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Abstract:

Pathophysiology of many neuropsychiatric disorders, including schizophrenia (SCZD), is linked
to habenula (Hb) function. While pharmacotherapies and deep brain stimulation targeting the Hb
are emerging as promising therapeutic treatments, little is known about the cell type-specific
transcriptomic organization of the human Hb or how it is altered in SCZD. Here we define the
molecular neuroanatomy of the human Hb and identify transcriptomic changes in individuals
with SCZD compared to neurotypical controls. Utilizing Hb-enriched postmortem human brain
tissue, we performed single nucleus RNA-sequencing (snRNA-seq; n=7 neurotypical donors)
and identified 17 molecularly defined Hb cell types across 16,437 nuclei, including 3 medial and
7 lateral Hb populations, several of which were conserved between rodents and humans. Single
molecule fluorescent in situ hybridization (smFISH; n=3 neurotypical donors) validated
snRNA-seq Hb cell types and mapped their spatial locations. Bulk RNA-sequencing and cell
type deconvolution in Hb-enriched tissue from 35 individuals with SCZD and 33 neurotypical
controls yielded 45 SCZD-associated differentially expressed genes (DEGs, FDR < 0.05), with
32 (71%) unique to Hb-enriched tissue. eQTL analysis identified 717 independent SNP-gene
pairs (FDR < 0.05), where either the SNP is a SCZD risk variant (16 pairs) or the gene is a
SCZD DEG (7 pairs). eQTL and SCZD risk colocalization analysis identified 16 colocalized
genes. These results identify topographically organized cell types with distinct molecular
signatures in the human Hb and demonstrate unique genetic changes associated with SCZD,
thereby providing novel molecular insights into the role of Hb in neuropsychiatric disorders.
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Main Text:
Introduction

The habenula (Hb) is a small epithalamic brain structure implicated in several
neuropsychiatric conditions, including mood and anxiety disorders, substance use disorders,
and schizophrenia (SCZD) (1–3). Anatomically, it is divided into molecularly and functionally
distinct medial (MHb) and lateral (LHb) subdivisions with discrete connections to monoaminergic
hubs, including dopamine, serotonin, and norepinephrine centers (2). As a circuit hub involved
in motivated behaviors and affective states, the Hb has emerged as a promising therapeutic
target (4–9). Imaging studies in SCZD patients have sought to identify aberrations in Hb
anatomy, connectivity, and activity, but challenges in segmenting this small midline structure
have hindered investigation into its subregions and limited conclusive findings (10–14). Similarly,
there is a paucity of molecular studies in postmortem human Hb due to its challenging size and
location (15–18). While bulk RNA-sequencing (RNA-seq) studies identified gene expression
changes associated with SCZD in other brain regions (19–21), the molecular landscape of the
Hb in SCZD has not yet been investigated.

Single cell RNA-sequencing studies in animal models found diverse cell populations with
unique molecular signatures across LHb and MHb (22–24). However, it is unclear whether these
Hb cell types are conserved in the human brain. This information is important for understanding
biological vulnerabilities underlying human disease, which is critical for improving translational
research outcomes (25). Given the central role of the Hb in modulating dopaminergic,
serotonergic, and cholinergic pathways, molecular profiling in this region can reveal novel
mechanistic insights into disease pathogenesis, especially regarding the nuanced role of
dopamine dysregulation in SCZD. For example, the fact that many antipsychotic medications
act through dopamine and serotonin receptors warrants a deeper exploration of Hb cell types
and signaling pathways contributing to downstream monoaminergic dysfunction(26).
Additionally, SCZD is associated with nicotine dependence, and smoking is reported to improve
cognitive symptoms (27–29). The MHb is enriched in cholinergic populations implicated in
nicotine addiction (30–32), but a link between cholinergic signaling, nicotine dependence, and
psychotic disorders as it relates to the human Hb has yet to be elucidated (33–36).

To address these gaps in knowledge, we generated the first single cell transcriptomic
atlas of the healthy human Hb and evaluated the topography and cross-species convergence of
MHb and LHb cell types. To understand molecular changes in the human Hb associated with
SCZD, we performed bulk RNA-seq and expression quantitative trait locus (eQTL) analysis in
Hb-enriched tissue from SCZD and neurotypical control donors. We identified gene expression
changes and eQTLs unique to Hb-enriched tissue compared to other brain regions in the
context of SCZD. Our findings support previous hypotheses of SCZD etiology that implicate
neurodevelopmental processes (37–40), while providing additional molecular insights into Hb
cell types that may contribute to SCZD pathogenesis.

Results
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Identification of distinct human Hb cell types

To generate a molecular atlas of human Hb cell populations, we performed snRNA-seq
on neuronal (NeuN+) and non-neuronal nuclei from Hb-enriched tissue from 7 neurotypical
control donors (Fig. 1A; Table S1). Following quality control, 16,437 single nucleus
transcriptomes were included in downstream analyses and annotated at broad resolution based
on canonical marker gene expression (Fig. S1-5; Table S2). Graph-based clustering identified
17 molecularly defined cell types, including non-neuronal populations (oligodendrocytes,
astrocytes, microglia, oligodendrocyte precursor cells, and endothelial cells; n=4,101 nuclei),
thalamic neurons (excitatory and inhibitory; n=9,412 nuclei), and Hb neurons (7 lateral [L] and 3
medial [M] Hb subpopulations; n=2,924 nuclei) (Fig. 1B,C; Fig. S13-13; Supplemental
Methods). Principal component analysis revealed that the second and third components of
variation differentiated Hb from thalamic neurons, and neuronal from non-neuronal cell types,
respectively (Fig. S15). The small size and midline location of the Hb resulted in variability in
epithalamus dissections across donors; thus, our samples contained varying proportions of
thalamic and Hb neurons, as well as neuronal versus non-neuronal cell types (Fig. 1D).
However, neuronal enrichment with NeuN+ sorting in a subset of samples increased the capture
rate of Hb neurons, and we observed the presence of LHb and MHb neuronal subpopulations in
most samples.

Broad-level cell labels were assigned based on previously established marker genes
from human, rodent, and zebrafish studies (Fig. 1C) (22–24, 41–44). As expected, POU4F1 and
GPR151 were enriched in human Hb subpopulations compared to thalamic and non-neuronal
populations (17, 45–48). We also identified CHRNB4 and HTR2C as marker genes for MHb and
LHb subpopulations, respectively (Table S6). CHRNB4 encodes a nicotinic acetylcholine
receptor (nAChR) subunit, and is an MHb marker gene in both rodents and humans along with
CHRNA3, another nAChR subunit listed as a top mean ratio marker gene for MHb (23). These
two genes are in a conserved gene locus implicated in nicotine dependence (49, 50). HTR2C,
which encodes a G-protein-coupled receptor (GPCR) serotonin receptor, is also a rodent LHb
marker gene (22, 23). To better understand cell type diversity within anatomical subdivisions of
Hb, we identified top mean ratio marker genes for the 10 LHb and MHb subpopulations
(Fig. 1E; Table S3; Supplemental Methods). This allowed us to gain functional insights into
different LHb and MHb subpopulations, such as the identification of cholinergic neurons (MHb.2)
expressing high levels of CHAT and the identification of a LHb.2 subpopulation expressing high
levels of CRH and OPRM1.

Conservation of Hb cell types from preclinical rodent model in human Hb

To evaluate whether Hb cell types found in rodents are conserved in human Hb, we
conducted a cross-species correlation analysis with mouse Hb single cell RNA-seq data (22).
We observed positive correlations between the human and mouse datasets across broad cell
type categories, including astrocytes, microglia, oligodendrocytes, and neurons (Fig. 2A). A
correlation analysis restricted to human Hb (3 MHb, 7 LHb) and mouse Hb neuronal cell types
(6 MHb, 6 LHb) revealed some cross-species convergence of Hb neurons (Fig. 2B). Human
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MHb subpopulations were most strongly correlated with mouse MHb subpopulations, and the
same relationship held true for the LHb subpopulations, with the exception of human LHb.6
which most strongly correlated with mouse MHb.1. Of particular interest was the convergence of
human MHb.1 and MHb.2 with mouse MHb subpopulations. Human MHb.1 neurons express
relatively high levels of CCK, TAC1, and TAC3, which encode various neuropeptides; human
MHb.2 neurons are cholinergic as evidenced by relative high levels of CHAT expression
(Fig. 1E). Neuronal subpopulations enriched in these marker genes were previously identified in
rodent Hb (22, 23). Among the LHb subpopulations, human LHb.4, LHb.3, and LHb.2 had the
strongest positive correlation with mouse LHb.3, LHb.1, and LHb.5, respectively, suggesting
cross-species convergence of these molecularly distinct neuronal cell types.

Topography of human Hb cell types

Given that rodent LHb and MHb neuronal subpopulations display topography (23, 24),
we validated the spatial organization of select human Hb subpopulations using single molecule
fluorescent in situ hybridization (smFISH; n=2-3 donors per experiment; Table S4, Table S5).
We used three probe combinations each targeting 4 mean ratio marker genes to visualize the
following subpopulations (many of which could be identified by one marker gene, or a
combination of 2 genes): LHb.1, LH.4, and LHb.5/1 (ONECUT2, TLE2, SEMA3D); LHb.2,
LHb.3, and LHb.6 (CRH, MCOLN3, ESRP1); MHb.1, MHb.2, and MHb.3 (CCK, CHAT, EBF3)
(Fig. 3). Across donors, we observed spatial biases in some human Hb cell type locations
(Fig. S6-8). For example, cells that highly expressed ESRP1 (putative LHb.6 neurons) displayed
a dorsal bias (Fig. 3B). Furthermore, cells that highly expressed CHAT (putative MHb.2
neurons) clustered separately from other MHb cell types (Fig. 3C). Taken together, smFISH
results validated snRNA-seq neuronal subpopulations and corroborated findings in mice that
molecularly defined LHb and MHb subpopulations show distinct spatial organization.

UNIQUE SCHIZOPHRENIA-ASSOCIATED TRANSCRIPTOMIC CHANGES IN HUMAN HB
COMPARED TO OTHER BRAIN REGIONS

To investigate transcriptomic changes associated with SCZD diagnosis in the human Hb,
we performed bulk RNA-seq of postmortem human Hb-enriched tissue samples from 35 SCZD
cases and 34 neurotypical controls (Fig. 4A, Table S1, Fig. S10). Due to inclusion of
surrounding thalamic tissue during epithalamus dissections, we leveraged our human Hb
snRNA-seq dataset (Fig. 1) to implement cell type deconvolution of the bulk RNA-seq data.
Samples contained some proportion of Hb cell types as estimated by utilizing the top 25 mean
ratio marker genes for broad cell types (Fig. S11, Fig. S12, Fig. S16, Table S6). The one
control sample that did not meet this criterion was dropped from further analyses.

