Science Advances

Supplementary Materials for

Mechanisms of sensory adaptation and inhibition of the cold and menthol receptor TRPM8

Ying Yin et al.

Corresponding author: Seok-Yong Lee, seok-yong.lee@duke.edu

Sci. Adv. **10**, eadp2211 (2024) DOI: 10.1126/sciadv.adp2211

This PDF file includes:

Figs. S1 to S17 Table S1

Fig. S1. Topology of TRPM8_{MM} channels.

(A and B) Structural model (A) and cartoon diagram (B) delineating the topology of a single TRPM8_{MM} protomer. The TRPM8_{MM}_AMTB structure from the current study was used for illustration, where the complete outer pore domain and an *N*-linked glycosylation moiety (NAG, blue) on the pore loop (PL) were resolved.

Fig. S2. Cryo-EM 3D classification of antagonists-bound TRPM8_{MM} structures.

(A) TRPM8_{MM} sample purified in LMNG and CHS in the absence of antagonists yielded 3D reconstructions in the distinct C_0 state and conformation A (D state).

(**B** to **E**) Cryo-EM 3D classification workflows to dissect the antagonist-bound conformation A reconstruction (D state) from the C₀-state reconstruction without antagonist bound and/or from the low-resolution reconstructions. Results are shown for TRPM8_{MM} purified in LMNG and CHS and frozen in the presence of TC-I (**B**), AMG (**C**), AMTB (**D**), and TC-I plus C3 (**E**). TMD masks used for particle subtraction and 3D classification jobs in RELION are shown in transparent orange color.

ligand-free condition presence of TC-I presence of AMTB В В S2 VSLD cavity TRP TRP **FR** map thresholding 0.3 С S4 S4-S5 linker

map thresholding 0.35

Fig. S3. The absence of strong EM density for antagonists in the C₀-state 3D reconstructions.

(A) 3D reconstructions in the C₀-state conformation resolved from cryo-EM datasets prepared in the ligand-free condition (left), in the presence of TC-I (center) and AMTB (right). Thresholding 0.2, 0.23, 0.19.

(**B** and **C**) Close-up views at the VSLD cavity (**B**) and the S4-S5 linker (**C**) from (**A**). Red dashed circles highlight the absence of strong and unambiguous EM densities for antagonists at the corresponding locations. Thresholding 0.3 in (**B**) and 0.35 in (**C**).

C₀-state reconstruction in the

Fig. S4. Cryo-EM data collection and validation, part I.

(A to E) Representative micrographs, 2D classification images, local resolution estimation, the Fourier shell correlation (FSC) curves of the final 3D reconstruction with different masking calculated in CryoSPARC, orientation distribution diagram, and the FSC curves between model and full- or half-maps calculated in PHENIX. Results are shown for cryo-EM datasets of TRPM8_{MM} prepared in the absence of antagonists or agonists (A), and in the presence of TC-I (B), AMG (C), AMTB (D), and TC-I plus C3 (E), respectively. The pixel sizes of micrographs and 2D class averages are specified below the image.

Fig. S5. Cryo-EM density quality for the TRPM8_{MM} structures.

(A to F) Representative EM densities (gray mesh) for key structural elements in C_0 -state TRPM8_{MM}_apo (A), D-state TRPM8_{MM}_apo (B), TRPM8_{MM}_TC-I (C), TRPM8_{MM}_AMG (D), TRPM8_{MM}_AMTB (E), and TRPM8_{MM}_TC-I+C3 (F). Thresholding 0.14 or 0.2 in (A), 0.2 in (B to F). Residue ranges are indicated.

(G) EM densities (gray mesh) for antagonists TC-I, AMG, and AMTB. Thresholding 0.2.

(H) Close-up view depicting EM densities for C3 (orange) in the VSLD cavity and for TC-I (lime) at the S4-S5 linker in the TRPM8_{MM}_TC-I+C3 reconstruction. Neighboring protomers colored in brown and gray. Thresholding 0.22. Residue sidechains and antagonists are shown as sticks in (A to G).

Fig. S6. Functional characterizations of antagonists on TRPM8_{MM} channels.

(A) Comparison between the AMTB amine group interaction (left) and the Ca^{2+} ion coordination (right, PDB 8E4L) in the VSLD cavity.

(**B** to **D**) Representative TEVC recordings on the WT and mutant TRPM8_{MM} channels at -60mV. Horizontal colored lines represent the application of C3 (blue), TC-I (**B**, lime), AMG (**C**, teal), AMTB (**D**, orange), and ruthenium red (RR) as indicated.

(E to G) Representative TEVC recordings of WT TRPM8_{MM} at -60 mV. Horizontal colored lines indicated applications of 1 mM menthol followed by increasing concentrations of TC-I (E), AMG (F), and AMTB (G) in the presence of zero (left panels), low (middle panels), and high (right panels) concentrations of extracellular Ca²⁺ as indicated in the figures.

Dotted lines in **B** to **G** indicate the zero-current level.

