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Abstract

Motivation: Malaria parasite genetic data can provide insight into parasite phenotypes, evolution, and

transmission. However, estimating key parameters such as allele frequencies, multiplicity of infection (MOI),

and within-host relatedness from genetic data is challenging, particularly in the presence of multiple related

coinfecting strains. Existing methods often rely on single nucleotide polymorphism (SNP) data and do not

account for within-host relatedness.

Results: We present MOIRE (Multiplicity Of Infection and allele frequency REcovery), a Bayesian approach

to estimate allele frequencies, MOI, and within-host relatedness from genetic data subject to experimental

error. MOIRE accommodates both polyallelic and SNP data, making it applicable to diverse genotyping

panels. We also introduce a novel metric, the effective MOI (eMOI), which integrates MOI and within-

host relatedness, providing a robust and interpretable measure of genetic diversity. Extensive simulations

and real-world data from a malaria study in Namibia demonstrate the superior performance of MOIRE over

naive estimation methods, accurately estimating MOI up to 7 with moderate sized panels of diverse loci

(e.g. microhaplotypes). MOIRE also revealed substantial heterogeneity in population mean MOI and mean

relatedness across health districts in Namibia, suggesting detectable differences in transmission dynamics.

Notably, eMOI emerges as a portable metric of within-host diversity, facilitating meaningful comparisons

across settings when allele frequencies or genotyping panels differ. Compared to existing software, MOIRE

enables more comprehensive insights into within-host diversity and population structure.

Availability: MOIRE is available as an R package at https://eppicenter.github.io/moire/.

Contact: mm@maxmurphy.dev

Supplementary information: Supplementary data are available at Bioinformatics online.

Introduction1

Genetic data can be a powerful source of information for2

understanding malaria parasite phenotype and transmission3

dynamics, providing insight into population structure and4

connectivity, and thereby informing control and elimination5

efforts. However, analysis is complicated in malaria due to6

the presence of multiple coinfecting, genetically distinct strains.7

More specifically, genetically distinct strains may share the8

same alleles at genetic loci, rendering the actual number of9

strains contributing a particular allele unknown and making it10

difficult to estimate fundamental statistics such as population 11

allele frequencies and multiplicity of infection (MOI). Standard 12

methods to address this either naively estimate allele frequencies 13

and MOI without considering the total number of strains 14

contributing an allele (Roh et al., 2019; Tessema et al., 2019; 15

Pringle et al., 2019), or completely ignore polyclonal samples 16

during analysis. Naive estimation without accounting for strain 17

count contribution results in biased estimates of allele frequencies 18

and MOI, leading to meaningful systematic biases in summary 19

statistics. For example, naive estimation of allele frequencies 20
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without consideration of strain composition from polyclonal21