Prior to performing differential gene expression (DGE) analysis, we assessed how the
transcriptomic landscape of our Hb-enriched samples compared to that of other brain regions
and subregions implicated in psychiatric disorders. We conducted principal component analysis
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(PCA) on bulk RNA-seq data (subsetted to neurotypical control samples) from eleven regions (n
= 817 total samples), including the amygdala, hippocampus, caudate, and several cortical areas
(Fig. 4B-C). Hb-enriched samples separated from other brain regions’ samples along the sixth
principal component axis (PC6), which explained 2.64% of the variance in the combined
dataset, highlighting that Hb-enriched thalamus has unique transcriptional features compared to
other brain regions.

We then performed DGE analysis by diagnosis (SCZD vs. Control samples) to identify
genes significantly upregulated or downregulated (FDR < 0.1) in Hb-enriched tissue (Fig. 4D;
Table S7). We controlled for effects of covariates including age, estimated proportions of Hb
and thalamic cells in the samples, bulk RNA-seq quality control metrics, and quality surrogate
variables associated with RNA degradation (51, 52), all of which explained a portion of the gene
expression variance (Supplementary Methods, Fig. S17). We found 173 differentially
expressed genes (DEGs, FDR < 0.1) between SCZD cases and controls, including several
genes previously implicated in SCZD, such as NOTCH4 (Fig. 4D) (37, 53–56). To evaluate
SCZD-associated gene expression differences unique to Hb-enriched tissue compared to other
brain regions, we conducted a cross-region comparison of DEGs obtained from our Hb-enriched
dataset (n=45 DEGs, FDR < 0.05) and those from previously published bulk RNA-seq studies of
four other brain regions: dorsolateral prefrontal cortex (DLPFC), hippocampus, dentate gyrus,
and caudate (19–21) (Fig. 4E). We found the highest number of overlapping DEGs (n=12, FDR
< 0.05) with the caudate, with one or less overlapping DEGs in other brain regions tested.
PHOSPHO1, an upregulated DEG in both Hb-enriched samples and caudate, showed
enrichment in the human LHb.3 subpopulation (enrichment t-stat = 4.415). In summary, we
identified 32 DEGs (FDR < 0.05) between Control and SCZD samples that were unique to the
Hb-enriched dataset compared to other brain regions. These results support a critical role for
the human Hb in neuropsychiatric disease, and provide potential Hb-specific molecular targets
for functional follow up and therapeutic applications.

Hb eQTL identification

By combining single nucleotide polymorphism (SNP) DNA genotype data with bulk
RNA-seq gene expression data, we identified independent expression quantitative trait loci
(eQTL) for 717 SNP-gene pairs involving 707 unique genes and 687 unique SNPs
(Supplementary Methods, Table S8) (57). Seven pairs involved SCZD DEGs in Hb-enriched
tissue (FDR<0.1, Fig. 5A, Fig. S18, Fisher’s exact test p=0.3045 for a positive association,
Table S9A) and 16 different pairs involved SCZD GWAS risk SNPs (p<5 * 10-8, Fig. 5B,
Fig. S19, Fisher’s exact test p=4.571e-08 for a positive association, Table S9B) (58). By
evaluating the effect of the estimated Hb or thalamus neuronal cell fractions (Fig. S20), 7
SNP-gene pairs have increased eQTL signal when Hb fraction increases and thalamus fraction
decreases (Fig. 5C). Most independent eQTLs identified in Hb-enriched tissue were either
unique or more strongly associated in Hb than in DLPFC or hippocampus (Fig. 5D-E) (21).
Colocalization analysis (59) of eQTL and SCZD PGC3 GWAS data identified colocalization for
16 genes (PP4 > 0.8), with 123 out of 256 (47.3%) SNPs from the 95% credible sets being
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SCZD risks SNPs (Table S10). PCCB (Table S10) was previously identified as a colocalized
gene with SCZD in a multi-ancestry meta-analysis from 2,119 brain donors from other brain
regions (60). In the developing brain, ANKRD45, CCDC122, DNAH10OS, LRRC37A2, and
PCCB (Table S10) were recently colocalized with SCZD (61). ANKRD45, ATXN7, GABBR2,
and PCCB (Table S10) are among a set of 1,111 SCZD risk genes involving different
methodologies (62), including eQTL colocalization, with ANKRD45 and ATXN7 included in 321
high confidence SCZD risk genes from an adult brain meta-analysis from 1,866 donors (62).
Thus 9 SCZD colocalized genes in Hb (56.3%) have not been previously identified by
colocalization analyses in other brain regions, including C5orf63, CD40, IFT52, PABPC1L,
RGS16, RP11-166B2.1, SLC25A27, TDRD6, and UPF1 (Table S10). These results reveal
eQTLs that are unique or enriched in Hb and provide evidence that the Hb contributes to the
causative genetic architecture of SCZD.

Discussion

SCZD is a heritable polygenic disorder characterized by positive and negative symptoms
with heterogeneity in clinical presentation and treatment response (63). Therefore, it is important
to understand how molecular changes in multiple brain regions contribute to SCZD etiology.
Here, we focused on the Hb given its emerging role in psychiatric disorders and functional
influence on neurotransmitter systems impacted in SCZD. To provide a basis for interpreting
molecular changes associated with SCZD, we generated a topographic molecular map
characterizing MHb and LHb cell type diversity in the healthy human brain. For instance, we
identified a spatially-organized cholinergic cell type (MHb.2), which was distinguished from other
CHRNB4-expressing MHb subpopulations by enrichment of CHAT and CHRNA6. This
cholinergic subpopulation, which is conserved across species, may represent a shared
biological substrate for comorbid nicotine dependence and SCZD (64–68). Beyond classifying
cell types in the human Hb, we also leveraged our reference atlas to disentangle molecular
signatures from Hb and thalamus in a bulk RNA-sequencing study comparing SCZD and control
donors.

Differential gene expression analysis of bulk RNA-seq data from individuals with SCZD
and controls identified 32 differentially expressed genes (DEGs) unique to Hb-enriched tissue
compared to other brain regions. Among unique DEGs, we identified downregulation of HES5
(FDR < 0.05), an effector of Notch signaling highly expressed in neural stem cells (NSC) and
implicated in the regulation of early-stage neurodevelopment. While Notch signaling is important
for NSC fate, it is also implicated in neuroglial development (53). Interestingly, we found HES5
to be enriched in astrocytes (Fig. 1; enrichment t-stat = 7.794), suggesting this glial population
in epithalamus may be particularly affected by downregulation of HES5 in SCZD. In a mouse
model of SCZD, HES5 deficiency in cultured adult hippocampal cells affected the proliferative
capacity of uncommitted progenitors, suggesting that HES5 may also have important
developmental functions in neurons (69). Unique to Hb-enriched tissue, we also observed
downregulation of dopamine receptor DRD5 (FDR < 0.1). While little is known about the role of
DRD5 in SCZD, DRD5 disruption in some animal models, but not others, is associated with
cognitive deficits (70–72) and altered cortical oscillations (73). Given the role of dopamine
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signaling in SCZD pathogenesis and treatment, future functional follow up studies should
explore how DRD5 signaling is altered in the Hb in the context of SCZD.

Cross-region comparison of SCZD-associated DEGs in Hb-enriched tissue with those
identified in the caudate, DLPFC, HIPPO, and dentate gyrus (DG) revealed the greatest overlap
with caudate DEGs. For instance, NOTCH4 (FDR < 0.1) was upregulated in both Hb-enriched
and caudate SCZD samples. NOTCH4 is associated with genetic susceptibility to SCZD (37,
54–56), and plays a key role in neural maturation and plasticity. Consistent with the
neurodevelopmental hypothesis of SCZD etiology (39), Notch4 knockdown in a mouse NSC
model leads to aberrations in cell proliferation, differentiation, and migration (37–40). We also
identified overlapping upregulation of PHOSPHO1 (FDR < 0.05) in the Hb and caudate
datasets. PHOSPHO1 encodes a phosphatase that hydrolyzes phosphocholine to choline.
Given that choline is necessary for synthesizing the neurotransmitter acetylcholine, this finding
may suggest that cholinergic neurons and cell populations expressing cholinergic receptors,
particularly MHb.2, are more vulnerable to SCZD pathology. Moreover, PHOSPHO1 is regulated
by a non-coding RNA (miR1306) in the chromosomal locus 22q11.2 (74). Microdeletions in this
locus cause DiGeorge syndrome and lead to cognitive and behavioral impairments, as well as a
strikingly elevated risk of developing SCZD or schizoaffective disorder (75–78). Further
exploration of how PHOSPHO1 may be dysregulated in SCZD is warranted.

Independent eQTL results identified eQTL signals that are enriched in or unique to Hb.
Hb-enriched independent eQTLs overlapped with SCZD DEGs and SCZD GWAS risk SNPs,
highlighting the relevance of the Hb to genetic risk for SCZD. Of note is an independent eQTL
(FDR < 0.05) overlapping with SCZD DEG TSPAN11 (FDR < 0.1), as various genes of the
tetraspanin membrane protein family have previously been implicated in neurodegenerative and
neurodevelopmental disorders (79–82), intellectual disability (83–85), glutamatergic plasticity
(86–88), and regulation of inflammatory pathways (89–91). Among SCZD GWAS risk SNPs
overlapping with Hb-enriched independent eQTLs, the LRRC37 gene family (92, 93) stands out
due to its location on the chromosomal 17q21.31 locus. This locus contains other SNP-gene
pairs we identified, including DND1P1, CRHR1, and KANSL1 (Fig. 5C) and is associated with
risk for neurodegenerative diseases, such as Parkinson’s disease (PD) and Alzheimer’s disease
(94–97), and neurodevelopmental disorders, such as autism spectrum disorder and SCZD (98,
99). Of particular interest in this locus is LRRC37A2, a SCZD colocalized gene we identified in
Hb which is also associated with PD by transcriptome wide analysis (TWAS) in multiple brain
regions (100). In addition to underlying a broad array of neuropsychiatric disease susceptibility
(101, 102), the 17q21.31 locus also has an association with cortical and subcortical morphology
(103–105). Finally, while eQTL and SCZD PGC3 GWAS colocalization results in Hb corroborate
prior findings in developing and adult brains (60–62), unique Hb results suggest that the Hb
could play a pathogenic role in SCZD. Among overlapping results with previous studies (60–62),
PCCB’s contribution to SCZD risk has been recently studied in human forebrain organoids and
its downregulation was linked to SCZD risk through the GABAergic pathways and mitochondrial
function (106). Future studies could investigate the function of PCCB in the etiology of SCZD in
Hb.
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Here we conduct the first transcriptomic study of postmortem human Hb in the context of
SCZD. As with all postmortem human brain studies, we acknowledge our inability to confirm
whether gene expression changes are the cause or consequence of disease. We tried to
overcome some limitations by accounting for potential confounds related to donor demographics
and RNA quality in our statistical model. We were also able to overcome challenges in precisely
dissecting Hb tissue by performing cell type deconvolution of bulk RNA-seq data to control for
thalamic contamination. Finally, we acknowledge that our study is limited to a small number of
donors, including only Caucasian males, and that it will be important to replicate these findings
in additional cohorts. In summary, we generated the first single cell transcriptomic atlas of the
human Hb and used this reference dataset in conjunction with bulk RNA-sequencing and DNA
genotyping of individuals with SCZD and neurotypical controls to better understand molecular
changes associated with SCZD risk and illness state.

