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Reviewers' Comments: 

Reviewer #1: 

Remarks to the Author: 

The authors have done a good job addressing the comments from the previous round of reviews 

and have significantly improved the manuscript. 

Reviewer #2: 

Remarks to the Author: 

In this revised manuscript, Eid et al adequately delineate key differences between their 

Fit4Function approach and other published efforts to bridge ML with AAV engineering. The authors 

should be commended for carrying out NHP studies and demonstrating encouraging results with 

several new AAV variants that display improved liver transduction compared to AAV9. Several 

arguments made by the authors with regard to "more efficient screening..." "co-optimization of 

multiple traits..." are supported by the data. Nonetheless, the major (and common) criticisms 

raised by each of the reviewers with regard to significance, novelty and new insight are largely 

unaddressed. Notably, the following concerns remain: 

1. While technically rigorous, the methodology described herein has not been rigorously tested 

against a challenging problem in the AAV gene therapy space. For instance, the peptide insert 

approach on AAV9 capsids has been utilized successfully by several groups and it appears that this 

strategy does not overwhelmingly affect traits such as viral titer with engineered leads. Therefore, 

the authors claim that this approach leads to selection of capsids with improved titers is 

overstated. Further, if multiple traits were indeed impacted by the peptide insert, the data does 

not provide sufficient evidence that the ML approach led to selective liver tropism (more likely 

improved uptake in general as evidenced in vitro). 

2. As alluded to by multiple reviewers, the liver has multiple AAV candidates in clinical trials 

(AAV5, LK03, AAV8, AAV.rh10, AAVS3 etc) and as such does not appear to be a subject of critical 

need. Notably, as indicated in the earlier review, AAV9 is more of an exception for liver GT 

applications - hence, the application of this method to improve AAV9 for liver applications does not 

particularly advance the field. Moreover, it is unclear whether any of the new variants reported 

herein offer any significant advantage over capsids listed above. 

3. As the authors recognize, improved gene transfer efficiency in the liver does not necessarily 

imply the ability to lower dose (this is target specific - number of hepatocytes corrected vs amount 

of transgene product desired at a particular dose). Hence the implications of the newly included 

NHP liver data are unclear. Notably, the authors claim increased transduction as represented by 

enrichment - is this data based on normalized vector genome (vg) copy number or transcript 

levels (not evident from figure, legend or discussion)? If vg, that would simply imply increased 

liver uptake, which typically mirrors in vitro cellular uptake traits. Hence, attributing the observed 

improvements to ML guided improvements in liver tropism is misleading. 

4. In summary, this is a compelling dataset that supports an improved and possibly more 

streamlined, time/resource-effective screening method for engineering AAV capsids. However, the 

choice of the specific application in improving liver gene transfer is underwhelming, the 

prospective applications of engineered leads for liver GT and the lack of significant new insight on 

how these multiple traits (titer vs in vitro transduction vs mouse vs NHP) are connected by the 

enriched sequences - all of which remain significant weaknesses of the overall study. 

Reviewer #4: 

Remarks to the Author: 

AAV capsid design is vital for efficient gene delivery. Eid et al developed a machine-learning 

approach to the systematical design of AAV capsid. In this work, the authors trained LSTM models 

to predict the functions of 7-mer amino acids (AA) inserted into VP1 residues 588-589 of AAV9. 



The sequences are sampled from the amino acids space rather than the nucleotide space. The 

result shows less bias caused by codons in this way. The prediction result is accurate and highly 

correlated with the measurement. Most training and test process of the machine learning model 

meets the specification. 

I have some questions about the detail of the training and testing process. These details should be 

declared for the reader to better understand the processes. 

Major: 

In this study, the authors trained multiple models to predict the fitness functions of 7-mer amino 

acids (AAs), which showed strong performance, suggesting that the models have learned the 

underlying sequence rules. For instance, specific k-mers or AA interactions might significantly 

impact high production or other functions. Extracting these rules from the models could offer 

valuable biological insights to readers. Nonetheless, further analysis of all the models is lacking. 

Therefore, I strongly recommend that the authors employ techniques such as counting k-mer 

frequency or using neural network interpretation methods, such as Saliency Maps or AA 

perturbation, to identify rules that contribute to different functions. 

Minor: 

1.Fit4Function enables reproducible data. But it’s not clear to me why the Fit4Function library 

consistently yield higher replication quality than the NNK library? Could the author further explain 

this? 