samples results in a consistent overestimation of heterozygosity,22

leading to potentially faulty inference about population diversity.23

Additionally, naive estimation offers no principled way to address24

genotyping error beyond heuristics, further biasing estimates of25

diversity in ways that depend on choices made during initial26

interpretation of genotyping data. Alternatively, considering only27

monoclonal samples is potentially problematic, as this may require28

a substantial number of samples to be discarded when collected29

from regions where multiple infection is the rule rather than30

the exception. Further, the monoclonal subset of samples are31

fundamentally different from the larger population of interest, as32

they preclude the possibility of within-host relatedness between33

strains. This ignores a potentially important source of information34

about transmission dynamics, as within-host relatedness may35

be indicative of co-transmission or persistent local transmission36

(Wong et al., 2017; Nkhoma et al., 2020; Wong et al., 2018).37

To address these issues and make full use of available data,38

Chang et al. (2017) developed a Bayesian approach (THE REAL39

McCOIL) to estimate allele frequencies and MOI in the context40

of polygenomic infections from single nucleotide polymorphism41

(SNP) based data. More recently, coiaf (Paschalidis et al.,42

2023) and SNP-Slice (Ju et al., 2023) have been developed to43

further improve computational efficiency and resolving power.44

Briefly, coiaf takes user provided allele frequencies and SNP read45

count data and applies an optimization procedure to estimate46

either discrete or continuous values for MOI. SNP-Slice also47

takes SNP read count data and uses a non-parametric Bayesian48

approach to simultaneously estimate phased strain identity and49

within-host strain composition. While Paschalidis et al. suggest50

within-host relatedness as a possible explanation for continuous51

values of MOI, and the method by Ju et al. may provide52

a way to interrogate within-host relatedness through phased53

strain composition, none of these methods directly consider or54

estimate within-host relatedness. Further, these methods are all55

tailored to SNP based data and are unable to accommodate more56

diverse polyallelic loci, such as microsatellites, which have been57

widely used in population genetic studies (Anderson et al., 2000;58

Tessema et al., 2019; Roh et al., 2019; Pringle et al., 2019).59

Other methods that infer within-host relatedness (Zhu et al.,60

2019), in contrast, rely on whole genome sequencing (WGS)61

data. WGS based approaches, however, frequently have poor62

sensitivity for detecting minority strains and low density infections63

(Tessema et al., 2022). In recent years, the declining cost of DNA64

sequencing and development of high throughput, high diversity,65

targeted sequencing panels have made polyallelic data even more66

attractive for genomic based studies of malaria (Tessema et al.,67

2022; LaVerriere et al., 2022; Kattenberg et al., 2023). Genetic68

analysis methods leveraging polyallelic loci have the potential69

for substantially increased resolving power over their SNP based70

counterparts, particularly in the context of related polyclonal71

infections in malaria (Taylor et al., 2019; Inna Gerlovina et al.,72

2022). Unfortunately, there are limited tools available to analyze73

these types of data.74

We present here a new Bayesian approach, Multiplicity Of75

Infection and allele frequency REcovery from noisy polyallelic76

data (MOIRE), that, like THE REAL McCOIL, enables the77

estimation of allele frequencies and MOI from genomic data78

that are subject to experimental error. In addition, MOIRE79

estimates and accounts for within-host relatedness of parasites,80

a common occurrence due to the inbreeding of parasites serially 81

co-transmitted by mosquitoes (Nkhoma et al., 2020, 2012). 82

Critically, MOIRE takes as input genetic data of arbitrary 83

diversity, allowing for estimation of allele frequencies, MOI, 84

and within-host relatedness from polyallelic as well as biallelic 85

data. MOIRE is able to fully utilize polyallelic data, yielding 86

joint estimates of allele frequencies, sample specific MOIs and 87

within-host relatedness along with probabilistic measures of 88

uncertainty. We demonstrate through simulations and applications 89

to empirical data the ability of MOIRE to leverage a variety of 90

polyallelic markers. Polyallelic markers can greatly improve jointly 91

estimating sample MOI, within-host relatedness, and population 92

allele frequencies, resulting in reduced bias and increased power 93

for understanding population dynamics from genetic data. We also 94

introduce a new metric of diversity, the effective MOI (eMOI), a 95

continuous value that combines estimates of the true MOI and 96

the degree of within-host relatedness in a single sample, providing 97

an interpretable quantity that is comparable across genotyping 98

panels and transmission settings. We contrast this with the within- 99

host infection fixation index, FWS , a frequently used metric 100

of within-host diversity and signal of inbreeding and population 101

sub-structure (Manske et al., 2012; Auburn et al., 2012), and 102

demonstrate the inherent shortcomings of FWS as a non-portable 103

metric. 104

Methods 105

A model of infection and observation 106

Consider observed genetic data X = (X1, . . . , Xn) from n samples 107

indexed by i, where each Xi is a collection of vectors indexed 108

by l of possibly differing length, representing the varying number 109

of alleles possible at each locus, e.g. polyallelic loci. Each vector 110

is binary, with 1 representing the allele was observed or 0 111

representing the allele went unobserved at locus l for sample i. 112

From this data, we wish to estimate MOI for each individual 113

(µ = [µ1, . . . , µn]), within host relatedness (r = [r1, . . . , rn]), 114

defined as the average proportion of the genome that is identical by 115

descent across all strains, individual specific genotyping error rates 116

(ϵ+ = [ϵ+1 , . . . , ϵ+n ] and ϵ− = [ϵ−1 , . . . , ϵ−n ]), and population allele 117

frequencies at each locus (π = [π1, . . . , πl]). Similar to Chang et al. 118

(2017), we applied a Bayesian approach and looked to estimate the 119

posterior distribution of µ, r, ϵ+, ϵ− and π as 120

P (µ, r, ϵ
+
, ϵ

−
,π|X) ∝

n∏
i=1

P (Xi|µi, ri, ϵ
+
i , ϵ

−
i ,π)P (µ, r, ϵ

+
, ϵ

−
,π)

(1) 121

where we assumed independence between samples. 122

Given that the observed genetic data are experimentally derived, 123

they are subject to some rate of false positives where an allele 124

is erroneously called as present, and false negatives where an 125

allele is erroneously called as absent. To address this issue, we 126

augmented our model with a latent true genetic state Y , reflecting 127

the true presence or absence of alleles at each locus for each 128

individual. Augmenting our model with this latent state allowed 129

us to incorporate and model the uncertainty around measurement 130

of genetic data separately from the uncertainty around the true 131

genetic state, as expressed in the following factorization: 132

P (Xi|Yi, µi, ri, ϵ
+
i , ϵ−i ,π) = P (Xi|Yi, ϵ

+
i , ϵ−i )P (Yi|µi, ri,π) (2) 133

We assumed a prior in which the MOI of each individual was 134

independent of the MOI of other individuals, relatedness was 135
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independent across individuals, error rates were independent136