Fig. S7. Molecular dynamics (MD) simulations of antagonist binding to TRPM8_{MM} and TRPM8_{PM} channels.

(A to C) Ligand RMSD of AMG (A), TC-I (B), and AMTB (C) in the TRPM8_{MM} structures from the current study, during the simulation time course of each replicate (3 replicas for each assembly) with an averaged RMSD of 1.6 Å for TC-I, 1.8 Å for AMG, and 2.5 Å for AMTB, calculated from the last 200-ns trajectories.

(**D** and **E**) Ligand RMSD of TC-I (**D**; PDB 6072) and AMTB (**E**; PDB 606R) in the published TRPM8_{PM} structures, during the simulation time course of each replicate (3 replicas for each assembly), with an averaged RMSD of 3.7Å for TC-I and 4.9 Å for AMTB, calculated from the last 200-ns trajectories.

(F) Overlay of the end-of-simulation snapshots of AMTB in the TRPM8_{MM}_AMTB structure from the current study.

(G) Comparison of the before-simulation snapshot (left) and the overlaid end-of-simulation snapshots (right) of AMTB in the published TRPM8_{PM}_AMTB structure (PDB 606R). AMTB shown as sticks in (F) and (G).

Fig. S8. Thermodynamic modeling.

(A) Thermodynamic model of TRPM8 desensitization and inhibitor binding for the equilibria (K_n) among closed (C), open (O), desensitized (D), and inhibitor-bound (OI, DI) states and associated thermodynamic coupling (*c*). The red arrows indicate transition among the thermodynamically favored states, based on fit values.

(B) TC-I dose-response data fit with the thermodynamic model for 0 mM, 0.5 mM, and 2 mM extracellular Ca²⁺. Data comes from Fig. 2A, taking into account the initial level of desensitization. Datapoints for individual replicate ($n \ge 4$) shown.

(C) Model fit quality as sum of squared residuals (SSQ or resnorm) plotted as a function of fixed coupling parameter (c) value.

(**D**) Model fitting parameters and [95% confidence intervals] for AMG and TC-I data. Calculated K_D values for inhibitor to O and D states with errors propagated from parameter confidence intervals.

(E) Species populations as a function of AMG concentration based on model fitting parameters in (D). Closed (black), open (blue), desensitized (red), inhibitor-bound open (green), and inhibitor-bound desensitized (purple).

(F) Species populations as a function of TC-I concentration based on model fitting parameters in (D) and colored as in (E).

Fig. S9. Concentration-response relationships for AMG in inhibiting TRPM8_{MM} activation by different stimuli.

Normalized concentration-response relations for AMG against the WT TRPM8_{MM} activation by cold or menthol in the presence of 0 μ M and 40 μ M extracellular Ca²⁺ (n = 3-4), respectively. Data are mean \pm SEM. The continuous curves were fit to the Hill equation with IC₅₀ values indicated in the figure.

(A) Published TRPM8_{PM} structures determined in the ligand-free (apo) and in the presence of TC-I and AMTB, respectively, adopt the C_0 -state conformation. TC-I and AMTB molecules were modeled to bind in the VSLD cavity, as indicated by the yellow shades and red arrows.

(**B**) TRPM8_{MM} structures from the current study determined in the presence of TC-I, AMG, and AMTB, respectively, adopt the D-state conformation. TC-I and AMG bind above the S4-S5 linker and AMTB binds in the VSLD cavity, as indicated by the yellow shades and red arrows.

(C) Comparison of TC-I binding in the published TRPM 8_{PM} structure (left) and in TRPM 8_{MM} (right). Red dotted circles highlight the different binding poses.

(**D**) Comparison of AMTB binding in the published TRPM8_{PM} structure (left) and in TRPM8_{MM} (right). Red dotted circles highlight the different binding poses.

(E) Superimposition of the PDB model and cryo-EM map for the published TRPM8_{PM} structures determined in the ligand-free condition and in the presence of TC-I and AMTB, respectively. Similarly shaped EM density peaks (red dotted lines) are present in the VSLD cavity of all three maps.

(F) Superimposition of the three cryo-EM maps from (E) with the ligand-free TRPM8_{PM} structure, showing similarly shaped EM density peaks (red dotted lines) are present in the VSLD cavity in all three maps.

EMD IDs for cryo-EM maps and PDB IDs for structural models that were previously reported for TRPM8_{PM} are indicated in the figure. Key residues and modeled antagonists shown as sticks. Cryo-EM maps shown as colored transparent surface in (\mathbf{E}) and (\mathbf{F}).

Fig. S11. Structural and functional validation of antagonist binding in the avian TRPM8_{PM} channel from the current study.

(A) 3D reconstruction of TRPM8_{PM} in complex with TC-I and Ca^{2+} in the D state conformation. Neighboring protomers are colored in light pink and gray, respectively. Thresholding 0.25.

(B) Close-up views of the EM density at the VSLD cavity (left) and the S4-S5 linker (right) from the reconstruction in (A). Red dashed circle indicates the lack of TC-I density in the VSLD cavity. Densities for Ca^{2+} and TC-I colored in green and lime, respectively. Thresholding 0.25 in the left panel and 0.6 in the right panel.

