
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Supplementary Table S9. GSVA score of patients from TARGET-AML database.

Supplementary Table S10. H3K27ac peaks in all hematopoietic populations.

Supplementary Table S11. H3K27ac differential regions of ENL-T1 versus ENL-WT in LSK cells.
Supplementary Table S12. H3K27ac differential regions of ENL-T1 versus ENL-WT in GMP cells.
Supplementary Table S13. H3K27ac differential regions of ENL-T1 versus ENL-WT in L-GMP cells.

Supplementary Table S14. H3K27ac differential regions of ENL-T1 versus ENL-WT in cKit*Macl*

cells.

Supplementary Table S15. H3K27ac differential regions of ENL-T1 versus ENL-WT in cKitMacl*

cells.

Supplementary Table S16. T1-UP DEGs associated with H3K27ac T1 gained DRs in all hematopoietic

populations.

Supplementary Table S17. H3K27ac T1 gained differential regions associated with T1-UP DEGs in all

hematopoietic populations.

Supplementary Table S18. p300 ChlP-seq normalized signal at T1 gained H3K27ac differential regions
in Enl-WT and Enl-T1 GMP, L-GMP cells.

Supplementary Table S19. T1 gained H3K27ac differential regions with both p300 UP and associated
gene expression UP in Enl-T1 cells for GMP and L-GMP.

Supplementary Table S20. T1 gained H3K27ac differential regions with p300 UP and associated gene
expression UP in Enl-T1 cells for L-GMP under A-485 treatment.

Supplementary Table S21. H3K27me3 peaks in wildtype hematopoietic populations.

Supplementary Table S22. Hematopoietic differentiation associated-H3K27me3 peaks.
Supplementary Table S23. H3K27me3 peaks in all hematopoietic populations.

Supplementary Table S24. H3K27me3 differential regions of ENL-T1 versus ENL-WT in LSK cells.
Supplementary Table S25. H3K27me3 differential regions of ENL-T1 versus ENL-WT in GMP cells.

Supplementary Table S26. H3K27me3 differential regions of ENL-T1 versus ENL-WT in L-GMP cells.
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Supplementary Table S27. H3K27me3 differential regions of ENL-T1 versus ENL-WT in cKit"Macl*

cells.

Supplementary Table S28. H3K27me3 differential regions of ENL-T1 versus ENL-WT in cKitMacl*

cells.

Supplementary Table S29. T1-UP DEGs associated with H3K27me3 lost differential regions in all

hematopoietic populations.
Supplementary Table S30. Groupl and group2 gene list in cKit*Macl* and cKitMacl* cells.

Supplementary Table S31. FLAG-ENL peaks in LSK cells expressing the indicated FLAG-ENL

transgenes.

Supplementary Table S32. FLAG-ENL gained regions of T1 versus WT in LSK cells expressing the
indicated FLAG-ENL transgenes.

Supplementary Table S33. H3K27ac T1 gained differential regions associated with T1 gained FLAG-
ENL DRs in LSK cells expressing the indicated FLAG-ENL transgenes.

Supplementary Table S34. Genes differentially expressed between Enl-T1-DMSO and Enl-WT-DMSO
LSK cells.

Supplementary Table S35. Genes differentially expressed between Enl-T1-DMSO and Enl-WT-DMSO
in GMP cells.

Supplementary Table S36. Expression of Hoxa genes under Enl-WT-DMSQO, Enl-T1-DMSO and Enl-
T1-TDI conditions in LSK and GMP cells.

Supplementary Table S37. Oligos used in this study.

Supplementary Table S38. Antibodies used in this study.
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Supplementary Figure S1
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Supplementary Figure S1. Generation of a conditional knock-in mouse model for the Enl-T1
mutation. A, Left, the domain structure of the ENL protein and protein sequence differences for ENL
WT and mutants (T1-T8). Right, the DNA sequence of WT or T1 mutation-containing exon 4 in the Enl
gene. The insertion is highlighted in red. IDR, intrinsically disordered region; AHD, ANC1 homologue
domain. B, Genotyping PCR showing DNA bands for Enl-WT and Enl-T1 alleles before Cre-mediated
recombination. Primers F1/R1 shown in Figure 1A were used. C, PCR analysis showing the
recombination efficiency of the Enl-T1 allele in Enl-T1 mice before and after poly (I:C) treatment.
Primers F2/R2 shown in Figure 1A were used to identify the WT and T1 alleles in both before and after