across individuals, and allele frequencies were independent across137

loci and without linkage disequilibrium, yielding the following138

factorization:139

P (µ, r, ϵ+, ϵ−,π) =
n∏

i=1

P (µi)P (ri)P (ϵ+i )P (ϵ−i )
l∏

j=1

P (πl) (3)140

Details of the likelihood and prior distributions are provided in141

the supplementary material (section 1 and section 2), as well as142

practical considerations when using MOIRE with real world data143

(section 3).144

Effective MOI145

By estimating MOI and within-host relatedness, we can estimate146

a continuous metric of genetic diversity within a host, the effective147

MOI (eMOI), which we define as:148

eMOI = 1 + (1− r)(µ− 1) (4)149

One interpretation of the effective MOI is the expected number150

of distinct alleles at a locus with infinite diversity, i.e. a locus151

where heterozygosity is 1 (see supplementary section 6 for a formal152

derivation). In the case of no within-host relatedness, this is153

simply the MOI. However, when there is within-host relatedness,154

the effective MOI is the MOI weighted by the probability that155

a given strain is unrelated to all other strains within the host,156

and ranges from 1 to µ. This value better reflects the true157

genetic diversity within a host than the MOI alone, and allows158

for comparison and differentiation of genetic diversity across hosts159

with the same MOIs. We also note that eMOI is likely to be more160

identifiable than MOI or within-host relatedness alone because it161

is a one-dimensional combination of the two estimated parameters162

with synergistic properties around precision. As MOI increases,163

precision around estimates of within-host relatedness also increases164

as there are more observations available to inform within-host165

relatedness. As MOI decreases, precision around the estimate of166

within-host relatedness decreases, however the contribution to the167

estimate of eMOI from within-host relatedness also decreases, and168

thus the overall precision of eMOI is maintained.169

Inference and Implementation170

We fit our model to observed genetic data using a Markov171

Chain Monte Carlo (MCMC) approach using the Metropolis-172

Hastings algorithm with a variety of update kernels. Details of173

sampling and implementation are described in the supplementary174

material (section 5). MOIRE is implemented as an R package175

and is available with tutorials and usage guidance at https:176

//eppicenter.github.io/moire/. All sampling procedures were177

implemented using Rcpp (Eddelbuettel and Francois, 2011) for178

efficiency. Substantial effort was placed on ease of use and179

limiting the amount of tuning required by the user by leveraging180

adaptive sampling methods. We provide weak default priors for181

all parameters and recommend that users only modify priors if182

they have strong prior knowledge about the parameters, such183

as experimentally derived estimates of false positive and false184

negative rates using samples with known parasite compositions185

and densities. All analysis conducted in this paper was done186

using MOIRE with default priors and settings, using 40 parallel187

tempered chains for 5000 burn-in steps, followed by 10,000 samples 188

which were thinned to 1000 total samples. 189

Results 190

Estimation of multiplicity of infection, within-host relatedness, 191

and allele frequencies 192

We simulated collections of 100 samples under varied combinations 193

of population mean MOI, average within-host relatedness, false 194

positive and false negative rates, and different genotyping panels 195

(details of our simulation procedure may be found in the 196

supplement section 4). Individual MOIs were drawn from zero 197

truncated Poisson (ZTP) distributions with rate parameters 1, 3, 198

and 5, resulting in mean MOIs of 1.58, 3.16, and 5.03 respectively. 199

Within-host relatedness was simulated from settings with low, 200

moderate, and high relatedness. False positive and false negative 201

rates were varied from 0 to 0.1. We first simulated synthetic 202

genomic loci with prespecified diversity: 100 SNPs, 30 loci with 5 203

alleles (moderate diversity), 30 loci with 10 alleles (high diversity), 204

and 30 loci with 20 alleles (very high diversity) with frequencies 205

drawn from the uniform Dirichlet distribution. We also assessed 206

potential real world performance of MOIRE by simulating data for 207

5 currently used genotyping panels from 12 regional populations 208

characterized by the MalariaGEN Pf7 dataset (Abdel Hamid et al., 209

2023) as described in the supplementary material (section 7, 210

Supplementary Figure 4). Genetic loci were selected according to 211

a 24 SNP panel (Daniels et al., 2008), a 101 SNP panel (Chang 212