(C) The binding site and EM density for TC-I (lime sticks). Densities (magenta mesh) contoured at thresholding 0.26 for TC-I. Neighboring protomers colored in pink and gray, respectively.

(D) Representative currents of the WT and mutant TRPM8_{PM} channels at -60 mV in HEK293T cells. Horizontal colored lines represent the application of 100 μ M C3 (blue), 10 μ M TC-I (lime), and ruthenium red (RR) as indicated. Summary of current inhibition by 10 μ M TC-I in HEK293T cells expressing WT and mutant TRPM8_{PM} channels (*n* = 5–7). Dots indicate the individual data points for each experiment. ns > 0.05, ****P* < 0.001, using one-way ANOVA followed by Dunnett post-hoc test. Data are mean ± SEM.

(E) Representative currents of the WT and mutant flycatcher TRPM8 (TRPM8_{FA}) channels at -60 mV in HEK293T cells. Horizontal colored lines represent the application of 100 μ M C3 (blue), 10 μ M TC-I (lime), and RR as indicated. Summary of current inhibition by 10 μ M TC-I in HEK293T cells expressing WT and mutant TRPM8_{FA} channels (n = 5-6). Dots indicate the individual data points for each experiment. ns > 0.05, ***P < 0.001, using one-way ANOVA followed by Dunnett post-hoc test. Data are mean \pm SEM.

(F) Representative currents of the WT and mutant TRPM8_{PM} channels at -60 mV in HEK293T cells. Horizontal colored lines represent the application of 100 μ M C3 (blue), 10 μ M AMTB (orange), and RR as indicated. Summary of current inhibition by 10 μ M AMTB in HEK293T cells expressing WT and mutant TRPM8_{PM} channels (n = 3-6). Dots indicate the individual data points for each experiment. ns > 0.05, ***P < 0.001, using one-way ANOVA followed by Dunnett post-hoc test. Data are mean \pm SEM.

(**G** to **I**) Representative current traces of the WT TRPM8_{PM} channels at -60 mV in HEK293T cells. Current trace elicited by 200 μ M menthol was inhibited by increasing concentrations of TC-I (**G**), AMG (**H**), and AMTB (**I**) in the presence of 0 μ M (top) or 100 μ M (bottom) extracellular Ca²⁺.

(J to L) Normalized concentration-response relations for TC-I (J), AMG (K), and AMTB (L) against the WT TRPM8_{PM} activation by 200 μ M menthol in the presence of 0 μ M (black trace, n = 4-5) or 100 μ M (red trace, n = 4) extracellular Ca²⁺. Data are mean \pm SEM. The continuous curves were fit to the Hill equation with IC₅₀ values indicated in the figure.

Dotted lines in **D** to **I** indicate the zero-current level.

Fig. S12. Cryo-EM data processing and validation, part II, for the TRPM8_{PM_}TC-I structure in the current study.

(A) Representative micrographs and 2D classification images. The pixel sizes are specified below the images.

(**B**) Local resolution estimation.

(C) The Fourier shell correlation (FSC) curves of the final 3D reconstruction with different masking calculated in CryoSPARC,

(D) Orientation distribution diagram.

(E) the FSC curves between model and full- or half-maps calculated in PHENIX.

(F) Representative EM densities (gray mesh) for key structural elements and TC-I. Thresholding 0.25.

(G) Cryo-EM 3D classification workflow to dissect the TC-I bound reconstruction for the TRPM8_{PM} channel. TMD mask used for particle subtraction and 3D classification jobs in RELION shown in transparent orange color.