cre-mediated recombination conditions.
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Supplementary Figure S2. Impact of Enl mutation on the peripheral blood and spleen. A, Wright—
Giemsa-stained smear of PB harvested from Enl-T1 mice and age-matched control mice. PB, peripheral
blood. Scale bar, 10 um. B, Representative hematoxylin and eosin (H&E) staining of spleen harvested

from Enl-WT or T1 mice. Scale bar, 400 um (left, zoomed out); 50 um (right, zoomed in).
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Supplementary Figure S3. Characterization of Enl-T1 allele expression and concurrent mutations

in heterozygous knock-in Enl-T1 mouse model. A, Schematic workflow of Enl-WT and T1 transcripts

analysis for Enl-T1 bone marrow cells. B, Pie charts showing the distribution of Enl-WT and T1

transcripts in Enl-T1-driven leukemia. Enl-WT allele (grey), Enl-T1 allele (red), undetermined allele

(purple). C, Workflow (left) and detected mutations (right) in Enl-T1-driven leukemia.
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Supplementary Figure S4. UBC-cre-ERT2/Enl 1oxTU* mice develop aggressive acute leukemia
following tamoxifen treatment. A, Breeding strategies to obtain UBC-cre-ERT2/Enl 1oxTV*+ mice for
experiments. B, Quantification plot showing survival percentage of Enl-WT (n = 5) or Enl-T1 (n = 5)
mice post tamoxifen treatment for 5 months. WT, UBC-cre-ERT2/Enl **; T1, UBC-cre-ERT2/Enl flox-
T+ C, Representative images (left) and weight quantification (right) of spleen harvested from Enl-WT
or T1 mice. Scale bar, 1 cm; Bars represent the median (n = 3). P value using unpaired, two-tailed
Student’s t-test. D, E, Representative hematoxylin and eosin (H&E) staining of bone marrow (D) and
spleen (E) harvested from Enl-WT or T1 mice. Scale bar for bone marrow, 100 um (left, zoomed out);
50 pum (right, zoomed in). Scale bar for spleen, 500 um (left, zoomed out); 50 um (right, zoomed in). F,
Representative H&E staining of liver (left), lung (middle), kidney (right) harvested from Enl-WT or T1
mice. Scale bar, 100 pm.
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Supplementary Figure S5
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Supplementary Figure S5. Enl mutation leads to expansion of myeloid cells in mice in the leukemic
phase. A-C, Number of total cells (left) and Mac1*Gr1* myeloid cells (right) in bone marrow (A), spleen
(B), and thymus (C) samples harvested from Enl-T1 leukemic mice and age-matched control mice. Bars
represent the median (bone marrow, n = 11; spleen, n = 17; thymus, n = 5). P value using unpaired, two-
tailed Student’s t-test. n.s., not significant. D, Wright—Giemsa-stained smear of bone marrow harvested

from Enl-T1 leukemic mice and age-matched control mice. Scale bar, 10 um.
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Supplementary Figure S6. Enl mutation leads to the decrease of B220"CD19* B, CD4*T, CD8* T
cells in mice in the leukemic phase. A, Number of B220*CD19* B (left), CD4*T (middle), CD8" T
(right) cells in bone marrow samples harvested from Enl-T1 leukemic mice and age-matched control
mice. n = 11. B-D, Representative flow cytometric plots and percentage of B220"CD19*B (B), CD4*T
(C), CD8* T (D) cells in PB samples harvested from Enl-T1 leukemic mice and age-matched control
mice. n = 12. E-G, Representative flow cytometric plots and the percentage of B220*CD19* B (E),
CD4*T (F), CD8" T (G) cells in spleen samples harvested from Enl-T1 leukemic mice and age-matched
control mice. n = 17. H, Number of B220"CD19* B (left), CD4*T (middle), CD8* T (right) cells in spleen
samples harvested from Enl-T1 leukemic mice and age-matched control mice. n = 17. I-K,
Representative flow cytometric plots and the percentage of B220*CD19* B (1), CD4*T (J), CD8* T (K)
cells in thymus samples harvested from Enl-T1 leukemic mice and age-matched control mice. n=5. L,
Number of B220"CD19* B (left), CD4*T (middle), CD8" T (right) cells in thymus samples harvested
from Enl-T1 leukemic mice and age-matched control mice. n = 5. A-L, Bars represent the median; P