Materials and Methods summary
Detailed materials and methods can be found in the supplementary materials.

Postmortem human brain tissue

Postmortem human brain tissue was collected from the Lieber Institute for Brain Development
(LIBD) Human Brain and Tissue Repository through the following locations and protocols at the
time of autopsy. Thirty-one samples were collected at LIBD between May 2013 and December
2017, twenty-eight of which were consented through the Office of the Chief Medical Examiner of
the State of Maryland, under the Maryland Department of Health’s IRB protocol #12–24. The
remaining three samples were consented through the Department of Pathology at Western
Michigan University Homer Stryker MD School of Medicine, under WCG IRB protocol
#20111080. Thirty-seven additional samples were consented through the National Institute of
Mental Health Intramural Research Program (NIH protocol #90-M-0142), and were acquired by
LIBD via material transfer agreement. Demographics and other information for the 69 donors
are listed in Table S1. Details of tissue acquisition, handling, processing, dissection, clinical
characterization, diagnoses, neuropathological examinations, and quality control measures are
previously described (107). Fresh frozen Hb-enriched epithalamic tissue samples were
microdissected, pulverized, and stored at -80°C prior to snRNA-seq and bulk RNA-seq
experiments. For single molecule fluorescent in situ hybridization (smFISH) experiments, larger
tissue blocks were removed and kept intact for cryosectioning.

Single nucleus RNA-sequencing (snRNA-seq) and analysis

Nuclei isolation was performed on seven neurotypical control tissue samples also included in
the bulk RNA-seq study (Table S1) as previously described (108). Nuclei were stained with
propidium iodide (Invitrogen, Thermo Fisher) and sorted using fluorescence-activated nuclei
sorting (FANS). Four samples were also stained with anti-NeuN (Millipore Sigma) for enrichment
of neuronal nuclei. Using a BioRad S3e cell sorter, ~9K nuclei were sorted per sample and
loaded onto individual lanes of the 10x Genomics Chromium instrument. GEMs were produced,
cDNA was generated, and libraries were prepared according to manufacturer’s instructions and
sequenced on an Illumina Nextseq (Table S2). Reads were aligned with CellRanger (10x
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Genomics), empty droplets were identified with DropletUtils (109), and nuclei quality was
assessed by examining library size, number of detected genes, doublet scores, and fraction of
reads mapping to mitochondrial and ribosomal genes (Fig. S1-2). Batch correction was
performed with Harmony (110), and dimension reduction with a generalized linear model for
principal component analysis (111) (Fig. S3-5). Clustering was performed with graph-based
clustering from scran (112). Fine-resolution Hb clusters were maintained, but other captured cell
types were collapsed into broader categories yielding 17 annotated cell type clusters containing
16,437 nuclei (Fig. 1B). Marker genes for each Hb subcluster were selected with the Mean
Ratio method (Fig. 1E; Table S3).

Single molecule fluorescent in situ hybridization (smFISH)

smFISH experiments were performed on postmortem human brain tissue using RNAScope
Multiplex Fluorescent Reagent Kit v2 (Advanced Cell Diagnostics) and 4-Plex Ancillary Kit as
previously described (113). Briefly, Hb tissue from three independent donors (Table S4) was
cryosectioned for four experiments targeting different Hb cell type clusters identified using our
snRNA-seq dataset (Fig. 1, Fig. S6A, Fig. S7A, Fig. S8A, Table S5). Two probe combinations
targeted LHb subclusters and two probe combinations targeted MHb subclusters (see
Supplemental Methods). Briefly, tissue sections (n=2-4 technical replicates per donor) were
fixed in 10% Normal Buffered Formalin (NBF) solution, rinsed in phosphate buffered saline
(PBS), and dehydrated in a series of ethanol dilutions. Sections were treated with hydrogen
peroxide, rinsed in PBS, and permeabilized with Protease IV. Following PBS wash steps,
sections were hybridized with RNAScope probes, and signal amplification was performed
according to manufacturer’s instructions. A distinct Opal fluorophore (Perkin Elmer, 1:500) was
assigned to each probe and sections were counterstained with DAPI
(4′,6-diamidino-2-phenylindole) to label nuclei. For each tissue section, a 20X max-intensity
projected z-stack image was obtained with a Nikon AXR confocal microscope using spectral
imaging and linear unmixing as previously described (113). Confocal imaging data were saved
as .nd2 files for downstream quantitative analysis using HALO software (Indica labs). The
distributions of estimated marker gene expression (“copies”) across cell objects were used to
quantify abundant expression (top ranks) and delineate thresholds for data display (Fig. S9).

Bulk RNA-sequencing

Total RNA was extracted from tissue samples using the Qiagen AllPrep DNA/RNA/miRNA
Universal Kit (Cat No./ID: 80224). Paired-end strand-specific sequencing libraries were
prepared for 34 Control and 35 SCZD samples from 300 ng total RNA using the TruSeq
Stranded Total RNA Library Preparation kit with Ribo-Zero Gold ribosomal RNA depletion. For
quality control, synthetic External RNA Controls Consortium (ERCC) RNA Mix 1 (Thermo Fisher
Scientific) was spiked into each sample. Libraries were sequenced on an Illumina HiSeq 3000
producing 30.14 to 645.8 million (median 90.65, mean 150.07) 100-bp paired-end reads per
sample. Bulk RNA-seq FASTQ files were aligned to Gencode v25 (114) using SPEAQeasy
(115), a Nextflow (116) workflow for HISAT2 RNA-seq alignments (117). All samples passed
quality control based on sequencing metrics (Fig. S10).
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Deconvolution

Given the small size of the Hb and inclusion of surrounding thalamic tissue during
microdissection, cell type deconvolution of the bulk RNA-seq data was performed with Bisque
(118). Medial and lateral Hb cell type subclusters were collapsed and the top 25 mean ratio
marker genes for each broad cell type were selected for deconvolution (Table S6). For
validation purposes, we also calculated the standard log2 Fold Change for selected marker
genes (112) with a model adjusting for the donor ID and contrasting a given cell type against all
the rest (Fig. S11). One bulk RNA-seq sample (Br5572) was excluded from further analyses as
it was predicted to consist entirely of thalamic tissue (Fig. S12).

Cross-brain region bulk RNA-seq data integration

To examine the unique gene expression profile of the Hb, the control bulk RNA-seq samples
from this study were compared to bulk RNA-seq samples from 11 other brain regions: Amygdala
(119), basolateral amygdala (BLA) (120), central amygdala (CeA) (121), caudate (20), dorsal
anterior cingulate cortex (dACC) (120), dentate gyrus (DG) (19), dorsolateral prefrontal cortex
(DLPFC) (21, 120), hippocampus (HIPPO) (21, 120), medial amygdala (MeA) (120), medial
prefrontal cortex (mPFC) (121), and subgenual anterior cingulate cortex (sACC) (119). These
LIBD samples came from donors with the same demographics: male, neurotypical, adult at age
of death (17-70 years), and of European descent (EUR/CAUC). Principal components (PCs)
were computed with log normalized gene expression (Fig. 4B-C).

Bulk RNA-seq Differential Gene Expression (DGE)

Gene level differential expression analysis between SCZD and Control Hb-enriched bulk
RNA-seq samples was performed using the limma-voom method (122) (Fig. 4D) while adjusting
for demographics, quality control metrics, quality surrogate variables, and estimated proportions
of Hb and Thalamus cell types in the samples (51, 52). To assess the variability in
SCZD-associated DEGs across brain regions, the Hb (+ Thal.) DGE results were compared to
statistics from previous SCZD bulk RNA-seq studies: DLPFC, HIPPO (21), DG (19), and
caudate (20) (Table S7, Fig. 4E). Bulk and snRNA-seq gene expression data from this study
can be interactively explored through iSEE-powered websites
https://github.com/LieberInstitute/Habenula_Pilot#interactive-websites (123).