		5	51			
Human TRPM8 CLFIIPLVGCGFVSFRKKPVDKHKKLLWYYVAF	FFTSPFV	VFSWNVVF	IAFLLLFAYVLL	75		
Mouse TRPM8 CLFIIPLVGCGLVSFRKKPIDKHKKLLWYYVAF	CLFIIPLVGCGLVSFRKKPIDKHKKLLWYYVAFFTSPFVVFSWNVVFYIAFLLLFAYVLL					
Rat TRPM8 CLFIIPLVGCGLVSFRKKPIDKHKKLLWYYVAF	CLETTPL/GCGL/SFRKKPIDKHKKLLWYVAFFTSPF/VFSWNVVFYIAFLLFAVVLL					
Chicken TRPM8 CLEFFPLIGCGFISFRKKPVEKSKKLFLYVVSF	CITILLAGCELSEBKKD/EKCKKIELAANULLAULISELAALSEMMALEAINELITENAANUL CITILLAGCELSEBKKD/EKCKKIELAANULLAULISELAALSEMMAALITELITENAAN					
Elycatcher TRDM8 CLEEFDLICCCETSERKKDVEKTKKLELVVVSE	FFTCDFT	WESWNVIE	TAFLLLFAVVLL	780		
Creat tit TRANG CIFEFDI ICCCFICEPURDVERCERI FI VVVCF				700		
GIEat_CIC_IRPMO CLFFFFDIGCGFISFRRFVERSRLFDIIVSF	CLFFFPLIGCGFISFRKKPVEKSKKLFLYYVSFFTSPFVVFSWNVIFYIAFLLLFAYVLL					
	~ ~ ~ ~ ~ ~ ~ ~		••••			
<u> </u>	52-53		c 3			
				017		
Human_TRPM8 MDFHSVPHPPELVLYSLVFVLFCDEVRQWYVNG	GANA E. I.I	DLWN VMD.I.PC	SLFYFIAGIVFRL	817		
MOUSE_TRPM8 MDFHSVPHTPELILYALVFVLFCDEVRQWYMNG	GVNYF'I'I	DLWNVMDTLC	GLFYFIAGIVFRL	817		
Rat_TRPM8 MDFHSVPHTPELILYALVFVLFCDEVRQWYMNG	GVNYFTI	DLWNVMDTLO	GLFYFIAGIVFRL	817		
Chicken_TRPM8 MDFQKEPTVLEIILYVLVFILLCDEVRQWYMNG	GSK <mark>Y</mark> LSI	DLW <mark>N</mark> VMDTLA	AIFYFIAGIVLRL	817		
Flycatcher_TRPM8 MDFQKEPTALEIILYVLVFILLCDEVRQWYMNG	GSK <mark>Y</mark> FSI	DLW <mark>N</mark> VMDTLA	AIFYFIAGIVFRL	840		
Great_tit_TRPM8 MDFQKEPTALEIILYVLVFVLLCD <mark>E</mark> WYMNG	GSK <mark>Y</mark> FSI	DLW <mark>N</mark> VMDTLA	AIFYFIAGIVFRL	824		
:. * *::** ***:*:****************	* :*::	*** <mark>*</mark> *****	********			
S4	S4	-\$5	S 5			
Human_TRPM8 HSSNKSSLYSGRVIFCLDYIIFTLRLIHIFTVS	SRNLGPH	KIIM <mark>L</mark> QRMLI	DVFFFLFLFAVW	877		
Mouse TRPM8 HSSNKSSLYSGRVIFCLDYIIFTLRLIHIFTVS	SRNLGPH	KIIM <mark>L</mark> QRMLI	DVFFFLFLFAV <mark>W</mark>	877		
Rat TRPM8 HSSNKSSLYSGRVIFCLDYIIFTLRLIHIFTVS	SRNLGPH	XIIMLORML	DVFFFLFLFAVW	877		
Chicken TRPM8 HSSNESSWYSGRVIFCLDYIVFTLRLIHIFTVS	SRNLGPH	XIIMLÕRMM	DVFFFLFLFAVW	877		
Flycatcher TRPM8 HS-DESSWYSGRVIFCLDVIVFTLRLIHIFTVS	SRNLGP		DVFFFLFLFAVW	899		
Great tit TRDM8 HS_DESSWVSGRVIECLDVIVETIRI.THTETVS	SRNLCDI		DVFFFLFLFAVW	883		
	******	********	*****	005		
•••••••••••••••••••••••••••••••••••••••		•	_			
S5 PH						
			NEN HOMEMONEOV	027		
			DECHOMECONECK	937		
			DE SUCTE SGNESK	937		
Rat_TRPM8 MVAFGVARQGILRQNEQRWRWIFRSVIYEPYLA	AMFGQVI	SDVDSTTY	DESHCTESGNESK	937		
Chicken_TRPM8 MVAFGVARQGILRKNEHRWEWIFRSVIYEPYLA	AMFGQYI		IFDRCTF SGNESK	937		
Flycatcher_TRPM8 MVAFGVARQGILRKNEHRWEWIFRSVIYEPYLA	AMFGQYI	PDD1DGTTY	IFDHCTFSGNESK	959		
Great_tit_TRPM8 MVAFGVARQGILRKNEHRWEWIFRSVIYEPYLA	AMFGQYI	PDDIDGTTY	IFDRCTFSGNESK	943		
***************************************	****	* • * • * • * * *	* ********			
	6					
	0		IKP			