value using unpaired, two-tailed Student’s t-test. n.s., not significant.
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Supplementary Figure S7
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Supplementary Figure S7. Impact of the Enl mutation on the bone marrow, peripheral blood,
spleen, and thymus in mice in the pre-leukemic phase. A, Schematic of experimental workflow of
Enl-T1 pre-leukemic mice and age-matched control mice (shown in B-M). B, Representative images
(left) and weight quantification (right) of spleen. Scale bar, 1 cm; n = 4. C, Percentage of Macl1*Grl*
myeloid cell population in the bone marrow (left), PB (center left), spleen (center right), and thymus
(right) samples. n = 5. D-F, Number of total cells (left) and Macl1*Grl* myeloid cells (right) in bone
marrow (D), spleen (E), and thymus (F) samples. n = 5. G, H, Percentage (G) and number (H) of
B220*CD19* B (left), CD4*T (middle), CD8* T (right) cells in bone marrow samples. n =5. I, Percentage
of B220*CD19* B (left), CD4*T (middle), CD8" T (right) cells in peripheral blood samples. n =5. J, K,
Percentage (J) and number (K) of B220*CD19* B (left), CD4*T (middle), CD8* T (right) cells in spleen
samples. n = 5. L, M, Percentage (L) and number (M) of B220"CD19* B (left), CD4*T (middle), CD8*
T (right) cells in thymus samples. n = 5. B-M, Bars represent the median; P value using unpaired, two-

tailed Student’s t-test. n.s., not significant.
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Supplementary Figure S8
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Supplementary Figure S8. Enl mutation perturbs the normal hematopoietic hierarchy and leads
to abnormal expansion of myeloid progenitors in mice in the leukemic phase. A, Number of total
cells (left) and cKit™ cells (right) in bone marrow samples (see workflow in Fig.2B). n = 8. B, C,
Representative flow cytometric plots (B) and number (C) of LSK, LT-HSC, and MPP cells in bone
marrow (see workflow in Fig.2B). n = 8. D, Representative flow cytometric plots of LKS", GMP, Pre
CFU-E, Pre GM, and Pre MegE cells in bone marrow samples (see workflow in Fig.2B). E, Number of
LKS- cells in bone marrow samples (see workflow in Fig.2B). n = 7. F, G, Percentage (F) and number
(G) of Pre CFU-E (left), Pre GM (center left), Pre MegE (center right), and GMP (right) cells in bone
marrow (see workflow in Fig.2B). n=7. A, C, E-G, Bars represent the median; P value using unpaired,

two-tailed Student’s t-test. n.s., not significant.
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Supplementary Figure S9. Enl mutation does not lead to the expansion of myeloid progenitors in
mice in the pre-leukemic phase. A, Schematic workflow of flow cytometric analysis for bone marrow
cells from Enl-T1 pre-leukemic mice and age-matched control mice (shown in B-K). B-D,
Representative flow cytometric plots (B), percentage (C), and number (D) of cKit* cells in bone marrow
samples. n = 5. E-G, Representative flow cytometric plots (E), percentage (F), and number (G) of LSK
(left), LT-HSC (middle), and MPP (right) cells in bone marrow samples. n = 5. H, Representative flow
cytometric plots of LKS", GMP, Pre CFU-E, Pre GM, and Pre MegE cells in bone marrow samples. I, J,
Percentage (1) and number (J) of LKS- (left), Pre CFU-E (center left), Pre GM (center right), Pre MegE
(right) cells in bone marrow samples. n = 5. K, Percentage of GMP cells in LKS- population (left) or
bone marrow (right) samples. n = 5. L, Number of GMP cells in bone marrow samples. n=5. C, D, F,