Expression quantitative trait loci (eQTL) analysis

Gene level eQTL analysis was performed using a set of 5,504,021 SNPs with a minor allele
frequency greater than 5% on a ±500kb window around genes with tensorQTL (57). Nominal
and independent eQTLs (FDR < 0.05) were computed on the log normalized gene expression
values while adjusting for SCZD status, the top 5 ancestry PCs, and top 13 gene expression
PCs (Fig. 5, Table S8). Interaction eQTLs (FDR < 0.05) with the neuronal cell proportions from
Hb or Thal. were also identified.
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Colocalization analysis

Colocalization analysis was performed with coloc (59) with a posterior probability for H4 (PP4)
greater than 0.8 on a ±500kb window around genes. Colocalized SNPs were then identified
using a 95% credible set for H4.
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Figures:

Fig. 1. Single cell transcriptomic atlas of the human habenula (Hb). A) Overview of nuclei
preparation and single nucleus RNA-sequencing (snRNA-seq) data generation using the 10x
Genomics Chromium Single Cell Gene Expression platform B) t-SNE plot of 16,437
quality-controlled single nucleus transcriptomes (colored by cell type) from the epithalamus of 7
neurotypical control donors. Dashed circle highlights lateral (L) and medial (M) Hb cell type
clusters (n=2,214 LHb and n=710 MHb nuclei). C) Heatmap depicting expression of known
marker genes (x-axis) that were used to annotate broad cell types as well as habenula vs.
thalamic neurons. The color of each square (blue to red) indicates z-scored relative expression
of the corresponding marker gene. D) Proportion plot displaying cell type composition of each
sample. NeuN+ sorted samples were enriched for neurons and therefore contain more neuronal
cell types. E) Heatmap highlighting the top 10 mean ratio marker genes (x-axis) for each
identified LHb and MHb neuronal subpopulation. The color of each square (blue to red)
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indicates z-scored relative expression of the corresponding marker gene. Marker genes
highlighted in red text were further validated using single molecule fluorescent in situ
hybridization (smFISH, see Fig. 3).
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Fig. 2. Conservation of LHb and MHb neuronal subpopulations from preclinical rodent
model in human Hb. A) Pearson correlation heatmap of t-statistics obtained from a cell type
differential gene expression (DGE) analysis conducted on a mouse Hb scRNA-seq dataset (22)
along the y-axis, and t-statistics from a DGE analysis of our human cell types identified in
Fig. 1B along the x-axis. Green squares show positive correlation, i.e. convergence of cell
type-specific gene expression patterns between species. B) Correlation heatmap obtained
similarly to A, but subset to Hb neuronal subpopulations.
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Fig. 3. Spatial organization of molecularly-defined LHb and MHb neuronal subpopulations
in postmortem human tissue. Spatial plots displaying the topographic arrangement of top cells
that express the marker genes chosen for RNAScope validation of Hb subpopulations. A) (i)
ONECUT2, TLE2, SEMA3D marker gene expression in situ, with each detected cell object in
the tissue section plotted as a gray or black rectangle. Cells in black have > 10 transcript copies
of the Hb-wide marker gene POU4F1, indicating the presence of habenula. Colored circles mark
the spatial location of the top 100 cells that most robustly express each marker gene. If a cell
was ranked in the top 100 for more than one marker gene (see confusion matrices in Fig. S6B),
it was colored by the gene for which it had the most number of transcript copies. (ii) RNAScope
images of example top ranked cells that highly express ONECUT2, TLE2, SEMA3D at high
magnification. B) (i) Spatial plots as described in A for ESRP1, MCOLN3, CRH marker gene
expression in situ. (ii) RNAScope images of example top ranked cells that highly express
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ESRP1, MCOLN3, CRH at high magnification. C) (i) Spatial plots as described in A for CCK,
EBF3, CHAT marker gene expression in situ. (ii) RNAScope images of example top ranked cells
that highly express CCK, EBF3, CHAT at high magnification.
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Fig. 4. Identification of unique differentially expressed genes (DEGs) in Hb-enriched
thalamus of Schizophrenia (SCZD) vs. Control cases. A) Study design and cell type
deconvolution of postmortem human bulk RNA-seq samples using Hb single nucleus RNA-seq
data (see Fig. 1 and Fig. S12). B) Principal component analysis of postmortem human bulk
RNA-seq data from neurotypical control tissue samples of Hb-enriched thalamus [Hb (+Thal.)]
and 11 other brain regions (combined n = 817): amygdala, basolateral amygdala (BLA), central
amygdala (CeA), caudate, dorsal anterior cingulate cortex (dACC), dentate gyrus (DG),
dorsolateral prefrontal cortex (DLPFC), hippocampus (HIPPO), medial amygdala (MeA), medial
prefrontal cortex (mPFC), and subgenual anterior cingulate cortex (sACC). PC1 vs. PC6 scatter
plot depicts PC6 separating Hb (+Thal.) from other regions. C) Boxplot of PC6 across 12 tested
brain regions. D) Volcano plot of DGE analysis showing. upregulated genes (FDR < 0.1, orange
points) and downregulated genes (FDR < 0.1, green points) in SCZD vs. Control cases.
Horizontal dashed line demarcates the y-axis value corresponding to the significance threshold
FDR = 0.1. Vertical dashed lines demarcate log2 fold change values of -1 and 1. E) SCZD vs.
Control DEG comparison between Hb (+Thal.) and four other brain regions: Caudate, DG,
HIPPO, and DLPFC. Only genes expressed in the Hb were considered in the comparative
analysis. X and Y axes are t-statistic values. Red points are unique DEGs (FDR < 0.05) in Hb
(+Thal.) compared to other brain regions tested. Blue points are DEGs (FDR < 0.05) found in
comparison regions, but not Hb (+Thal.). Purple points are DEGs (FDR < 0.05) that overlap
between Hb (+Thal.) and comparison regions.
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Fig. 5. Identification of Hb-enriched thalamus independent expression Quantitative
Trait Loci (eQTLs). A) Residualized normalized expression for SCZD DEGs (FDR<0.1) that are
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part of SNP-gene pairs identified as independent eQTLs (FDR<0.05). Boxplots by i) SCZD
case-control status, or ii) SNP alleles. Aii) includes the eQTL regression (beta) and nominal
association p-value. B) Boxplots by SNP alleles of residualized normalized expression for three
genes from independent eQTLs (FDR<0.05) whose SNPs are PGC3 SCZD GWAS risk SNPs
(p<5 * 10-8). Related to Fig. S19. Plots include eQTL regression (beta) and nominal association
p-value. C) eQTL beta coefficients for the interaction between the SNP and the estimated
habenula (Tot.Hb) or thalamus (Tot.Thal) neuronal cell proportions. All SNP-gene pairs
either contain a SCZD DEG (FDR<0.1) or a PGC3 SCZD GWAS risk SNP (p<5 * 10-8), and are
labeled with the paired genes’ symbols. Higher values indicate that the eQTL signal increases
as the corresponding region neuronal cell proportion increases. Related to Fig. S20. D) eQTL
beta coefficients for independent eQTLs in Hb-enriched thalamus compared against eQTL beta
coefficients in BrainSEQ Phase II DLPFC data. Linear trend is shown in blue and identity line in
brown. Points in black have stronger eQTL signal (beta coefficients) in Hb than in DLPFC,
whereas points in gray have stronger or opposite signal in DLPFC. E) Same as D) but for
comparing Hb-enriched thalamus against BrainSEQ Phase II hippocampus data. Out of the 717
Hb-enriched thalamus independent eQTLs, 324 and 317 of them were present in DLPFC (D)
and hippocampus (E), respectively.
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Materials and Methods
Postmortem Human Clinical Characterization

Audiotaped and witnessed informed consent was obtained from the legal next-of-kin for
every case. The LIBD Autopsy Phone Screening was performed at time of donation with the
legal next-of-kin, and consisted of 39 items about the donor’s medical, social, psychiatric,
substance use, and treatment history. Retrospective clinical diagnostic reviews were conducted
for every brain donor, which included data from autopsy reports, toxicology testing, forensic
investigations, neuropathological examinations, phone screening, and psychiatric/substance
abuse treatment record reviews and/or supplemental family informant interviews. All data was
compiled in a detailed psychiatric narrative summary, and was reviewed independently by 2
board-certified psychiatrists to determine lifetime psychiatric and substance use disorder
diagnoses according to DSM-5. Every donor underwent toxicology testing by the medical
examiner as part of the autopsy and forensic investigation for drugs of abuse such as
ethanol/volatiles, cocaine/metabolites, amphetamines, and opiates. Additional supplemental
toxicology testing was performed on all donors, including for nicotine/cotinine and cannabinoids.
For psychiatric cases, supplemental testing for therapeutic drugs, such as antidepressants,
mood stabilizing agents, and antipsychotics was completed through National Medical Services
(www.nmslabs.com) in postmortem blood and/or cerebellar tissue. All non-psychiatric control
donors had no lifetime history of a psychiatric or substance use disorder according to DSM-5.

snRNA-seq Data Collection

Fresh frozen postmortem human brain tissue from seven adult neurotypical control male
donors were dissected for epithalamus (Br1092, Br1204, Br1469, Br1735, Br5555, Br5558, and
Br5639; see Table S1 for demographics and other information). Tissue was homogenized and
nuclei isolation was performed using the “Frankenstein” protocol as previously described (108).
All samples were stained with propidium iodide (Cat No. P3566, Invitrogen, Thermo Fisher,
Waltham, MA). Additionally, four of the seven samples (Br1092, Br1204, Br5555, Br5558) were
stained with Alexa Fluor 488-conjugated Anti-NeuN (Cat No. MAB377X, Millipore Sigma, St.
Louis, MO) to enrich for neuronal nuclei during fluorescence-activated nuclei sorting (FANS).
Using a BioRad S3e cell sorter, nuclei were sorted into 23.1 uL of master mix without enzyme C,
prepared as per the 3’ next GEM Chromium Kit protocol (PN-1000075, 10x Genomics,
Pleasanton, CA). Following FANS, GEMs were produced, cDNA was generated, and library
preparations were completed by following revision A of the Chromium Next GEM Single Cell 3ʹ
Reagent Kits v3.1 (Dual Index) protocol (PN-1000075, PN-1000073, CG000315, 10x
Genomics). Samples were sequenced on an Illumina platform according to manufacturer’s
instructions at the John Hopkins Single Cell and Transcriptomics Core.

snRNA-seq Quality Control, Clustering, and Annotation

snRNA-seq samples were sequenced to a median depth of 193 million reads (min.
162.8, mean 188.3, max. 213), corresponding to a median 54,641 mean reads per nucleus
(min. 39,476, mean 88,719, max. 230,795), a median of 14,135 median unique molecular
indices (UMIs) per nucleus (min. 7,752, mean 17,674, max. 34,479), and a median 4,592
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median genes per nucleus (min. 2,836, mean 5,083, max. 7,843). FASTQ files were aligned
with CellRanger v6.0.0 (https://www.10xgenomics.com/support/software/cell-ranger/latest)
against the refdata-gex-GRCh38-2020-A annotation distributed by 10x Genomics. The
--include-introns option was used. Prior to quality control processing, there were 20,327
nuclei across all seven samples with a median of 3,156 nuclei per sample (min. 923, mean
2,904, max. 4,389) as estimated by CellRanger (Table S2).

Starting from the raw data instead of the CellRanger filtered data, empty droplets were
excluded using DropletUtils v1.18.1 (109) with emptyDrops(niters = 30000, lower =
knee_lower), where knee_lower was determined for each sample by the “knee point”
calculated by DropletUtils barcodeRanks() function plus 100. This resulted in knee_lower
values ranging from 219 to 481. Droplets with a significant deviation from each sample’s
ambient profile (FDR < 0.001) were kept, resulting in a dataset of 19,802 nuclei at this
processing stage (936 to 3,905 per sample).