Human_TRPM8 PLCVELDEHNLPRFPEWITIPLVCIYMLSTNIL	LLVNLLV	/AMFGYTVG	VQENNDQVWKFQ	997		
Mouse_TRPM8 PLCVELDEHNLPRFPEWITIPLVCIYMLSTNIL	LLVNLLV	/AMFGYTVG	VQENNDQVWKFQ	997		
Rat_TRPM8 PLCVELDEYNLPRFPEWITIPLVCIYMLSTNIL	LLVNLLV	/AMFGYTVG	VQENNDQVWKFQ	997		
Chicken TRPM8 PLCVELDANNQPRFPEWITIPLVCIYMLSTNIL	LLVNLLV	/AMFGYTVG	SVQENNDQVWKFQ	997		
Flycatcher TRPM8 PLCVELDANNQPRFPEWITIPLVCIYMLSTNIL	LLVNLLV	/AMFGYTVG	SVQENNDQVWKFQ	101		
Great tit TRPM8 PLCVELDANNOPREPEWITTPLVCIVMLSTNTT						
	LLVNLLV	AMFGYTVG	SVOENNDOVWKFO	100		
****** * *****************************	LLVNLLV	/AMFGYTVG	SVQENNDQVWKFQ	100		
****** * *****************************	LLVNLLV * * * * * * * *	/AMFGYTVG *****	SVQENNDQVWKFQ **********	100		
TRP	LLVNLLV	/AMFGYTVG	SVQENNDQVWKFQ ******	100		
	LLVNLLV		VQENNDQVWKFQ	100		
TRP Human_TRPM8 RYFLVQEYCSRLNIPFPFIVFAYFYMVVKKCFK Mauga mpDM9 RVFLVQEYCNDINTDEDDINGAYFYMVVKKCFK	LLVNLLV	VAMFGYTVGS	VQENNDQVWKFQ ************************************	100		
TRP Human_TRPM8 RYFLVQEYCSRLNIPFPFIVFAYFYMVVKKCFK Mouse_TRPM8 RYFLVQEYCNRLNIPFPFVVFAYFYMVVKKCFK	LLVNLLV ****** KCCCKEI	VAMFGYTVGS	VQENNDQVWKFQ ************************************	100 105 105		
TRP Human_TRPM8 RYFLVQEYCSRLNIPFPFIVFAYFYMVVKKCFK Rat_TRPM8 RYFLVQEYCNRLNIPFPFVVFAYFYMVVKKCFK	LLVNLLV ****** KCCCKEI KCCCKEI	VAMFGYTVG ******** KNMESSVCCI KNMESNACCI KNTESSACCI	VQENNDQVWKFQ ************* FKNEDNETLAWEG FRNEDNETLAWEG FRNEDNETLAWEG	100 105 105 105		
International and the second secon	LLVNLLV ****** KCCCKEI KCCCKEI KCCCKEI	VAMFGYTVG ********* KNMESSVCCI KNMESNACCI KNTESSACCI ESKESSICCS	VQENNDQVWKFQ ************* FKNEDNETLAWEG FRNEDNETLAWEG FRNEDNETLAWEG SRNEDNETLSWEA	100 105 105 105		
TRP Human_TRPM8 RYFLVQEYCSRLNIPFPFIVFAYFYMVVKKCFK Mouse_TRPM8 RYFLVQEYCNRLNIPFPFVVFAYFYMVVKKCFK Rat_TRPM8 RYFLVQEYCNRLNIPFPFVVFAYFYMVVKKCFK Chicken_TRPM8 RYFLVQEYCSRLTIPFPFVIFAYIFMVMRKCFK Flycatcher_TRPM8 RFFLVQEYCSRLTIPFPFVIFAYIFMVMRKCFK	LLVNLLV ****** KCCCKEI KCCCKEI KCCCKII KCCCKKI	VAMFGYTVG ********* KNMESSVCCI KNMESNACCI KNTESSACCI ESKEPSICC ESKEPSVCC	VQENNDQVWKFQ ************ FKNEDNETLAWEG FRNEDNETLAWEG FRNEDNETLAWEG FRNEDNETLSWEA FRNEDNETLSWEA FRNEDNEILAWEA	100 105 105 105 105 107		
TRP Human_TRPM8 RYFLVQEYCSRLNIPFPFIVFAYFYMVVKKCFK Mouse_TRPM8 RYFLVQEYCNRLNIPFPFVVFAYFYMVVKKCFK Rat_TRPM8 RYFLVQEYCNRLNIPFPFVVFAYFYMVVKKCFK Chicken_TRPM8 RYFLVQEYCSRLTIPFPFVIFAYIFMVMRKCFK Flycatcher_TRPM8 RFFLVQEYCSRLTIPFPFVIFAYIFMVMRKCFK Great_tit_TRPM8 RFFLVQEYCSRLTIPFPFVIFAYIFMVMRKCFK	LLVNLLV ****** KCCCKEI KCCCKEI KCCCKNI KCCCKNI KCCCKKI	VAMFGYTVGS VAMESSVCCI VAMESSVCCI VAMESNACCI VATESSACCI SKEPSICCS SKEPSICCS SKEPSICCS	VQENNDQVWKFQ ************ FKNEDNETLAWEG FRNEDNETLAWEG FRNEDNETLAWEG FRNEDNETLSWEA FRNEDNEILAWEA FRNEDNEILAWEA	100 105 105 105 105 107 106		