2.In line 382, the authors discussed: "variants that are maximally optimized for multiple objectives 

may not exist, especially in cases where performance on functions are negatively correlated." I’d 

like to know based on the models in this paper, which groups of objectives are negatively 

correlated. For example, could the author provide a spearman correlation matrix to visualize the 

associations and correlations among different experiments read out, which can clearly show the 

positive and negative correlated groups of objects. 



Point-by-point response to reviewer comments 
 
Reviewer #1 (Remarks to the Author): 
The authors have done a good job addressing the comments from the previous round of 
reviews and have significantly improved the manuscript. 
 
We thank the reviewer for their initial feedback and are glad that our revisions have addressed 
their comments. 
 
Reviewer #2 (Remarks to the Author): 
In this revised manuscript, Eid et al adequately delineate key differences between their 
Fit4Function approach and other published efforts to bridge ML with AAV engineering. The 
authors should be commended for carrying out NHP studies and demonstrating encouraging 
results with several new AAV variants that display improved liver transduction compared to 
AAV9. Several arguments made by the authors with regard to “more efficient screening...” “co-
optimization of multiple traits...” are supported by the data. Nonetheless, the major (and 
common) criticisms raised by each of the reviewers with regard to significance, novelty and new 
insight are largely unaddressed. Notably, the following concerns remain: 
1. While technically rigorous, the methodology described herein has not been rigorously tested 
against a challenging problem in the AAV gene therapy space. For instance, the peptide insert 
approach on AAV9 capsids has been utilized successfully by several groups and it appears that 
this strategy does not overwhelmingly affect traits such as viral titer with engineered leads. 
Therefore, the authors claim that this approach leads to selection of capsids with improved titers 
is overstated. 
 
The reviewer is correct that the use of 7-mer peptides to redirect the tropism of AAV9 (and other 
AAV capsids) is a well-established approach. However, as assessed and described in this 
manuscript in an unbiased library format (Fig. 2b), the majority of 7-mer insertions are not 
compatible with production that is on par with the parental capsid AAV9. Here, for the first time, 
we demonstrate that the production fitness of these capsids can be predicted with high 
accuracy.  
 
We have not made the claim in the manuscript that this approach leads to the selection of 
capsids with improved titers. Because this point may also be confusing to readers, we modified 
our explanation in the text: “Note that the “production-fit” distribution includes variants that 
produce better than, as well as, or less well than AAV9; “production-fit” is not defined as having 
a production fitness score greater than that of AAV9.”  
 
This confusion may have been caused because we identified a “high production fitness” 
distribution (Fig. 2b) and used this phrase to describe all variants included in Fit4Function 
libraries. We have now made modifications throughout the text to differentiate the two 
populations as production-fit versus non-fit, as opposed to high fitness versus low fitness. This 
should help clear up the confusion that may stem from an assumption that variants within the 
“high production fitness” distribution are predicted to out produce AAV9. Our AAV9 fitness data 



demonstrates that its measured production fitness falls within the high production fitness 
distribution.  
 
Further, if multiple traits were indeed impacted by the peptide insert, the data does not provide 
sufficient evidence that the ML approach led to selective liver tropism (more likely improved 
uptake in general as evidenced in vitro). 
 
We agree with the reviewer that the multi-trait liver-targeting capsids may not have led to 
capsids with selective liver tropism. We have not made the claim that this effort has identified 
capsids with selective liver tropism, nor was this our objective. Our claim is that our approach 
led to the development of capsids with greater liver enrichment/efficient liver transduction across 
species. Our data is not consistent with a general improved uptake phenotype because six of 
the seven individually tested multifunction variants exhibited reduced targeting of the brain, 
spinal cord, and kidney compared to AAV9 (Fig. 4d).  
 
2. As alluded to by multiple reviewers, the liver has multiple AAV candidates in clinical trials 
(AAV5, LK03, AAV8, AAV.rh10, AAVS3 etc) and as such does not appear to be a subject of 
critical need.  
 
We can see where reviewer 2 is coming from but we disagree with the points raised in this 
criticism. First, the Fit4Function methodology addresses a challenging problem in the AAV 
engineering space. As we describe in the paper, the peptide insertion approach has been 
utilized to some success by several groups (including ours), i.e., it is possible to select for 
capsids with a single enhanced function such as crossing the BBB in mice or NHPs, or more 
efficient transduction of human cell xenograft model. However, it remains incredibly inefficient in 
the pursuit of capsids with multiple, cross-species traits of interest, e.g., a capsid that can 
efficiently target a specific organ across mice, NHPs, and human cells. Dozens of selection 
experiments involving hundreds of animals have been conducted across groups; yet these 
efforts have only led to the discovery of a couple of examples of capsid families that exhibit 
more efficient transduction (e.g., of the CNS or muscle) across rodents and primates.  
 