G, I-L, Bars represent the median; P value using unpaired, two-tailed Student’s t-test. n.s., not significant.
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Supplementary Figure S10. Enl mutation promotes self-renewal properties of HSPCs. A,
Schematic depiction of transduction of FLAG-GFP-tagged-ENL transgenes in LSK/GMP cells and
subsequent colony formation assays. B, C, Quantification of colonies formed by LSK (B), GMP (C)
cells expressing different FLAG-ENL transgenes. Error bars represent mean £ SEM (n = 3). P values

using unpaired, two-tailed Student’s t-test. n.s., not significant.
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Supplementary Figure S11. Enl mutation-induced up- and down-regulated genes are related to
distinct biological functions. A, Bar plots showing Enl expression in wild-type, normal hematopoietic
populations. Gene expression is obtained from the RNA-seq data (see Fig. 3A) and normalized by
transcripts per million (TPM). Dots represent different biological replicates. B, Stacked bar plots
showing the number of Enl-T1-up and down-regulated genes in indicated cell populations. T1-UP, Enl-
T1 up-regulated; T1-DN, Enl-T1 down-regulated; DEGs, differentially expressed genes. See
Supplementary Tables S1-S5. C-E, Bar plots showing the GO-term analysis of T1-DN DEGs for LSK
(C), GMP (D), L-GMP (E) cells. F, G, Bar plots showing the GO-term analysis of T1-UP DEGs for
cKit*Macl* (F) and cKit-Macl* (G) cells. H, I, Bar plots showing the GO-term analysis of T1-DN DEGs
for cKit*Macl* (H) and cKit'Macl* (1) cells. Pos., positive; Neg., negative; Reg., regulation.
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Supplementary Figure S12
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Supplementary Figure S13. Mutant ENL-induced H3K27ac signals correlate with upregulation of
development and inflammation associated transcriptional programs. A, Stacked bar plots showing
the percentage of T1 gained (yellow), lost (purple) and unchanged (grey) H3K27ac DRs in indicated cell
populations. See Supplementary Tables S11-S15. B, C, Heatmap showing H3K27ac and p300 signals
on T1-UP DEGs associated with gained H3K27ac DRs in GMP (B) and L-GMP (C) from Enl-WT or
T1 mice. The CUT&Tag or ChIP-seq signals are normalized by RPM. See Supplementary Table S17.
D, Stacked bar plots indicating the percentage of T1-UP DEGs with gained H3K27ac that also exhibited
increased p300 occupancy (fold-change > 1.5). See Supplementary Table S18. E, Histogram showing
that regions with an increase in p300 occupancy and H3K27ac signals and associated with T1-UP DEGs
are located close to the TSS in GMP (left) and L-GMP (right). Exp., expression. See Supplementary
Table S19. F and G, GREAT analysis of regions with an increase in p300 occupancy and H3K27ac
signals and associated with T1-UP DEGs (identified in (D)) in GMP (F) and L-GMP (G). Pos., positive;
Neg., negative; Reg., regulation. H, Schematic showing ex vivo treatment of L-GMP cells from Enl-T1
mice and subsequent experiments (shown in I, J). I, Average occupancies (top) and heatmap (bottom)
of H3K27ac at genomic regions that exhibit T1-induced increases in H3K27ac and p300 and are
associated with T1-UP DEGs in GMP (WT) or L-GMP (T1) cells treated with DMSO or A-485 (1 uM)
for 24 hours. The CUT&Tag signals are normalized by RPM. See Supplementary Table S20. J, RT-
gPCR analysis showing mMRNA expression of Hoxa5/6/9, Meisl in GMP (WT) or L-GMP (T1) cells