Fig. S13. Sequence alignment at the transmembrane domain among TRPM8 orthologs.

Residues covering the transmembrane helices S1 to S6 and the TRP domain are shown. Secondary structures based on the O and D states of mouse TRPM8 (TRPM8_{MM}) structures are indicated by rectangles and colored as in **fig. S1**. Sequence alignment was generated by the Clustal Omega program. Residue conservation is annotated by asterisks (*) for full conservation, colons (:) for strong similarity, and dots (.) for weak similarity. Residues involved in TC-I/AMG binding at the intersubunit interface above the S4-S5 linker are colored in green, while those for AMTB binding in the VSLD cavity in blue.

Sequence accession numbers – human TRPM8: UniProt Q7Z2W7; mouse TRPM8 (TRPM8_{MM}): UniProt Q8R4D5; rat TRPM8: UniProt Q8R455; chicken TRPM8: NCBI NP_001007083.2; collared flycatcher TRPM8 (TRPM8_{FA}): UniProt U3JD03; great tit TRPM8 (TRPM8_{PM}): NCBI XP_015489531.1.

Fig. S14. Mechanisms of TRPM8 desensitization and inhibition.

(A) Close-up comparison of S6 movement from O (blue) to D (brown) state, showing position changes in the S6 gate $(Val^{976} \text{ in sticks})$ and the π -helix (two-headed arrows).

(B) Ion permeation pathway calculated from the HOLE diagram. The positions for the S6 gate residue and π -helix are denoted.

(C) Overlay (left) of the cytoplasmic MHR1 to 4 domains between the O state (blue) and the D state TRPM8_{MM}_TC-I (brown). Insets (right) showing close-up views at the dashed boxes from the left panel. Channel structures shown as cartoon cylinders. Red arrows indicate movements from O to D state with distances and angles denoted.

(**D**) Superimposed (left) and side-by-side (middle and right) comparison of the S4b helical configuration between the O (blue) and the D (brown) states. Arrows indicate rearrangement in S4b. Dashed lines indicate the hydrogen bonds in the helical backbones.

(E) Representative currents of the WT (left) and Phe⁸⁶⁹Ala (right) TRPM8_{MM} channels at -60 mV in HEK293T cells. Current traces elicited by 200 μ M menthol was inhibited by increasing concentrations of AMG in the presence of 0 μ M (top) and 100 μ M (bottom) extracellular Ca²⁺.

(F) Representative currents of the WT (top) and Phe⁸⁶⁹Ala (bottom) TRPM8_{MM} channels at -60 mV in HEK293T cells. Current traces elicited by 200 μ M menthol was inhibited by increasing concentrations of AMTB.

(G) Representative currents of the mutant TRPM8_{MM} channels at -60 mV in HEK293T cells. Current traces elicited by 200 μ M menthol for 2 min.

(H) Summary of currents remained after desensitization for the WT and mutant TRPM8_{MM} channels activated by menthol (n = 3-6). Summary data of the WT (purple bar) from Fig. 4K is reproduced to facilitate visual comparison. Open circles indicate the individual data points for each experiment. ns > 0.05, ***P < 0.001, using one-way ANOVA followed by Dunnett post-hoc test. Data are mean ± SEM.

Dotted lines in **E** to **G** indicate the zero-current level.

Fig. S15. Cryo-EM data collection and validation, part III.

(A and B) Representative micrographs, 2D classification images, local resolution estimation, the Fourier shell correlation (FSC) curves of the final 3D reconstruction with different masking calculated in CryoSPARC, orientation distribution diagram, and the FSC curves between model and full- or half-maps calculated in PHENIX. Results are shown for TRPM8_{MM}_PIP₂+Ca²⁺ (A) and TRPM8_{MM}_ Δ PIP₂+Ca²⁺ (B), respectively. The pixel sizes are specified below the images.

(C) Local resolution estimation, the Fourier shell correlation (FSC) curves of the final 3D reconstruction with different masking calculated in CryoSPARC, and orientation distribution diagram for the TMD focused refinement on TRPM8_{MM} PIP_2+Ca^{2+} .

(**D** and **E**) Representative EM densities (gray mesh) for key structural elements in TRPM8_{MM}_PIP₂+Ca²⁺ (**D**), TRPM8_{MM}_ Δ PIP₂+Ca²⁺ (**E**). Thresholding at 0.15 in (**D**), 0.18 or 0.2 in (**E**).

Fig. S16. The roles of PIP₂ and Ca²⁺ in TRPM8 desensitization.

(A) EM densities at the interfacial cavity (top) and the VSLD cavity (bottom) in TRPM8_{MM}_PIP₂+Ca²⁺ (left, wheat) and TRPM8_{MM}_ Δ PIP₂+Ca²⁺ (right, purple) structures. Densities are contoured at 0.15 and 0.2 for channel (gray mesh), 0.13 for PIP₂ (red mesh), 0.14 for Ca²⁺ (green mesh) in TRPM8_{MM}_PIP₂+Ca²⁺, and contoured at 0.19 and 0.2 for channel (gray mesh) and 0.2 for Ca²⁺ (green mesh) in TRPM8_{MM}_ Δ PIP₂+Ca²⁺.