As part of quality control, nuclei were assessed for high mitochondrial content, low library
size, and a low number of detected features. We applied an adapted 3 median absolute
deviation (MAD) threshold per sample using scater v1.26.1 isOutlier(nmads=3)(111)
(Fig. S1). Any nuclei that did not pass each threshold were excluded from further analyses
(2,720 nuclei), resulting in 17,082 nuclei that passed this stage of quality control. Lastly, doublet
scores were computed per sample using the top 1,000 highly variable genes with scDblFinder
v1.12.0 computerDoubletDensity() (125). This metric was later leveraged to assess the
integrity of each cell type cluster. No cell type clusters were dropped as a result of their doublet
scores.

Dimension reduction was performed using the generalized linear model for principal
component analysis (GLM-PCA), using both scry v1.10.0 nullResiduals() (126) and scater
v1.26.1 runPCA() (111). It was apparent that the initial reduced dimensions showed
evidence for batching by Sample, sequencing run, and NeuN sorting (Fig. S3A, Fig. S4A,
Fig. S5A). To correct for these batch effects, we applied Harmony v0.1.1
RunHarmony(group.by.vars = "Sample") (110) to the GLM approximated PCs. This
returned Harmony-corrected PCs, which showed evidence of successfully correcting for
differences across the aforementioned variables (Fig. S3B, Fig. S4B, Fig. S5B).

After correcting by Sample, we applied graph-based clustering measures leveraging
scran v1.26.2 (112) buildSNNGraph(k = 10) and igraph v1.4.2 cluster_walktrap()
(127), generating 37 fine-resolution nuclei clusters. Using established marker genes (23), we
annotated our 37 fine-resolution nuclei clusters for cell type identities. This process yielded 17
cell type categories that maintained the distinct Hb subclusters while collapsing all other non-Hb
clusters into their respective cell type populations (Fig. 1B): 3 Astrocyte clusters, 11 Excitatory
Thalamus clusters, 5 Inhibitory Thalamus clusters, and 3 Oligodendrocyte clusters were
collapsed. We were thus ultimately left with 7 broad cell type clusters (i.e. Oligodendrocytes,
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OPC, Microglia, Astrocytes, Endothelial, Inhibitory Thalamus, and Excitatory Thalamus)
alongside our 7 Lateral Habenula (LHb) and 3 Medial Habenula (MHb) cell type subclusters.

No given cell type cluster was driven by doublet scoring as no cluster had a particularly
high median doublet score (Fig. S2A). Out of the 17,082 nuclei post-isOutlier() filters, one
small cluster (51 nuclei) did not have a clear cell type identity, but did have high expression of
SNAP25. This small cluster was thus classified as “Excit.Neuron” and excluded from
downstream analyses (Fig. S2). Nuclei from three donors (Br5555, Br1204, Br1092) in the OPC
cluster were labeled as “OPC_noisy” (594 nuclei) given their less defined spatial arrangement in
t-SNE dimensions 1 and 2, and were excluded from further analyses. The entire quality control,
clustering, and annotation processes brought the initial number of 20,327 nuclei to a final total of
16,437 filtered and annotated nuclei (Fig. S13).

snRNA-seq Marker Gene Selection

Marker genes were selected for the 17 identified cell type categories through the Mean
Ratio method from DeconvoBuddies v0.99.0
(https://github.com/LieberInstitute/DeconvoBuddies), using the function getMeanRatio2().
The mean ratio method calculates, for each gene, the mean expression of a target cell type
divided by the highest mean expression of a non-target cell type. A high mean ratio value for a
gene in a given cell type cluster suggests that that gene is a cell type specific marker gene
candidate for that cell type cluster. The top 50 mean ratio marker genes for each of our cell type
categories are listed in a table (Table S3).

Cross-species Comparison

Cell type clusters observed in the human snRNA-seq dataset were compared to a
previously annotated single cell RNA-sequencing dataset from mouse habenula (22). The
mouse dataset had annotations across all cell types, and lateral and medial specific annotations
for just the Hb neurons. To relate the mouse and human datasets, homologous gene IDs were
found using the Mouse Gene Informatics Website. Both of the datasets were subset to 14,468
genes with valid homologs (128). The two datasets were compared via spatial registration
pipeline from spatialLIBD v1.12 (129), and gene enrichment statistics for each cell type in both
annotations were calculated with registration_wrapper(). For a more targeted
comparative analysis, we utilized a “neuron-only” mouse dataset, and in this case, enrichment
statistics were computed on the “habenula neuron-only” subset of our human snRNA-seq
dataset. In both iterations of the comparative analyses, correlation values between the
t-statistics were calculated with layer_stat_cor(top_n = 100) and heatmaps were
plotted with ComplexHeatmap v2.16 (130) (Fig. 2A-B).

Multiplexed Single molecule fluorescent in situ Hybridization (smFISH)

smFISH experiments were performed according to manufacturer's instructions as
previously described using the RNAScope Multiplex Fluorescent Reagent Kit v2 (Advanced Cell
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Diagnostics, Hayward, California, Cat No. 323100) and 4-Plex Ancillary Kit for Multiplex
Fluorescent Kit v2 (Cat No. 323120) (113). Fresh frozen tissue blocks containing Hb from three
independent donors (Table S4) were cryosectioned at ~10 μm on a Leica cryostat and stored at
-80°C. Each donor yielded 2-3 tissue slides with 2-4 tissue sections per slide. Slides were
assigned to three different RNAScope experiments targeting different LHb and MHb cell type
clusters based on results from snRNA-seq (Fig. 1, Fig. S6A, Fig. S7A, Fig. S8A). Experiment 1
targeting LHb subclusters: ONECUT2 (Cat No. 473531-C1), TLE2 (Custom Design
1271611-C2), SEMA3D (Cat No. 521771-C3), and POU4F1 (Cat No. 438441-C4). Experiment 2
LHb subclusters: ESRP1 (Cat No. 435051-C1), MCOLN3 (Cat No. 516761-C2), CRH (Cat No.
473661-C3), and POU4F41 (Cat No. 438441-C4). Experiment 3 MHb subclusters: CCK (Cat
No. 539041-C1), POU4F1 (Cat No. 438441-C2), EBF3 (Cat No. 581641-C3), and CHAT (Cat
No. 450671-C4); or CCK (Cat No. 539041-C1), CHRNB4 (Cat No. 482411-C2), BHLHE22 (Cat
No. 448351-C3), and CHAT (Cat No. 450671-C4)

Briefly, tissue sections were fixed in 10% Normal Buffered Formalin (NBF) solution for 30
minutes at room temperature. Sections were then rinsed in 1x phosphate buffered saline (PBS)
and sequentially dehydrated for 5 minutes each in four ethanol dilutions: 50%, 75%, 100%, and
100%. Once the tissue sections were dry, a hydrophobic pen was used to carefully outline them
on the slides to form a hydrophobic barrier. Tissue sections were then treated with hydrogen
peroxide for 10 minutes at room temperature. Following subsequent decanting and rinsing in
1xPBS, tissue sections were permeabilized with Protease IV for 30 minutes at room
temperature. After decanting and rinsing the tissue slides in 1xPBS, probe hybridization solution
was prepared. Three different sets of RNAScope probe combinations (4 probes per
combination) were used for each experiment as described above.

Tissue sections were incubated in probe hybridization solution at 40°C for 2 hours.
Following decanting and wash steps in 1x wash buffer, sections were incubated in
saline-sodium citrate buffer (SSC) overnight at 4°C. Next, probe signal amplification steps were
performed and a distinct Opal fluorophore (520, 570, 620, 690 nm) was assigned to each probe
(Perkin Elmer, Waltham, MA; 1:500) (Table S5). Sections were counterstained with DAPI
(4′,6-diamidino-2-phenylindole) to label nuclei. For each donor and probe combination, a 20X
max-intensity projected z-stack image of the tissue section containing the largest habenula
region (as gauged by signal in the POU4F1 probe channel) was obtained with a Nikon AXR
confocal microscope using spectral imaging and linear unmixing as previously described (113).
Confocal imaging data were saved as .nd2 files for downstream quantitative analysis.

smFISH Confocal Image Analysis using HALO

HALO (Indica Labs) was used to segment and quantify fluorescent signals for each
probe in single cells. Nikon .nd2 files were imported into HALO and an analysis magnification
value of 2 (corresponding to 40X for a 20X image) was chosen as this is the recommended
magnification for punctate probe signal quantification. For each image, nuclear detection and
smFISH probe detection parameters were optimized to minimize false positives by referencing
the HALO 3.6 User Guide (Indica labs, February 2023). For example, contrast threshold,
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minimum signal intensity, size (min and max), roundness (min), and segmentation
aggressiveness were determined for each probe as well as DAPI. All HALO settings files are
available on Github at
https://github.com/LieberInstitute/Habenula_Pilot/tree/master/processed-data/14_RNAscope/HA
LO_data (124).

The FISH-IF module was used to quantify RNA transcripts (copy counts) within each
detected object (i.e. a nucleus with dilated boundary to estimate a “cell”) with reference to the
manufacturer’s guidelines: HALO 3.3 FISH-IF Step-by-Step guide (Indica labs, v2.1.4 July
2021). Distributions of object signal intensity values across the 4 RNAScope probe channels
were assessed to determine representative values for each channel’s copy intensity parameter.
The copy intensity parameter determines how many RNA transcript copies are assigned to each
cell. For each of the RNAScope probe channels, the median of the probe signal intensity values
of cells that had non-zero signal in that particular channel was chosen as a
representative/typical intensity value for that channel’s copy intensity parameter. Thorough
comparisons between the raw image files and HALO analysis segmentation outputs were
conducted to ensure accurate representation of the imaging data.

Visualization of Quantified smFISH Data

The spatial expression patterns of chosen probes as quantified by HALO were observed
using hexbin plots displaying the maximum number of transcript copies in a bin generated with
stat_summary_hex(x = XMax, y = YMax, z = copies), fun = max, bins =
100) from ggplot2 v3.4 (131) (Fig. S6C, Fig. S7C, Fig. S8C). To focus on cell objects with
robust expression of the marker gene probes, we visualized the top 100 cells ranked by number
of transcript copies for each marker gene as a proxy for cell type. Note that ranks could include
ties, in some cases leading to more than 100 cells being selected. As shown via confusion
matrices, there was ~10% overlap between most of the top 100 assignments depending on the
donor slide and marker gene pair being compared (Fig. S6B, Fig. S7B, Fig. S8B). To observe
the relative spatial location of the top 100 cells for each marker gene, points colored by the
marker gene (and related Hb subcluster) identity were plotted in the X-Y locations of the cell
objects, over a background of black points identifying high expression of the established
Hb-wide marker gene POU4F1. If a cell had more than one top 100 identity, its point color
reflected the marker gene with the maximum number of transcript copies in that cell (Fig. 3A-Ci,
Fig. S6B, Fig. S7B, Fig. S8B).