under indicated treatment conditions. Error bars represent mean + SEM (n = 3).
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Supplementary Figure S14
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Supplementary Figure S14. HSPCs gain H3K27me3 during differentiation in wildtype mice. A,
Average occupancies (top) and heatmap (bottom) of H3K27me3 signals showing dynamic changes of
H3K27me3 during normal myeloid differentiation in wild-type mice. The union H3K27me3 peaks of
normal LSK, GMP, cKit*Macl* and cKitMacl* cells are used in both plots. See Supplementary Table
S21. B, Average occupancies (top) and heatmap (bottom) of hematopoietic differentiation associated-
H3K27me3 signals in LSK, GMP, cKit*Macl*, and cKit'Macl* cells are defined by the following
strategy. Among the union H3K27me3 peaks in (A), those exhibiting higher H3K27me3 signal in GMP
compared with LSK cells, as well as higher H3K27me3 signal in cKit*"Macl* and cKitMacl* cells
compared with GMP cells (fold-change > 1.5), were selected. These peaks were further filtered by their
expression in both cKit*Mac1* and cKit‘Macl* subsets (RPM>1). See Supplementary Table S22. C, Bar
plots showing the chromatin distribution of H3K27me3 DRs identified in (B). D, Bar plots showing the
GREAT analysis of H3K27me3 DRs (identified in (B)). E, Average occupancies of H3K27me3 at
H3K27me3 DRs (identified in (B)) associated genes in LSK, GMP, cKit*Macl1* and cKitMacl1* cells. n
= 2429; TSS, transcription start site; TES, transcription end site. F, Violin plots showing the gene
expression of H3K27me3 DRs (identified in (B)) associated genes in LSK, GMP, cKit*Macl* and cKit
Macl* cells. Gene expression is obtained from the RNA-seq data and normalized by transcripts per
million (TPM). G, Bar plots showing the GO-term analysis of H3K27me3 DRs (identified in (B))
associated genes.
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Supplementary Figure S15. Differentiation-associated gain of H3K27me3 is impaired in Enl-
mutated hematopoietic cells. A, B, GREAT analysis of T1-lost H3K27me3 DRs in cKit*Macl* (A)
and cKitMacl* (B) cells. See Supplementary Tables S27 and S28. C, Stacked bar plots showing the
numbers of T1-lost H3K27me3 DRs in cKit*"Macl* and cKitMacl™ cells that are overlapped (purple) or
not overlapped (yellow) with differentiation-associated H3K27me3 DRs (identified in Supplemental
Fig. 14B). D, Stacked bar plots showing the numbers of differentiation associated H3K27me3 DRs
(identified in Supplemental Fig. 14B) that are overlapped (purple) or not overlapped (yellow) with T1-
lost H3K27me3 DRs in cKit*Macl* and cKitMacl* cells. E, F, Average occupancies (top) and heatmap
(bottom) of differentiation associated-H3K27me3 DRs (identified in Supplemental Fig. 14B)
overlapped or not overlapped with T1 lost H3K27ac DRs in cKit*Macl* (E) and cKit-Macl* (F) cells.
See Supplementary Table S22. G, H, Dot plots evaluating the expression difference between groupl and
group2 genes in Enl-WT or T1 cKit*Macl* (G), cKitMacl* (H) cells. The mean value is highlighted by
the black bar in each group. Expression is normalized by log2(TPM+0.1). See Supplementary Table S30.
I, J, Bar plots showing the GO-term analysis of groupl (1) and group2 (J) genes in cKit"Macl* (top)
and cKitMacl* (bottom). Hematopoietic related pathways are highlighted by red. K, The genome
browser view of H3K27ac, p300 and H3K27me3 CUT&Tag or ChlP-seq signals at genes exhibiting T1-
induced changes in both H3K27ac and H3K27me3 in indicated Enl-WT or T1 hematopoietic populations.
L, The genome browser view of H3K27ac CUT&Tag signals at Hoxa (left) and Meis1 (right) gene locus
in Enl-WT hematopoietic populations with low signal scale. M, N, The genome browser view of
H3K27ac, p300 and H3K27me3 CUT&Tag or ChlP-seq signals at genes exhibiting T1-induced changes
in H3K27ac (M) or T1-induced changes in H3K27me3 (N) in indicated Enl-WT or T1 hematopoietic

populations.
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Supplementary Figure S16. ENL mutants form condensate at key target genes and increase gene
expression in HSPCs. A, RT-gPCR analysis showing total mRNA levels of human and mouse ENL/Enl
in LSK cells expressing empty vector or indicated human FLAG-ENL transgenes. The primers used for
RT-gPCR can detect both human and mouse ENL/EnI. Error bars represent mean + SEM (n = 3). B,
Representative images of anti-FLAG IF staining in LSK cells expressing indicated FLAG-ENL
transgenes. C-E, Nuclear intensity (C), percentage of nuclei with or without FLAG-ENL puncta (D),
and the number of FLAG-ENL puncta (E) in each nucleus in LSK cells. Error bars represent mean +
SEM. P values using unpaired, two-tailed Student’s t-test. F, G, Representative images (F) and
quantification (G) showing percentage of LSK cells expressing FLAG-ENL-T1 transgene at least one
Hoxa9 DNA locus overlapping with an ENL-T1 puncta. n = 67. P value using unpaired, two-tailed
Student’s t-test. H, RT-qgPCR analysis showing mMRNA expression of Hoxab5/6/9, Meis1, Rnf43, Igf2bp3