et al., 2019), and 3 recently developed amplicon sequencing panels 213

consisting of 128 (LaVerriere et al., 2022), 165 (Aranda-Diaz and 214

Neubauer Vickers, 2022), and 233 (Kattenberg et al., 2023) diverse 215

microhaplotypes respectively. Like the fully synthetic simulations, 216

these simulations were varied over a range of MOI and within- 217

host relatedness, however error rates were fixed at moderate false 218

positive and false negative rates of .01 and .1 respectively for 219

the purposes of computational feasibility due to the extensive 220

number of simulations required. We chose these levels as we 221

believe they are reflective of the most likely situation of higher 222

levels of false negatives and relatively low rates of false positives 223

from a typical bioinformatics pipeline. We then ran MOIRE and 224

calculated summary statistics of interest on the sampled posterior 225

distributions. 226

We estimated allele frequencies, heterozygosity, MOI, within-host 227

relatedness, and eMOI using the mean or median of the posterior 228

distribution output by MOIRE. It should be noted that within- 229

host relatedness is only defined for polyclonal infections, so the 230

posterior distribution of within-host relatedness is conditional 231

on the MOI being greater than 1. We contrasted these with 232

naive estimates of allele frequency and MOI by assuming that an 233

observed allele was contributed by a single strain, and estimated 234

MOI as equal to the second-highest number of alleles observed 235

across loci. We calculated ground truth allele frequencies using 236

the true number of strains contributing each allele. 237

Under moderate false positive and false negative rates of 0.01 238

and 0.1 respectively, MOIRE accurately recovered parameters of 239

interest across a range of genotyping panels, population MOI, 240

and within-host relatedness (Figure 1, Table 1). Allele frequencies 241

estimated by MOIRE were unbiased across genotyping panels 242

(Figure 1B), leading to unbiased estimates of heterozygosity 243

(Figure 1C). Naive estimation exhibited substantial bias that 244
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4 Murphy et al.

Panel Source Heterozygosity Allele Freqs. MOI Relatedness eMOI

MOIRE Naive MOIRE Naive MOIRE Naive MOIRE MOIRE

100 SNP Synthetic 0.01 (.95) 0.05 0.02 (.95) 0.06 1.72 (.85) 3.61 0.20 (.70) 0.37 (.77)

Moderate Div. Synthetic 0.01 (.99) 0.04 0.01 (.96) 0.02 1.55 (.88) 2.53 0.14 (.77) 0.17 (.91)

High Div. Synthetic 0.01 (.99) 0.02 0.01 (.91) 0.01 1.29 (.86) 1.87 0.11 (.75) 0.12 (.89)

Very High Div. Synthetic 0.02 (.60) 0.01 0.01 (.82) 0.01 1.02 (.86) 1.28 0.10 (.77) 0.10 (.85)

24 SNP Daniels et al. (2008) 0.01 (.90) 0.04 0.02 (.90) 0.05 1.95 (.81) 3.66 0.21 (.75) 0.45 (.86)

101 SNP Chang et al. (2019) 0.01 (.90) 0.04 0.02 (.95) 0.05 1.77 (.85) 3.62 0.20 (.71) 0.36 (.79)

AMPLseq LaVerriere et al. (2022) 0.01 (.97) 0.05 0.01 (.94) 0.02 1.32 (.88) 1.86 0.12 (.71) 0.14 (.88)

MaD4HatTeR Aranda-Diaz and Neubauer Vickers (2022) 0.01 (.98) 0.05 0.01 (.95) 0.03 1.24 (.90) 1.88 0.13 (.68) 0.12 (.88)

AmpliSeq Kattenberg et al. (2023) 0.02 (.94) 0.06 0.01 (.93) 0.02 1.34 (.83) 1.56 0.12 (.67) 0.12 (.88)

Table 1. Mean absolute deviation (MAD) of estimates of MOI, heterozygosity, within-host relatedness, and eMOI across simulations using synthetic (top)

and real-world (bottom) genotyping panels. The MAD of estimates of MOI were calculated by taking the mean of the MAD for each stratum of true MOI

between 1 and 10. MOI Within-host relatedness accuracy is only considered for samples with a true MOI > 1. Coverage rates of 95% credible intervals

are shown in parentheses for estimates by MOIRE.

Fig. 1: True vs. estimated values of parameters across panels of

varying genetic diversity. Panel A summarizes the distribution of

heterozygosity across each panel used. Each symbol represents the

estimated value of the parameter for a single simulated dataset,

with the true value of the parameter on the x-axis and the

estimated value on the y-axis. Simulations were pooled across

mean MOIs and levels of relatedness. False positive and false

negatives rates were fixed to 0.01 and 0.1 respectively. Opacity

was set to accommodate overplotting, except in the case of within-

host relatedness where opacity reflects the estimated probability

that a sample is polyclonal, calculated as the posterior probability

of the sample MOI being greater than 1, as individual within-

host relatedness is only defined for samples with MOI greater

than 1. MOIRE accurately recovered parameters of interest with

increasing accuracy as panel diversity increased, while naive

estimation exhibited substantial bias where such estimators exist.