Bulk RNA-seq Data Collection

Total RNA was extracted from samples using the Qiagen AllPrep DNA/RNA/miRNA
Universal Kit (Cat No./ID: 80224). Paired-end strand-specific sequencing libraries were
prepared from 300 ng total RNA using the TruSeq Stranded Total RNA Library Preparation kit
with Ribo-Zero Gold ribosomal RNA depletion
(https://www.illumina.com/products/selection-tools/rrna-depletion-selection-guide.html) which
removes rRNA and mtRNA. For quality control, synthetic External RNA Controls Consortium
(ERCC) RNA Mix 1 (Thermo Fisher Scientific) was spiked into each sample. The libraries were
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sequenced on an Illumina HiSeq 3000 at the LIBD Sequencing Facility, producing from 30.14 to
645.8 million (median 90.65, mean 150.07) 100-bp paired-end reads per sample.

Bulk RNA-seq Data Processing

Bulk RNA-seq FASTQs were aligned to Gencode v25 (114) using SPEAQeasy’s (115)
development version that consisted of SGE scripts
(https://github.com/LieberInstitute/RNAseq-pipeline). The settings were: --experiment
"Roche_Habenula" --prefix "PairedEnd" --reference "hg38" --stranded
"reverse" --ercc "TRUE". This resulted in 24.3 to 612.18 million reads mapped (median
80.53, mean 132.48) with an overall mapping rate (overallMapRate) of 0.5471 to 0.9169 per
sample (median 0.8506, mean 0.8368). All SPEAQeasy metrics are available (Table S1).

Deconvolution

Cell type deconvolution of the bulk RNA-seq data was performed with Bisque (118) from
the R package BisqueRNA version 1.0.5, with the function
ReferenceBasedDecomposition(use.overlap = FALSE). The snRNA-seq data from
the present study (Fig. 1) was used as the reference dataset at the broad resolution; that is, by
re-labeling MHb.1, MHb.2, MHb.3 as MHb, and similarly re-labeling the LHb fine-resolution
clusters broadly as LHb. Across the broader-resolution clusters, marker genes were selected
through the Mean Ratio method from DeconvoBuddies v0.99.0
(https://github.com/LieberInstitute/DeconvoBuddies) using the function getMeanRatio2().
The top 25 mean ratio marker genes for each cell type were selected as the marker genes for
deconvolution (Table S6). For comparative purposes, we also calculated the standard log2 Fold
Change (std.logFC, Fig. S11) using findMarkers(test="t", direction="up",
pval.type="all") from scran v1.26.2 (112) with a model adjusting for the donor ID and
contrasting a given cell type against all the rest. The top 25 mean ratio marker genes typically
have a high standard log2 fold change (Fig. S11, Table S6) and can be visually inspected for
validation (Fig. S16) using iSEE (123) interactive websites at
https://github.com/LieberInstitute/Habenula_Pilot#interactive-websites.

Bulk RNA-seq Quality Control

Sample Br5772 resulted in an estimated 100% inhibitory thalamus proportion, and was
dropped from further analyses (Fig. S12). SPEAQeasy (115) quality control metrics such as the
mitochondrial mapping rate (mitoRate) and ribosomal RNA mapping rate (rRNA rate) were
visually inspected across each flow cell (Fig. S10), as well as by schizophrenia (SCZD)
case-control status. Outlier samples in principal component analyses did not seem to be related
to any specific metrics, except for Br5572, which as noted previously had unusual deconvolution
results. Contrasting the range of these SPEAQeasy metrics against other similar studies
(19–21, 119), the remaining 68 bulk RNA-seq samples were considered of appropriate quality
for downstream analyses.
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Bulk RNA-seq quality Surrogate Variables Calculation

To adjust for RNA degradation effects (51), we calculated quality surrogate variables
(qSVs) with qsvaR (52). We used qSVA(type = "standard")from qsvaR v1.5.3 on the
filtered and normalized transcript data (TPM) with the model ~ PrimaryDx + AgeDeath +
Flowcell + mitoRate + rRNA_rate + totalAssignedGene + RIN +
abs_ERCCsumLogErr + tot.Hb + tot.Thal, where tot.Hb = LHb + MHb and
tot.Thal = Inhib.Thal + Excit.Thal. This resulted in 8 qSVs from 1,772 transcripts
associated with RNA degradation in six brain regions as described in the qsvaR documentation
(Table S1). Note that habenula is not one of these six regions.

Bulk RNA-seq Variance Partition Across Genes

We used both scater and variancePartition to explore the percent of variance explained
across all genes (Fig. S17) by different SPEAQeasy (115) metrics, sample demographic
variables such as age at time of death, and qSVs (Table S1). We ran
plotExplanatoryVariables() from scater v1.28.0 (111) with default parameters. We also
used getVarianceExplained(), canCorPairs(), and fitExtractVarPartModel()
from variancePartition v1.30.2 (132) with the log normalized counts (logcounts). According to
the variancePartition user guide, categorical variables such as PrimaryDx and Flowcell
were treated as random effects.

Bulk RNA-seq Differential Expression Analysis

Gene level differential expression analysis was performed using calcNormFactors()
from edgeR v3.42.4 (133) and voom(), lmFit(), eBayes(), and topTable() from limma
v3.56.2 (122) (Table S7). The design model was ~ PrimaryDx + AgeDeath + Flowcell
+ mitoRate + rRNA_rate + totalAssignedGene + RIN + abs_ERCCsumLogErr
+ tot.Hb + tot.Thal + qSV[1-8]. This model tested for differences by SCZD
case-control status stored in the primary diagnosis (PrimaryDx) variable. Differential
expression results were visualized using EnhancedVolcano v1.18.0 (134).

Cross-Brain Region bulk RNA-seq Data Integration

Control bulk RNA-seq Hb-enriched samples were compared to bulk RNA-seq samples
generated at the Lieber Institute for Brain Development from other brain regions with the same
demographics: neurotypical individuals, adults at age of death (17-70 years), male, and
european descent (EUR/CAUC).

● Amygdala: n = 140, (Moods) (119)
● Basolateral amygdala (BLA): n=54, VA_PTSD (120)
● Central amygdala (CeA): n=11, PTSD BrainOmics (121)
● Caudate: n = 82, (20)
● Dorsal anterior cingulate cortex (dACC): n = 55, VA_PTSD (120)

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 17, 2024. ; https://doi.org/10.1101/2024.02.26.582081doi: bioRxiv preprint 

https://sciwheel.com/work/citation?ids=3887861&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=15884833&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=10988515&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=3436659&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=3280148&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=673952&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=148089&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=7324947&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=12628626&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=13280304&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=16490036&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=13868679&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=13280304&pre=&suf=&sa=0
https://doi.org/10.1101/2024.02.26.582081
http://creativecommons.org/licenses/by/4.0/


● Dentate gyrus (DG): n = 41, DG Astellas (19)
● Dorsolateral prefrontal cortex (DLPFC): n = 121 (BSP2 + VA_PTSD) (21, 120)
● Hippocampus (HIPPO): n = 26 (BSP2 + VA_PTSD) (21, 120)
● Medial amygdala (MeA): n = 55, VA_PTSD (120)
● Medial prefrontal cortex (mPFC): n = 57, (BSP4+5 + PTSD BrainOmics) (121)
● Subgenual anterior cingulate cortex (sACC): n = 142 (Moods) (119)

Principal components were computed using prcomp() on log2(RPKM + 1) expression
values for genes with a mean RPKM > 0.1 across all brain regions. The percent of variance
explained was computed with getPcaVars() from jaffelab v0.99.31
(https://github.com/LieberInstitute/jaffelab).

SCZD vs. Control Differential Gene Expression (DGE) Signal Comparison Across Brain Regions

We downloaded the schizophrenia vs. control DGE results from the BrainSEQ Phase II
dorsolateral prefrontal cortex (DLPFC) and hippocampus (HIPPO) (21), BrainSEQ Phase III
caudate (20), and dentate gyrus (DG) bulk RNA-seq datasets (19). All of the above analysis
results were generated at the Lieber Institute for Brain Development. We compared these
results with the SCZD vs. Control DGE results from our Hb-enriched dataset by subsetting the
BrainSEQ and DG datasets to only include genes that were expressed in Hb (Table S7,
Fig. 4E).

Only 1 out of 236 DLPFC, 1 out of 46 HIPPO, 0 out of 10 DG, and 12 out of 2,437
caudate DEGs (FDR < 5%) were also significantly differentially expressed in Hb (FDR < 5%).

Single Nucleotide Polymorphism (SNP) DNA Genotyping

Genotype calling was performed using several Illumina SNP BeadChip microarrays (4
samples with HumanMap650Y, 27 with Human1M-Duo, 7 with HumanOmni5-Quad, and 31 with
Infinium Omni2.5-8). Using Plink v1.9 (135) we initially excluded variants with a minor allele
frequency (MAF) less than 0.5%, a missingness rate of 5% or more, and a Hardy Weinberg
equilibrium (HWE) p<1x10-5. Genotype phasing and imputation was performed on batches for
each of the different SNP arrays from the LIBD brain bank using the TOPMED hg38 service and
reference panel (136), and each imputation batch was filtered to keep only variants with
R-square (imputation quality information value) R2 > 0.9 and MAF > 0.05. We then extracted the
69 samples from these filtered imputation batches and merged them into a single genotype file,
of 7,900,749 variants. This merged imputed genotypes file was finally filtered with plink to
remove variants with missing call rates exceeding 5% (--geno 0.05), HWE below 1x10-6

(--hwe 1e-6) and MAF above 5% (--maf 0.05) for the remaining variants. This resulted in
a final filtered file consisting of 5,504,021 common variants for these 69 donors.
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eQTL analysis

We used tensorQTL v1.0.8 (57) to identify SNP-gene pairs where the SNP was
significantly associated with the gene expression using a linear regression model that adjusted
for PrimaryDx and the first five SNP-based principal components. This analysis was
performed for all 5,504,021 SNPs with a MAF>5% on a ±500kb window around genes on the 68
donors that passed RNA-seq QC. The nominal expression Quantitative Trait Loci (eQTLs)
results were then filtered to first identify cis-eQTLs, and then independent eQTLs with
tensorqtl.cis.map_cis() and tensorqtl.cis.map_independent() functions in
tensorQTL, respectively (Fig. 5). The analysis was performed with normalized gene expression
(logcounts) adjusting for the following covariates: ~ PrimaryDx + snpPC[1-5] +
genePC[1-13]. snpPCs were computed on the DNA genotype data while genePCs were
computed on the gene expression data.