in LSK cells expressing indicated FLAG-ENL transgenes. Error bars represent mean £ SEM (n = 3).
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239  Supplementary Figure S17
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Supplementary Figure S17. Condensate formation property correlates with mutant ENL’s
oncogenic function in human CD34* HSPCs. A, Schematic representation of the transduction of
various FLAG-tagged ENL transgenes in human CD34" HSPCs and subsequent experiments (shown in
B-G). B, Representative images of anti-FLAG IF staining in human CD34* HSPCs expressing indicated
FLAG-ENL transgenes. C-E, Nuclear intensity (C), percentage of nuclei with or without FLAG-ENL
puncta (D), and the number of FLAG-ENL puncta (E) in each nucleus in human CD34* HSPCs. Error
bars represent mean £ SEM. P values using unpaired, two-tailed Student’s t-test. F, RT-gPCR analysis
showing mMRNA expression of HOXA9/10 in human CD34* HSPCs expressing indicated FLAG-ENL
transgenes. Error bars represent mean + SEM (n = 3). G, Quantification of colonies formed by human
CD34* HSPCs expressing indicated FLAG-ENL transgenes. Error bars represent mean £ SEM (n = 3).

P value using unpaired, two-tailed Student’s t-test.
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243  Supplementary Figure S18
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Supplementary Figure S18. Expression levels of different FLAG-ENL transgenes in LSK cells. A,
Mean nuclear intensity of indicated FLAG-ENL proteins based on anti-FLAG IF staining in LSK cells.
Line indicates mean value. B, RT-gPCR analysis showing total mRNA levels of human and mouse
ENL/Enl in LSK cells expressing empty vector or indicated human FLAG-ENL transgenes. The primers
used for RT-qPCR can detect both human and mouse ENL/Enl. Error bars represent mean + SEM (n =
3).
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Supplementary Figure S19
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Supplementary Figure S19. Condensate formation property correlates with mutant ENL’s
oncogenic function in GMP cells. A, Schematic representation of the transduction of various FLAG-
tagged ENL transgenes in GMP cells and subsequent experiments (shown in B-G). B, Representative
images of anti-FLAG IF staining in GMP cells expressing indicated FLAG-ENL transgenes. C-E,
Nuclear intensity (C), percentage of nuclei with or without FLAG-ENL puncta (D), and the number of
FLAG-ENL puncta (E) in each nucleus in GMP cells. Error bars represent mean + SEM. P values using
unpaired, two-tailed Student’s t-test. F, RT-gPCR analysis showing mRNA expression of Hoxa5/6/9,
Meisl, Rnf43, 1gf2bp3 in GMP cells expressing indicated FLAG-ENL transgenes. Error bars represent
mean = SEM (n = 3). G, Quantification of colonies formed by GMP cells expressing indicated FLAG-
ENL transgenes. Error bars represent mean £ SEM (n = 3). P value using unpaired, two-tailed Student’s
t-test.
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250  Supplementary Figure S20
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Supplementary Figure S20. Disrupting condensate formation by the H116P mutation reduces
ENL-T1-induced increases in chromatin occupancy of FLAG-ENL, H3K27ac, and p300 at a subset
of target genes. A, Average occupancies (top) and heatmap (bottom) representation of FLAG-ENL-
bound peak regions in LSK cells expressing the indicated FLAG-ENL transgenes. The CUT&Tag signals
are normalized by reads per million (RPM). See Supplementary Table S31. B, C, Genome browser view
of FLAG-ENL, H3K27ac, and p300 CUT&Tag or ChlIP-seq signals at Hoxa (B) and Meisl (C) gene
loci in LSK cells expressing the indicated FLAG-ENL transgenes.