varied with respect to the true allele frequency. Rare alleles tended245

to be overestimated and common alleles underestimated, leading246

to inflated estimates of heterozygosity.247

MOI was also well estimated by MOIRE, with accuracy increasing 248

substantially in the presence of more diverse loci (Figure 1D). 249

In the context of SNPs, MOIRE recovered MOI accurately up 250

to approximately 4 strains, and then began to exhibit limited 251

ability to resolve. More diverse panels enabled greatly improved 252

resolving power, allowing for the accurate recovery of MOI 253

up to approximately 7 strains. Naive estimation substantially 254

underestimated MOI in comparison, due in part to the limited 255

capacity of low diversity loci to discriminate MOI, as well as 256

the presence of related strains that deflate the observed number 257

of distinct alleles. This bias was particularly prominent for low 258

diversity markers such as SNPs which can only resolve up to 2 259

strains. 260

MOIRE was generally able to recover within-host relatedness, 261

particularly for moderate and high diversity markers in the 262

context of high relatedness (Figure 1E). SNP based panels had 263

difficulty resolving individual level within-host relatedness and 264

were sensitive to the uniform prior. It should be noted that in 265

the circumstance that a monoclonal infection has an inferred MOI 266

greater than 1, MOIRE will likely classify these infections with 267

very high relatedness (Figure 1E). This is due to the presence of 268

false positives that MOIRE will sometimes infer as an infection 269

consisting of highly related strains rather than being explained 270

by observation error. Therefore, within-host relatedness should be 271

interpreted in the context of the probability of the infection being 272

polyclonal. A more robust metric is eMOI, since it is a metric of 273

diversity that integrates MOI and within-host relatedness. 274

MOIRE recovered eMOI with high accuracy under all conditions 275

using polyallelic panels (Figure 1F). SNP panels exhibited a larger 276

degree of bias at higher eMOI, but still performed relatively well 277

for eMOI of up to 4. This demonstrates that while identifiability 278

of MOI or within-host relatedness may be challenging in some 279

situations, eMOI is a reliably identifiable quantity when estimated 280

using highly polymorphic markers. 281

All simulations were also conducted without any relatedness 282

present. MOIRE was still able to accurately recover allele 283

frequencies, heterozygosity, and MOI, indicating that minimal 284

bias or uncertainty are introduced by attempting to estimate 285

relatedness (Supplementary Figure 1). 286

These patterns held across the range of false positive and false 287

negative rates simulated with the fully synthetic simulations. 288
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Allele frequencies and heterozygosity remained well estimated by289

MOIRE across settings, however bias was elevated for individual290

level estimates of MOI, within-host relatedness, and eMOI when291

false positive rates were increased and panel diversity was low.292

Increased false negative rates did not result in any additional bias293

within the range of tested values (Supplementary Figure 2).294

Population inference295

MOIRE is a probabilistic approach providing a full posterior296

distribution over model parameters, allowing estimation of credible297

intervals for model parameters as well as functions thereof. While298

sample level parameters estimated by the model are useful, it may299

also be useful to estimate population level summary statistics300

for reporting and comparison purposes. We thus calculated the301

posterior distribution of population level summaries of interest,302

such as mean MOI, mean within-host relatedness, and mean303

eMOI. We note that mean within-host relatedness is defined only304

for samples with MOI greater than 1, therefore the posterior305

distribution of mean within-host relatedness was calculated across306

samples with MOI greater than 1 at each iteration of the MCMC307

algorithm. MOIRE accurately estimated these quantities across308

a range of conditions (Supplementary Figure 3), with the best309

performance seen for polyallelic data.310

Population mean MOI was accurately estimated across all panels,311

with improved precision at lower levels (Supplementary Figure 3A,312

Table 1). Credible interval (CI) coverage in general was poor,313

likely due to the challenge of identifiability in conjunction with314

within-host relatedness. SNP panels were largely unable to resolve315

population level mean within-host relatedness and exhibited poor316

CI coverage and substantial sensitivity to the uniform prior317

specification due to the low relative information contained in these318

markers. Polyallelic panels in contrast had improved precision as319

more diverse panels were used, although CI coverage was also320

poor due to persistent sensitivity to the uniform prior as indicated321

by slightly overestimating within-host relatedness below .5 and322

underestimating within-host relatedness above .5.323

Population mean eMOI was remarkably accurate for low and324

medium mean MOI when using SNP based panels, with bias325

only becoming apparent at higher mean MOI (Supplementary326

Figure 3C, Table 1). Polyallelic panels had substantially improved327

precision across a wide range of values, further demonstrating that328

while population mean within-host relatedness or mean MOI may329

be challenging to identify, mean eMOI remains a highly identifiable330

quantity when genetic markers with sufficient diversity are used.331

Metric stability across genetic backgrounds332

Population metrics of genetic diversity enable researchers to make333

comparisons across space and time, and to answer questions334

relating to differences in transmission dynamics. In order for a335

metric to be useful for these purposes, it must be sensitive to336

changes in transmission dynamics while remaining insensitive to337

other factors that vary and may confound interpretation, such as338

the genotyping panel used, or the local allele frequencies for a339

given panel. For example, if we were to compare two populations340

that exhibit the same transmission dynamics, we would want the341

metric to be the same, uninfluenced by differing population allele342

frequencies. It would be even better if the metric is insensitive to343

the genotyping panel used, allowing for comparisons across studies344

that are independent of the technology utilized.345
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Fig. 2: Comparison of mean eMOI to other summary