Psychiatric Genomics Consortium (PGC) v3 data for the SCZD GWAS (58) was
obtained from PGC3_SCZ_wave3.european.autosome.public.v3.vcf.tsv.gz (137)
and filtered to SNPs with a p<5 * 10-8 SCZD risk association (Fig. 5B, Fig. S19). Risk alleles
were determined using frequency of SCZD and NTC donors in the GWAS data. More
specifically, if BETA > 0 (that is FCAS > FCON), the risk allele is A1, otherwise it is A2. Based on
the documentation of the data, A1 is the SNP reference allele, A2 is the SNP alternate allele,
BETA is the beta or ln(odds ratio) of A1 for SCZD risk, FCAS is the frequency of A1 in SCZD
cases, and FCON is the frequency of A1 in controls. Note that 14,105 out of 20,446 (68.99%)
SCZD risk SNPs (p<5 * 10-8) have risk alleles that are the reference alleles. Fifteen out of
sixteen (93.75%) SNPs overlapping SCZD risk SNPs also have the risk allele matching the
reference allele (Fig. 5B, Fig. S19).

Cell fraction interaction eQTLs were performed against the habenula (Tot.Hb) and
thalamus (Tot.Thal) estimated neuronal fractions from the deconvolution analysis. Interaction
eQTLs were identified by supplying DataFrames of habenula and thalamus fractions to the
interaction_df parameter in separate calls to the tensorqtl.cis.map_nominal()
function in tensorQTL (Fig. S20). Slope of the interaction term were extracted from the b_gi
output column as described by tensorQTL at
https://github.com/broadinstitute/tensorqtl/blob/master/docs/outputs.md and compared between
habenula and thalamus fractions (Fig. 5C). SNP-gene pairs with genes BTN3A2, HLA-DMA and
SMAGP (Fig. S20) had no interaction eQTL results with tensorQTL (Fig. 5C).

BrainSEQ Phase II dorsolateral prefrontal cortex (DLPFC) and hippocampus (HIPPO)
(21) eQTLs were used to compare the eQTL regression betas against Hb-enriched thalamus
independent eQTL results (Fig. 5D-E).

Colocalization analysis

Colocalization of eQTLs and PGC3 SCZD risk SNPs was performed with coloc v5.2.3 (59). The
set of nominal tensorQTL gene-SNP pairs (57), which considered SNPs within a 500kb radius of
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each gene, were filtered to those whose SNPs observed in the PGC3 SCZD dataset (58). Each
such 1Mb region corresponded to a pair of datasets on which to invoke coloc.abf() with
default arguments. For the eQTL-based dataset, beta and varbeta were defined by
tensorQTL columns slope and slope_se squared; type was set to "quant" and sdY set to
1 (to reflect normalization internal to tensorQTL which standardizes the trait variance to 1). For
the PGC3-based dataset, beta and varbeta were defined by columns BETA and SE squared;
type was set to "cc" and s was defined as 0.409, the median value of NCAS / (NCAS +
NCON) across all SNPs. We considered a gene to be colocalized if PP.H4.abf, from the output
summary of coloc.abf(), exceeded 0.8. This is the estimated posterior probability for H4

(PP4): both traits are associated and share a single causal variant. A SNP was considered to be
colocalized if it was in the 95% credible set for H4.

Software

ggplot2 v3.4.2 and earlier versions (131), R versions 4.1, 4.2, and 4.3 (138) , and
Bioconductor versions 3.14, 3.16, and 3.18 (139) were used for the analyses.
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Supplementary Figures
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Fig. S1. snRNA-seq quality control metrics. Violin distribution plots for A) mitochondrial
percent, B) library size (total number of UMIs), and C) number of detected genes. Thresholds
for quality control were determined using isOutlier() from scuttle.
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Fig. S2. snRNA-seq quality control metrics by cell type. Boxplot distribution plots for each
identified cell type looking at A) doublet score, B) mitochondrial percent, C) library size (total
number of UMIs), and D) number of detected genes. Ambiguous excitatory neurons
(Excit.Neuron) and OPCs (OPC_noisy) were dropped from further analyses.
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Fig. S3. Pre and post harmony by sample. Batch correction of snRNA-seq data visualized by
t-SNE plots. A) t-SNE of principal components (PCs) pre-batch correction, colored by sample.
B) t-SNE of PCs post-batch correction with Harmony, colored by sample. Batch correction with
Harmony reduced the sample batch effect.
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Fig. S4. Pre and post harmony by sequencing run. Batch correction of snRNA-seq data
visualized by t-SNE plots. A) t-SNE of principal components (PCs) pre-batch correction, colored
by sample and faceted by sequencing run. B) t-SNE of PCs post-batch correction with
Harmony, colored by sample and faceted by sequencing run. Batch correction with Harmony
reduced sample and sequencing run batch effects.
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Fig. S5. Pre and post harmony by NeuN sorting. Batch correction of snRNA-seq data
visualized by t-SNE plots. A) t-SNE of principal components (PCs) pre-batch correction, colored
by neuronal enrichment performed with NeuN antibody labeling and FANS. B) t-SNE of PCs
post-batch correction with Harmony, colored by neuronal enrichment performed with NeuN
antibody labeling and FANS. While batch correction with Harmony reduced NeuN sorting
differences, some differences remain. This is expected given that the NeuN sorted samples are
enriched for neuronal cell types compared to samples without NeuN sorting.
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Fig. S6. Lateral habenula smFISH to visualize LHb.1, LHb.4, and LHb.5 subpopulations. A)
Violin plots of selected mean ratio marker gene expression (in normalized (logcounts)) for
POU4F1, SEMA3D, TLE2, ONECUT2 across cell types identified from the snRNA-seq data.
POU4F1 broadly marks Hb cell populations (labeled with Opal dye 520), SEMA3D marks
LHb.1/5 (labeled with Opal dye 570), TLE2 marks LHb.4 (labeled with Opal dye 620), and
ONECUT2 marks LHb.1 (labeled with Opal dye 690). B) For each donor tissue section:
Confusion matrix of top 100 cells per marker gene probe channel, ranked by number of
transcript copies. Non-diagonal squares (dark blue) show number of cells that are in the top 100
of those two marker genes. Ranks include ties, therefore each square along the diagonal (light
blue) can be more than 100. C) For each marker gene probe channel: Hexbin plots displaying
the maximum number of transcript copies per bin across the tissue section from each donor. To
aid visualization, all values > 200 copies are the same color. XMax and YMax values provide
spatial locations of the cells defined during cell object segmentation in HALO. D) Spatial plots
displaying the top cells expressing each marker gene (Fig. 3Ai), with each detected cell in the
tissue section plotted as a gray or black rectangle. Cells in black with > 10 transcript copies of
the Hb marker gene POU4F1 depict the habenula region. Colored circles mark the spatial
location of the top 100 ranked cells that most robustly express each marker gene probe. If a cell
was ranked in the top 100 for more than one marker gene (see Fig. S6B), it was colored by the
gene for which it had the most number of transcript copies.
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Fig. S7. Lateral habenula smFISH to visualize LHb.2, LHb.3, and LHb.6 subpopulations. A)
Violin plots of selected mean ratio marker gene expression (in normalized (logcounts)) for
POU4F1, CRH, MCOLN3, ESRP1 across cell types identified from the snRNA-seq data.
POU4F1 broadly marks Hb cell populations (labeled with Opal dye 520), CRH marks LHb.2
(labeled with Opal dye 570), MCOLN3 marks LHb.3 (labeled with Opal dye 620), and ESRP1
marks LHb.6 (labeled with Opal dye 690). B) For each donor tissue section: Confusion matrix of
top 100 cells per marker gene probe channel, ranked by number of transcript copies.
Non-diagonal squares (dark blue) show number of cells that are in the top 100 of those two
marker genes. Ranks include ties, therefore each square along the diagonal (light blue) can be
more than 100. C) For each marker gene probe channel: Hexbin plots displaying the maximum
number of transcript copies per bin across the tissue section from each donor. To aid
visualization, all values > 200 copies are the same color. XMax and YMax values provide spatial
locations of the cells defined during cell object segmentation in HALO. D) Spatial plots
displaying the top cells expressing each marker gene (Fig. 3Bi), with each detected cell in the
tissue section plotted as a gray or black rectangle. Cells in black with > 10 transcript copies of
the Hb marker gene POU4F1 depict the habenula region. Colored circles mark the spatial
location of the top 100 ranked cells that most robustly express each marker gene probe. If a cell
was ranked in the top 100 for more than one marker gene (see Fig. S7B), it was colored by the
gene for which it had the most number of transcript copies.
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Fig. S8. Medial habenula smFISH for MHb.1, MHb.2, and MHb.3 subpopulations. A) Violin
plots of selected mean ratio marker gene expression (in normalized (logcounts)) for POU4F1,
CHAT, EBF3, CCK across cell types identified from the snRNA-seq data. POU4F1 broadly
marks Hb cell populations (labeled with Opal dye 520), CHAT marks MHb.2 (labeled with Opal
dye 570), EBF3 marks MHb.3 (labeled with Opal dye 620), and CCK marks MHb.1 (labeled with
Opal dye 690). B) For each donor tissue section: Confusion matrix of top 100 cells per marker
gene probe channel, ranked by number of transcript copies. Non-diagonal squares (dark blue)
show number of cells that are in the top 100 of those two marker genes. Ranks include ties,
therefore each square along the diagonal (light blue) can be more than 100. C) For each marker
gene probe channel: Hexbin plots displaying the maximum number of transcript copies per bin
across the tissue section from each donor. To aid visualization, all values > 200 copies are the
same color. XMax and YMax values provide spatial locations of the cells defined during cell
object segmentation in HALO. D) Spatial plots displaying the top cells expressing each marker
gene (Fig. 3Ci), with each detected cell in the tissue section plotted as a gray or black
rectangle. Cells in black with > 2 transcript copies of the Hb marker gene POU4F1 depict the
habenula region. Colored circles mark the spatial location of the top 100 ranked cells that most
robustly express each marker gene probe. If a cell was ranked in the top 100 for more than one
marker gene (see Fig. S8B), it was colored by the gene for which it had the most number of
transcript copies.
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Fig. S9. Distributions of marker gene expression estimations across smFISH
experiments. HALO software (Indica Labs) was used to detect and quantify RNAScope probes
in each cell object. A) Frequency count distribution of the estimated number of POU4F1,
SEMA3D, TLE2, and ONECUT2 marker gene copies for each cell object. B) Frequency count
distribution of the estimated number of POU4F1, CRH, MCOLN3, and ESRP1 marker gene
copies for each cell object. C) Frequency count distribution of the estimated number of
POU4F1, CHAT, EBF3, CCK, and CHRNB4 marker gene copies for each cell object. In A-C, the
count frequencies (y-axis) are limited to 100 in order to observe the frequency counts for
non-zero copy values.
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Fig. S10. Bulk RNA-sequencing quality control metrics. Boxplots and violin distribution
graphs for several bulk RNA-seq quality metrics computed by SPEAQeasy. Samples are
separated by Control vs. SCZD status and colored by the sequencing flowcell. Sample Br5572,
which was excluded from analysis, is not included in these graphs.
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Fig. S11. Selection of top mean ratio marker genes for cell type deconvolution. For each
cell type category, mean ratios for all the detected genes (see Supplemental Methods) were
computed by getMeanRatio2() from DeconvoBuddies and compared against the genes’
standard log2 fold change values (std.logFC), which were computed by findMarkers() from
scran. The top 25 mean ratio marker genes are shown in teal, and typically have a high
standard log2 fold change value.
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Fig. S12. Cell type proportions of the bulk RNA-sequencing samples as estimated by
deconvolution. Bar plots show the proportions of each cell type in the bulk RNA-seq samples
as estimated by deconvolution. Increasing from left to right, samples are ordered by the sum of
their estimated LHb (blue) and MHb (pink) proportions. As sample Br5572 was estimated to
consist entirely of inhibitory thalamic neurons, we dropped this sample from further analyses.
Following this exclusion, we retained 33 Control and 35 SCZD samples. Subjects highlighted in
red were also used for snRNA-seq.
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Fig. S13. snRNA-seq post QC nuclei counts by cell type. Barplots showing the number of
nuclei by cell type after quality control steps, aggregated across all seven snRNA-seq samples.
Total nuclei post-QC: 16,437.
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Fig. S14. UMAP representation of the snRNA-seq data. Post-QC snRNA-seq data visualized
using UMAP (similar to Fig. 1), colored by cell type. The right side shows the UMAP faceted by
cell type.
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Fig. S15. snRNA-seq principal components (PCs) by cell type. PC2 versus 3 colored by cell
type clusters. The left side of the plot displays all nuclei together, while the right side shows
them faceted by cell type. PC2 differentiates non-neuronal cell types (i.e. Oligodendrocytes,
Microglia, Astrocytes, Endothelial cells, Oligodendrocyte Progenitor Cells) from neuronal cell
types. PC3 differentiates excitatory thalamic neurons from habenula neuron subpopulations.
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(I)