(**B** to **E**) Representative time courses of TRPM8_{MM} activation at -60 mV in HEK293T cells. Current traces elicited by 200 µM menthol (top) or cold (bottom) in the presence of 0 mM extracellular Ca²⁺ and 0 µM diC8-PI(4,5)P₂ in the intracellular pipette solution (**B**), 2 mM extracellular Ca²⁺ and 0 µM diC8-PI(4,5)P₂ in the intracellular pipette solution (**C**), 2 mM extracellular Ca²⁺ and 200 µM diC8-PI(4,5)P₂ in the intracellular pipette solution (**D**), 2 mM extracellular Ca²⁺ and 200 µM diC8-PI(4,5)P₂ in the intracellular pipette solution (**D**), 2 mM extracellular Ca²⁺ and 200 µM diC8-PI(4,5)P₂ in the intracellular pipette solution (**D**), 2 mM extracellular Ca²⁺ and 200 µM diC8-PI(4,5)P₂ in the intracellular pipette solution (**D**), 2 mM extracellular Ca²⁺ and 200 µM diC8-PI(4,5)P₂ in the intracellular pipette solution (**D**), 2 mM extracellular Ca²⁺ and 200 µM diC8-PI(4,5)P₂ in the intracellular pipette solution (**D**), 2 mM extracellular Ca²⁺ and 200 µM diC8-PI(4,5)P₂ in the intracellular pipette solution (**D**), 2 mM extracellular Ca²⁺ and 200 µM diC8-PI(4,5)P₂ in the intracellular pipette solution (**D**), 2 mM extracellular Ca²⁺ and 200 µM diC8-PI(4,5)P₂ in the intracellular pipette solution (**D**).

(F and G) Representative currents of the WT TRPM8_{MM} channels at -60 mV in HEK293T cells. Current trace elicited by 200 μ M menthol (top) or cold (bottom) for 2 min in the presence of 0 μ M (F) or 500 μ M (G) extracellular Ca²⁺. Currents were recorded without (left) or with (right) 200 μ M diC8-PI(4,5)P₂ in the intracellular pipette solution.

Dotted lines in **B** to **G** indicate the zero-current level.

Fig. S17. Comparison of ligand binding to TRPM8 and TRPV1 channels.

(A) Binding sites for type I agonists (WS-12, icilin, C3), type II agonists (AITC), PI(4,5)P₂, and antagonists (AMTB, TC-I, AMG) in TRPM8 channels.

(B) Architecture of TRPV1 channels and the vanilloid binding site.

(C) Binding sites for agonists (capsaicin, resiniferatoxin) and antagonists (capsazepine, phosphatidylinositol) in TRPV1 channels.

Ligand binding sites are shown in surfaces and ligand molecules in sticks. PDB IDs are specified.

	TRPM8 _{MM}	TRPM8 _{MM}	TRPM8 _{MM}	TRPM8 _{MM}
	PIP ₂ +Ca ²⁺	$\Delta PIP_2 + Ca^{2+}$	apo D state	TC-I
	PDB-9B6J, EMD-	(PDB-9B6K, EMD-	(PDB-9B6D, EMD-	PDB-9B6E, EMD-
	44261)	44262)	44255)	442.56)
	Full man	Full man	Full man	Full man
	r un map	r un map	r un map	1 un map
Data collection and Processing				
Microscope	Titan Krios	Titan Krios	Titan Krios	Titan Krios
Voltage (keV)	300	300	300	300
Camera	K3	K3	K3	K3
Nominal magnification*	81.000×	81.000×	81.000×	81.000×
Physical pixel size $(\Lambda \text{ pixel}^{-1})^*$	1.08	1.08	11	1.08
Thysical pixel size (A pixel) Total electron supersure (a^2, λ^{-2})	40	40	52	40
For the control of th	00	00	55 17	80
Exposure rate (e pixel 's ')	15	15	1/	30
Number of frames	60	60	53	40
Defocus range (µm)	-0.7 to -2.2	-0.7 to -2.2	-0.7 to -2.5	-0.7 to -2.2
Automation software	Latitude	Latitude	EPU	Latitude
Energy filter slit width (eV)	20	20	20	20
Micrographs collected (no)	10.045	9 400	10 568	9 581
Micrographs used (no.)	9 261	9 3 8 1	8 844	9,471
Total autmoted nartialas (no.)	2 142 850	2 245 502	2 405 807	2,904,950
Total extracted particles (no.)	5,145,850	5,545,505	2,405,897	2,890,839
Reconstruction				
Refined particles (no.)	1,371,900	1,974,786	1,415,860	1,601,803
Final particles (no.)	103,487	35,327	87,176	194,290
Symmetry imposed	C4	C4	C4	C4
Resolution (global, Å)	3.53 Å	4.13 Å	3.30 Å	2.91 Å
FSC 0.5 (unmasked/masked)	4.5 / 3.9 Å	7.4 / 4.2 Å	4.1 / 3.6 Å	3.7 / 3.3 Å
FSC 0 143 (unmasked/masked)	40/35Å	42/36Å	37/33Å	33/29Å
Man sharpening $B_{factor} (Å^2)$	-60	-130	-75	-40
Man sharpening methods	-00 alabal abamaning	-157	-/J	-+0
Map sharpening methods	global sharpening	global sharpening	giobal sharpening	giobal sharpening
M. 1.1				
Niodel composition	2504	2/7/	2722	2720
Protein residues	3384	30/0	3/32	3720
Ligand	4	0	20	20
Ion	4	4	0	0
Model refinement				
Refinement nackage	Coot PHENIX	Coot PHENIX	Coot PHENIX	Coot PHENIX
Man Correlation Coefficient	0.71	0.68	0.80	0.76
B factors $(Å^2)$	0.71	0.00	0.00	0.70
Diactors (A)	164.92	1 47 95	02 78	120.65
Protein residues	104.85	14/.85	92.78	120.03
Ligands	1/8./0	124.95	51.26	85.68
R.m.s. deviations				
Bond lengths (A)	0.004	0.002	0.003	0.003
Bond angles (°)	0.703	0.461	0.686	0.753
Validation				
MolProbity score	1.65	1.72	1.51	1.62
Clashscore (all atoms)	11.87	8.05	5.16	5.6
Poor rotamers (%)	0.00 %	0.96 %	0.30 %	0.00 %
Ramachandran				
Outliers	0.00 %	0.00 %	0.00 %	0.00 %
Allowed	2 29 %	4 12 %	3 53 %	4 61 %
Favored	07 71 %	05 88 %	06 17 %	05 20 %
ravoicu	7/./1 /0	73.00 /0	70.4/ /0	75.37 /0