measures of diversity across varying levels of within-host

relatedness. For each level of relatedness (low and high), we

simulated 100 infections with a mean MOI of 1.51 and 3.16, for a

total of 400 infections across 4 conditions. Keeping the MOI and

relatedness fixed for each sample, we varied the genetic diversity

of the panel used to genotype each sample. We then calculated the

mean eMOI from MOIRE, mean MOI using the naive estimator,

and mean FWS using a naive estimate of allele frequencies for each

simulation to assess the sensitivity of each metric to varying the

genetic diversity of the panel. True mean eMOI and mean MOI

are fixed values within levels of within-host relatedness and are

annotated by dashed lines. Mean FWS is not fixed within levels

of within-host relatedness and MOI because it is a function of the

genetic diversity of the panel.

To explore the performance of eMOI across varying transmission 346

settings, we simulated 100 samples with MOI drawn from a ZTP 347

distribution with either λ = 1 or λ = 3. For each sample, we 348

then simulated either low or high within-host relatedness. For each 349

individual level simulation, we then observed simulated genetics 350

parameterized by each of the 12 regional populations previously 351

described using the 5 genotyping panels, followed by the previously 352

described observation process with false positive and false negative 353

rates of .01 and .1 respectively. We then fit MOIRE on each 354

simulation independently. 355

For each simulation, we calculated mean eMOI, mean naive MOI, 356

and the within-host infection fixation index (FWS) (Roh et al., 357

2019; Manske et al., 2012), a frequently used metric of within- 358

host diversity that relates genetic diversity of the individual 359

infection to diversity of the parasite population. Mean MOI was 360

calculated using the second-highest number of observed alleles, 361

and FWS used the observed genetics, assuming all alleles were 362

equifrequent within hosts, and naive estimates of allele frequencies 363

to estimate heterozygosity. For these metrics to be most useful in 364

characterizing transmission dynamics, they should be the same for 365

all simulations with the same degree of within-host relatedness and 366

mean MOI, no matter the panel used nor the genetic background 367

of the population. We found that mean eMOI was stable across all 368

genetic backgrounds using microhaplotype based panels, yielding 369

accurate estimates of mean eMOI despite substantial variability in 370

local diversity of alleles, as shown by heterozygosity, and differing 371
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genomic loci (Figure 2A). Interestingly, while the SNP panels372