Fig. S16. Gene expression plots for the top 10 marker genes for each cell type. Violin
distribution plots of the log-normalized expression counts (logcounts) of the top 10 mean ratio
marker genes for each cell type. Top left corner of each plot shows the target cell type and
second-most highly expressing cell type, as well as the ratio of their mean marker gene
expression levels (i.e. the mean ratio). A) Lateral Habenula neurons (LHb), B) Medial Habenula
neurons (MHb), C) Inhibitory Thalamic neurons (Inhib.Thal), D) Excitatory Thalamic neurons
(Excit.Thal), E) Oligodendrocytes (Oligo), F) Astrocytes, G) Microglia, H) Endothelial cells
(Endo), I) Oligodendrocyte Progenitor Cells (OPC).
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A)

B)

Fig. S17. Bulk RNA-sequencing variance partition across covariates. A) Density lines for
the percent of variance explained by each covariate across all genes, as estimated using
plotExplanatoryVariables() from the scater package. The x-axis is displayed on a log10
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scale. The RNA Integrity Number (RIN), quality Surrogate Variables (qSV) 1 and 3, percent of
reads assigned to genes (totalAssignedGene), and total percent of Thalamus cell types
estimated by deconvolution (tot.Thal) are among the covariates that explain the highest percent
of variance. B) Variance explained distribution boxplots across all genes for each of the
covariates, as estimated with the variancePartition package.
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Fig. S18. Residualized normalized expression by diagnosis and genotype for eQTLs
involving SCZD DEGs. The remaining four of seven such eQTLs are shown here, with the first
three in Fig. 5A. A) Residualized normalized expression by diagnosis for SCZD DEGs (FDR <
0.1) found in independent eQTLs (FDR < 0.05). B) Residualized normalized expression by
genotype for SNPs paired with SCZD DEGs and constituting independent eQTLs, labeled with
eQTL regression (beta) and nominal association p-values.
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Fig. S19. Independent eQTLs SNP-gene pairs with SNPs overlapping PGC3 SCZD GWAS
risk SNPs. Boxplots by SNP alleles of residualized normalized expression for the remaining 13
genes from independent eQTLs whose SNPs are PGC3 SCZD GWAS risk SNPs (p<5 * 10-8).
The other three are shown in Fig. 5B. Plots include eQTL regression (beta) and nominal
association p-value. For the X axis, 0: homozygous major allele, 1: heterozygous, 2:
homozygous minor allele.
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Fig. S20. Habenula and thalamus neuronal cell fraction interaction with SNP alleles for
independent eQTLs whose SNPs are SCZD risk SNPs or genes are DEGs. Scatterplots of
residualized normalized expression compared against either the estimated habenula or the
thalamus neuronal fractions (Tot.Hb and Tot.Thal) with SNP allele regression lines colored
by allele (homozygous major allele in blue, heterozygous in orange, homozygous minor allele in
red). In all SNP-gene pairs, the major allele matched the reference allele. A) Cell fraction
interaction eQTLs could be computed for 14 of the 16 SNP-gene pairs from Hb-enriched
thalamus independent eQTLs whose SNPs are PGC3 SCZD GWAS risk SNPs (p<5 * 10-8). B)
SNP-gene pairs from Hb-enriched thalamus independent eQTLs whose genes were SCZD
DEGs (FDR<0.1). Related to Fig. 5C.

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 17, 2024. ; https://doi.org/10.1101/2024.02.26.582081doi: bioRxiv preprint 

https://doi.org/10.1101/2024.02.26.582081
http://creativecommons.org/licenses/by/4.0/


Supplementary Tables

Table S1. Donor demographics and bulk RNA-sequencing SPEAQeasy metrics. Donor ID
(BrNum), bulk RNA-seq library ID (RNum), age at time of death, sex, race, and primary
diagnosis (SCZD vs. Control) are the demographics included. SPEAQeasy metrics are
documented at https://research.libd.org/SPEAQeasy/outputs.html#quality-metrics. The bulk
RNA-seq sequencing flowcell, metrics derived from the bulk RNA-seq QC analysis with scran,
deconvolution results with BisqueRNA, quality surrogate variables (qSVs) obtained with qsvaR,
and the first 10 DNA genotype ancestry principal components (snpPCs) are also included. All
snRNA-seq samples are a subset of these donors.

Table S2. CellRanger snRNA-seq metrics. Metrics computed by CellRanger v6.0.0 for the
seven snRNA-seq samples. For more details about these metrics see:
https://www.10xgenomics.com/support/software/cell-ranger/latest/analysis/outputs/cr-3p-outputs
-metrics-count

Table S3. Top 50 mean ratio marker genes by fine cell type category. For each of the
seventeen cell type categories – including the finer habenula cell type subclusters – the top 50
mean ratio marker genes are shown.

Table S4. Donor demographics for RNAScope smFISH experiments. Brain donor ID
(BrNum), age at time of death (in years), sex, race, primary diagnosis, estimated postmortem
interval (PMI, in hours), RNA integrity number (RIN) screened on the Prefrontal Cortex (PFC),
and toxicology information (Positive at Time of Death) are provided for the three independent
donors used in these experiments.

Table S5. RNAScope experimental design summary. Experimental design for RNAScope
experiments. Probes, catalog numbers, channel and Opal dye assignments, and dye
concentrations used for each probe combination.

Table S6. Top 50 mean ratio marker genes by broad cell type category. For each of the nine
broad cell type categories, the top 50 mean ratio marker genes are shown. Only the top 25
mean ratio marker genes by cell type were used for estimating the cell type proportions by
deconvolution.

Table S7. Bulk RNA-seq Schizophrenia vs. Control differential gene expression (DGE)
analysis results. Harmonized gene-level results for the Habenula (Hb), dorsolateral Prefrontal
Cortex (DLPFC) and Hippocampus (HIPPO) from BrainSEQ Phase II, Caudate from BrainSEQ
Phase III, and Dentate Gyrus (DG). This analysis was restricted to genes expressed in the Hb.

Table S8. Independent Hb-enriched eQTL SNP-gene pairs. tensorQTL outputs are provided
for the 717 significant (FDR < 0.05) independent eQTLs. Available interaction eQTL statistics
with Tot.Hb and Tot.Thal fractions are provided for the same eQTLs. Related to Fig. 5.
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Table S9. Gene eQTL vs SCZD DEG, and SNP eQTL vs SNP SCZD risk overlap summary.
Two by two tables comparing whether A) a gene is a part of a SNP-gene eQTL pair or an SCZD
DEG, or B) whether a SNP is part of an SNP-gene eQTL pair or an SCZD PGC3 GWAS risk
SNP. These tables are the input for computing Fisher's exact test for a positive association.
SNPs were subset to those present in both the Hb-enriched data as well as the PGC3 GWAS
data. Related to Fig. 5.

Table S10. eQTL and SCZD PGC3 colocalization summary results. Results extracted from
coloc::coloc.abf()$results for all SNPs in the 95% credible set for H4 in each of the
genes that had a posterior probability of H4 greater than 0.8. In addition to the columns
computed by coloc.abf(), we included the gene ID and symbol on which the ±500kb window
is centered, the 1Mb window summary PP.H4.abf value (filtered to genes with SNP.PP.H4 >
0.8), whether the gene was identified as a SCZD DEG (FDR<0.1), whether the SNP is a SCZD
PGC3 risk SNP (p<5*10-8), or whether the colocalized SNP-gene pair is also an independent
eQTL SNP-gene pair (FDR<0.05).
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