Table S1. Cryo-EM data collection, refinement, and validation statistics.

Submitted Manuscript: Confidential Template revised November 2022

	TRPM8 _{MM} _ AMG (PDB-9B6F, EMD- 44257)	TRPM8 _{MM} _ AMTB (PDB-9B6G, EMD- 44258)	TRPM8 _{мм} _TC-I+C3 (PDB-9B6H, EMD-	TRPM8 _{PM} _TC-I (PDB-9B6I, EMD	
			44259)	44260)	
	Full map	Full map	Full map	Full map	
Data collection and Processing					
Microscope	Titan Krios	Titan Krios	Titan Krios	Titan Krios	
Voltage (keV)	300	300	300	300	
Camera	K3	K3	K3	K3	
Nominal magnification*	81,000×	81,000×	81,000×	81,000×	
Physical pixel size (Å pixel ⁻¹)*	1.1	1.08	1.08	1.08	
Total electron exposure (e ⁻ Å ⁻²)	53	60	60	60	
Exposure rate (e ⁻ pixel ⁻¹ s ⁻¹)	17	30	30	30	
Number of frames	53	40	40	40	
Defocus range (µm)	-0.7 to -2.5	-0.7 to -2.2	-0.7 to -2.2	-0.7 to -2.2	
Automation software	EPU	Latitude	Latitude	Latitude	
Energy filter slit width (eV)	20	20	20	20	
Micrographs collected (no.)	9,395	10,053	14,226	10,266	
Micrographs used (no.)	8,793	9,798	14,059	9717	
Total extracted particles (no.)	2,608,765	3,194,454	4,913,002	3,535,129	
Reconstruction					
Refined particles (no.)	1.220.108	1.517.018	2.031.558	1.567.180	
Final particles (no.)	84 589	67 871	112 062	82 123	
Symmetry imposed	C4	C4	C4	62,125 C4	
Resolution (global Å)	3 42 Å	2 81 Å	2 76 Å	3 26 Å	
FSC 0.5 (unmasked/masked)	4.2 / 3.8 Å	3.9/3.3 Å	3.9/3.3 Å	4.1 / 3.6 Å	
FSC 0 1/3 (unmasked/masked)	38/3/Å	33/28 Å	33/28 Å	36/33 Å	
Man sharpening $B_{factor} (Å^2)$	-75	-50	-30	-60	
Map sharpening methods	global sharpening	global sharpening	global sharpening	global sharpening	
Madal as muse iti an					
	2716	2664	2726	2424	
Protein residues	3/10	3004	3/30	3424	
Ligand	20	28	24	20	
lon	0	0	0	4	
Model refinement					
Retinement package	Coot, PHENIX	Coot, PHENIX	Coot, PHENIX	Coot, PHENIX	
Map Correlation Coefficient B factors (λ^2)	0.81	0.73	0.76	0.81	
Protein residues	112 20	128 13	118 52	78 70	
Ligands	58 39	93 97	99.87	32.82	
R m s deviations	50.57	15.11	11.01	52.02	
Bond lengths (Δ)	0.003	0.003	0.004	0.003	
Bond angles (°)	0.703	0.704	0.706	0.698	
Validation					
MolProbity score	1 50	1 42	1.61	1 40	
Clashscore (all atoms)	51	54	7 51	5 42	
Poor rotamers (%)	0.31 %	0.00 %	0.44 %	0.72%	
Ramachandran	0.01 /0	0.00 /0	V. TT /U	0.27 /0	
Outliers	0.00 %	0.00 %	0.00 %	0.00 %	
Allowed	3 52 %	2 68 %	3 17 %	2 52 %	
1 1110 W VQ	5.52 /0	2.00 /0	2.1/ /0	2.22 /0	

*Calibrated pixel size at the detector