exhibited reduced precision and downward bias as expected, they373

were consistently biased with respect to the true eMOI, even across374

different panels. This suggests that SNP panels, while limited375

in resolving power, may still have utility in estimating relative376

ordering of eMOI. These results also demonstrate that eMOI may377

be readily used and compared across transmission settings and378

is relatively insensitive to other factors such as heterozygosity379

that may vary across settings. In contrast, mean naive MOI and380

FWS were sensitive to genetic background and genotyping panel381

in confounded ways. Mean naive MOI, only useful with polyallelic382

markers, exhibits an inherent upward bias as mean heterozygosity383

increases that is most severe at higher mean MOI. This bias384

also varied with the genotyping panel used, making it difficult385

to interpret and compare across settings (Figure 2B). FWS is386

also sensitive to genetic background and panel used, exhibiting387

an upward trend as heterozygosity increases and a bias that varies388

across panels. This is inherent to the construction of the metric, as389

it is coupled to an estimate of the true heterozygosity of genetic loci390

being used (Figure 2C). This simulation demonstrates limitations391

in the utility of FWS as a metric of within-host diversity for a392

population as it is inherently uncomparable across settings due to393

its high sensitivity to varying genetic background and genotyping394

panel used. Mean eMOI, in contrast, is a stable metric of genetic395

diversity that is insensitive to genetic background and genotyping396

panel, and is thus readily comparable across settings.397

Application to a study in Northern Namibia398

We next used MOIRE to reanalyze data from a previously399

conducted study carried out in northeastern Namibia consisting400

of 2585 samples from 29 health facilities across 4 health districts401

genotyped at 26 microsatellite loci (Tessema et al., 2019). We ran402

MOIRE across samples collected from each of the 4 health districts403

independently. Running MOIRE in this way implies that we are404

assuming that all samples from each health district come from405

a shared population with the same allele frequencies. We then406

calculated summary statistics of interest on the sampled posterior407

distributions.408

We compared our results to the naive estimation conducted in409

the original study and found that overall relative ordering of410

mean MOI was maintained, with Andara and Rundu exhibiting411

the highest MOI, Zambezi the lowest, and Nyangana in between,412

consistent with contemporary estimates of transmission intensity413

(Tessema et al., 2019). However, similar to our simulations, naive414

estimation substantially underestimated mean MOI across health415

districts compared to MOIRE (Figure 3A and C). Individual416

within-host relatedness was estimated to be very high across417

sites (IQR: .61-.91) with no differences between sites (Figure 3B).418

This suggests substantial inbreeding which may be indicative of419

persistent local transmission, consistent with the original findings420

by Tessema et al. (2019) We also found that heterozygosity421

across loci estimated by MOIRE was generally lower (IQR:422

.55 - .85), consistent with the previously described simulations423

demonstrating that naive estimation overestimates heterozygosity,424

and that previously detected statistically significant differences in425

heterozygosity between the Zambezi region and the other three426

regions may have been an artifact of biased estimation (Figure 3D).427

We also ran MOIRE independently across each of the 29 health428

facilities, excluding 2 health facilities from the Zambezi region429
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Fig. 3: Estimated MOI, relatedness, eMOI and

heterozygosity in Northern Namibia. MOIRE was run

on data from 2585 samples from 29 clinics genotyped at 26

microsatellite loci, subset across four health districts. Each point

represents the posterior mean or median for each sample or locus

level parameter. The black circle represents the population mean

with 95% credible interval for each health district and the black

triangle indicates the naive estimate where applicable. In the case

of eMOI (C), the naive estimate is simply the MOI. Opacity was

used to accommodate overplotting in A, C and D, however opacity

in B is reflective of the posterior probability of a particular sample

being polyclonal to emphasize that an observation’s contribution

to the posterior distribution of mean within-host relatedness is

weighted by its probability of being polyclonal. This is due to the

fact that mean within-host relatedness is only defined for samples

with MOI greater than 1, and thus the posterior distribution of

within-host relatedness was calculated by taking the mean within-

host relatedness across samples with MOI greater than 1 at each

iteration of the MCMC algorithm. Therefore, the opacity of each

point in B is reflective of the contribution of that sample to the

posterior distribution of mean within-host relatedness.

due to low total number of samples (n = 9 in each). Stratifying 430

by health facility revealed substantial heterogeneity in mean MOI, 431

within-host relatedness, and consequently eMOI, also consistent 432

with the findings by Tessema et al. (2019) (Figure 4). Interestingly, 433

Tessema et al. (2019) identified Rundu district hospital as having 434

exceptionally high within-host diversity as measured by FWS , 435

which was posited to be due to a large fraction of the patients 436

having traveled or resided in Angola. We found that Rundu district 437

hospital had the highest mean eMOI and greatest spread across 438

observations (mean = 4.3 [95% CI: 4.18 - 4.4], IQR = 4.88). This 439

was mainly driven by much higher mean MOI (7 [95% CI: 6.5- 440

7.5]), and low mean within-host relatedness (.47 [95% CI: .43 - 441

0.51]). The combination of high MOI and relatively low within- 442

host relatedness, translating into high population mean eMOI, 443
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Fig. 4: Estimated MOI, relatedness, eMOI and

heterozygosity in Northern Namibia, stratified by health

facility. MOIRE was run independently on data from each

health facility. Two health facilities from the Zambezi region were

excluded due to only having 9 samples present in each subset.

Health facilities are plotted in geographic order from West to East.

Plotting conventions are the same as in Figure 3.