252

37



253  Supplementary Figure S21
A B

P =0.0015

Control T 0.81 100 1 ey

80

o
[}
1

60

40

o
b

Spleen weight (g)
o
S
L]
o« £
L ]
Donor % in bone marrow

o
e

——— o—
> A FLAG-ENL-T1
™

C D E

FLAG-ENL staining in bone marow
cells from leukemia mice [ Puncta [] No puncta

100 61

Puncta number

80

H
o

|
601 \
=

20

% of cells

40+

N

Puncta number

o
n

0_
254 FLAG-ENL-T1 FLAG-ENL-T1

255  Supplementary Figure S21. Impact of mutant ENL on leukemia development and condensate
256  formation. A, Representative images (left) and weight quantification (right) of spleen harvested from
257  C57BL/6 recipient mice received LSK cells expressing the FLAG-ENL-T1 transgenes. Control, the age-
258 and sex-matched C57BL/6 mice. Scale bar, 1 cm; Bars represent the median (n = 6). P value using
259  unpaired, two-tailed Student’s t-test. B, Flow cytometric quantification of FLAG-ENL-T1 expressing
260  cells (CD45.2*CD45.1) in the bone marrow harvested at terminal time points from C57BL/6 recipient
261  mice. Bars represent the median (n = 6). C, Representative images of anti-FLAG IF staining in cells
262  harvested from C57BL/6 recipient mice that received LSK cells expressing the FLAG-ENL-T1 transgene.
263 D, E, Percentage of nuclei with or without FLAG-ENL puncta (D), and the number of FLAG-ENL
264  puncta (E) in each nucleus in cells harvested from C57BL/6 recipient mice that received LSK cells
265  expressing the FLAG-ENL-T1 transgene. Error bars represent mean £ SEM. P values using unpaired,
266  two-tailed Student’s t-test.
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268  Supplementary Figure S22
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270  Supplementary Figure S22. Small molecule inhibition of the acetyl-binding activity of mutant ENL
271  suppresses chromatin function and Hoxa cluster gene activation in LSK cells. A, B, Heatmap
272  showing H3K27ac (A) and p300 (B) at genomic regions that exhibit T1-induced increases in FLAG-
273  ENL and H3K27ac occupancies in LSK cells expressing indicated FLAG-ENL variants under DMSO or
274 TDI-11055 treatment. See Supplementary Table S33. C, Genome browser view of H3K27ac and p300
275  signals at selected genes (Hoxa locus, Meis1) under DMSO and TDI-11055 treatment conditions in LSK
276  cells expressing indicated FLAG-ENL variants. D, RT-gPCR analysis showing mRNA expression of
277  Hoxab/6/9 in LSK cells expressing indicated FLAG-ENL variants under DMSO or TDI-11055 treatment.

278  Error bars represent mean £ SEM (n = 3).
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Supplementary Figure S23. Small molecule inhibition of the acetyl-binding activity of mutant ENL
impairs its chromatin and transcriptional function in HSPCs. A, B, Volcano plots showing the DEGs
between Enl-WT and T1 under DMSO treatment (see workflow in Fig. 6L) in LSK (A) and GMP (B)
cells. T1-UP and DN DEGs are highlighted in red and blue, respectively. FC, fold change; P.adj, adjusted
P-value. See Supplementary Tables S34 and S35. C, D, GSEA plots evaluating transcriptional changes
in Enl-T1 LSK (C) and GMP (D) upon TDI-11055 treatment (10 uM for 48 hours) with T1-UP DEGs
identified in LSK (A) and GMP (B). FDR, false discovery rate; NES, normalized enrichment score. E,
Heatmap showing H3K27ac signals on T1-gained H3K27ac DRs associated with T1-UP DEGs in LSK
(top) and GMP (bottom) under DMSO or 10 uM TDI-11055 treatment conditions (see schematic in
Fig.6P). F, Average occupancies of H3K27ac on the promoters of T1-UP DEGs in LSK (left) and GMP
(right) under DMSO or 10 uM TDI-11055 treatment conditions (see schematic in Fig.6P). TSS,
transcriptional start site. G, Genome browser view of H3K27ac CUT&Tag signals at selected genes
(Rnf43, Tspoapl, Mpo, Igf2bp3) under DMSO and TDI-11055 treatment conditions in LSK and GMP.
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Supplementary Figure S24
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Supplementary Figure S24. Small molecule inhibition of the acetyl-binding activity of mutant ENL

inhibits its impact on the self-renewal property in HSPCs. A, Schematic representation of

transduction of FLAG-ENL transgenes in LSK or GMP cells and subsequent experiments. B, C,
Quantification of colonies formed by LSK (B) and GMP (C) cells expressing indicated FLAG-ENL

transgenes under the treatment of DMSO or TDI (1uM). Error bars represent mean + SEM (n = 3). P

values using unpaired, two-tailed Student’s t-test.
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