suggests that samples collected here reflect a parasite population444

experiencing less inbreeding and more superinfection, which may445

be indicative of higher transmission intensity in tandem with a446

larger effective population size.447

Discussion448

Translating Plasmodium genetic data from naturally acquired449

infections into meaningful insights about population genetics or450

malaria transmission dynamics often begins with estimation of451

allele frequencies and MOI. We demonstrated through simulation452

that naive estimation introduces substantial biases, rendering453

estimation unreliable and uncomparable between settings.454

In particular, naive estimation systematically overestimates455

measures of allelic diversity such as heterozygosity and456

systematically underestimates MOI. State-of-the-art methods457

previously available to more accurately estimate individual level458

MOI and population allele frequencies only allow for SNP based459

data, and fail to directly consider within-host relatedness as460

an important biologic factor (Chang et al., 2017; Paschalidis461

et al., 2023; Ju et al., 2023). MOIRE fills these important462

gaps, demonstrating both the power and necessity of polyallelic463

data to obtain precise estimates of these key parameters for464

understanding of parasite population structure and dynamics. The465

R package implementing MOIRE provides a user-friendly interface466

for researchers to easily leverage SNP and polyallelic data to467

estimate these individual and population diversity metrics which468

are fundamental for many downstream analyses and often of direct469

interest themselves.470

By estimating within-host relatedness, we also have introduced471

a new metric of diversity—eMOI—a continuous metric that472

integrates within-host relatedness and MOI, providing the first473

portable metric of within-host diversity. This metric is highly474

identifiable and robust to varying genetic backgrounds, and thus475

readily comparable across settings and genotyping technologies.476

We demonstrated that eMOI is a more stable metric of genetic477

diversity than naive MOI or FWS , and is insensitive to other 478

factors that may vary across settings such as allele frequencies 479

of given genetic markers. Further, by decomposing the genetic 480

state of an infection into components of within-host relatedness 481

and the number of distinct strains present, we have enabled 482

the characterization of these quantities independently, which 483

may be of interest in their own right. For example, within-host 484

relatedness may be of interest in the context of understanding the 485

role of inbreeding and co-transmission in the parasite population 486

(Wong et al., 2022; Nkhoma et al., 2020), and the number of 487

distinct strains may be of interest in the context of understanding 488

superinfection dynamics. 489

While we have demonstrated the utility of polyallelic data, MOIRE 490

is still compatible with SNP based data and can offer benefits 491

over other approaches. When using SNP based panels, eMOI 492

is still well characterized up to moderate levels, and while the 493

reduced capacity of SNPs generally results in biased estimates, 494

the estimates recovered reflect changes in within-host relatedness 495

yet are stable across genetic backgrounds. Thus, these data may be 496

useful for comparing relative ordering of eMOI across settings and 497

providing inference. In contrast, existing analytical approaches are 498

likely to be sensitive to model misspecification by not considering 499

within-host relatedness and varying genetic backgrounds, and may 500

be biased in ways that are difficult to interpret and compare across 501

settings. 502

We also note that while increasing the number of loci genotyped 503

is always beneficial, the largest gains in recovering estimates of 504

interest are through using sufficiently diverse loci. Our simulations 505

demonstrate that, even with a modest number of very diverse 506

loci such as our synthetic simulations using 30 loci, eMOI can be 507

recovered with a high accuracy and precision. Marginal increases in 508

complexity of incorporating several highly diverse loci, for example 509

in the context of drug resistance monitoring, may be outweighed 510

by the substantial insights obtained from jointly understanding 511

transmission dynamics, population structure, and drug resistance 512

through increased accuracy of estimating resistance marker 513

allele frequency. Modern amplicon sequencing panels have been 514

developed precisely for these contexts, combining high diversity 515

targets with comprehensive coverage of known resistance markers 516

(LaVerriere et al., 2022; Aranda-Diaz and Neubauer Vickers, 2022; 517

Kattenberg et al., 2023). 518

MOIRE provides a powerful tool for leveraging polyallelic data 519

to understand malaria epidemiology, and there are multiple 520

avenues for future work to further improve inference. First, 521

the observation model does not currently fully leverage the 522

information in sequencing based data where the actual number of 523

reads may be available. This may provide additional information, 524

e.g. to inform false positive rates by considering the number of 525

reads attributable to an allele, as well as false negative rates by 526

considering the total number of reads at a locus which may be 527

indicative of sample quality. Second, we currently consider only a 528

single, well mixed, background population parameterized by allele 529

frequencies at each locus. However, it may be the case that there 530

are multiple distinct populations with their own allele frequencies, 531

and that the observed data is a mixture of these populations. This 532

may be particularly relevant in the context of malaria transmission 533

where there may be multiple distinct populations of parasites 534

circulating in a region. Future work may consider a mixture 535

model over allele frequencies, where the number of populations 536
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is a priori specified or determined through data adaptive non-537

parametric Bayesian modeling, and thereby identify population538

substructure. Alternatively, a spatially explicit approach may be539

feasible that would model the allele frequencies as a function540

of geographic location, potentially enabling resolving geographic541

origin of parasites within observed infections. Third, MOIRE542

currently assumes independence of loci. In the case of locus543

dependence where there is some amount of linkage disequilibrium,544

we would expect estimates of allele frequencies and sample specific545

eMOI to still be consistent if there is not a systematic bias in loci546

towards regions of high or low within-host relatedness.547

In summary, MOIRE enables the use of polyallelic data to548

estimate allele frequencies, MOI, and within-host relatedness, and549

provides a new metric of genetic diversity, the eMOI. We have550

demonstrated that eMOI has improved utility, interpretability,551

and stability across simulated transmission settings than existing552

metrics of within-host diversity such as FWS . Furthermore,553

we demonstrated the utility of MOIRE through simulation and554

reanalysis of previously collected data, and have provided an R555

package to enable researchers to easily leverage polyallelic data556

to make inferences about malaria population dynamics. MOIRE557

also serves as a fundamental building block for future work,558

as it provides a principled approach to jointly estimate allele559

frequencies, MOI, and within-host relatedness from polyallelic560

data, which can be used as a basis for more complex modeling561

of population dynamics. These methods may also be of utility562

for other pathogens where superinfection is common, such as563

schistosomiasis or filarial diseases (Aemero et al., 2015; Hedtke564

et al., 2020).565
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