We sought to publish the Fit4Function approach, which represents a significant departure from 
these conventional in vivo selection approaches, as soon as we verified that it could produce 
reproducible, ML-compatible data to train sequence-to-function models that can be leveraged in 
combination to accurately predict multi-trait capsids. We are building on this initial study and will 
be generating new data and training models aimed at addressing other multi-trait and cross-
species gene delivery challenges. The design-build-test cycle, which includes NHP and human 
cell validation studies, will take at least another year to complete and cannot be included in this 
publication.  
 
Notably, as indicated in the earlier review, AAV9 is more of an exception for liver GT 
applications - hence, the application of this method to improve AAV9 for liver applications does 
not particularly advance the field. Moreover, it is unclear whether any of the new variants 
reported herein offer any significant advantage over capsids listed above. 



 
In a side-by-side comparison with other AAV serotypes, AAV9 can achieve strong liver 
transduction in mice (see our data in Extended Data Figure 7, and Figure 4 in 
https://www.sciencedirect.com/science/article/pii/S1525001616317324) and in NHP (new work 
at the California National Primate Research Center, recently presented at the 2023 Annual 
ASGCT meeting, Abstract 78: AAV Serotype Tropism and Editing in Young Rhesus Monkeys, 
Alice F. Tarantal et al., showed that AAV9 transduced several macaque organs including the 
liver more efficiently than other serotypes including AAV5 and AAV8 
https://annualmeeting.asgct.org/abstracts/abstract-details?abstractId=14987). We have now 
added the following to our manuscript: “Notably, AAV9 has a strong liver transduction profile in 
animals compared to other AAV serotypes, including AAV5 and AAV817.” As we wrote in our 
manuscript, “Liver-directed therapies should benefit from the development of more potent AAV 
vectors that can be administered at lower doses to reduce the exposure to capsid antigens.” 
Other groups interested in the liver might decide to apply Fit4Function to their capsid of choice.  
 
3. As the authors recognize, improved gene transfer efficiency in the liver does not necessarily 
imply the ability to lower dose (this is target specific - number of hepatocytes corrected vs 
amount of transgene product desired at a particular dose). Hence the implications of the newly 
included NHP liver data are unclear.  
 
The dosage chosen for a specific indication is certainly indication and transgene specific. 
However, we are not aware of data that supports the possibility that increasing transduction 
efficiency would only lead to increased vector genomes per cell without an increase in the 
number of cells that are transduced. We anticipate that an increase in gene transfer efficiency 
will enable doses to be lowered for both secreted products and cell autonomous gene products.  
 
Notably, the authors claim increased transduction as represented by enrichment - is this data 
based on normalized vector genome (vg) copy number or transcript levels (not evident from 
figure, legend or discussion)? If vg, that would simply imply increased liver uptake, which 
typically mirrors in vitro cellular uptake traits. Hence, attributing the observed improvements to 
ML guided improvements in liver tropism is misleading. 
 
We performed two NHP studies - one for biodistribution (vector genomes measured) and one 
for transduction (transcript levels measured). The details of each study protocol are in the 
Methods section. We have added wording to the main text and the caption of Figure 4 to make 
the distinction between the two experiments clearer. The captions for Fig 4f and 4h have been 
edited as follows (underlined): “A 100K variant Fit4Function library was injected intravenously 
into a cynomolgus macaque and the distribution of vector genomes was assessed four hours 
later.” and “The macaque liver transduction efficiency, measured by transcript levels 4-weeks 
post-administration, for the seven individually characterized liver MultiFunction variants are 
shown (n = 2 rhesus macaques).”  
 
Therefore, our statements about improvements to liver tropism are not solely based on vector 
genome accumulation and are not in any way misleading. Indeed, we found that all seven of the 



individually characterized capsids chosen from our mouse biodistribution (vg readout) and 
human cell binding and transduction MultiFunction library data were validated by (1) increased 
copy number in mouse, cynomolgus macaque, and human cells, (2) increased liver gene 
expression (as measured by mRNA transcript enrichment) in mice, rhesus macaque, and 
human cells, and (3) individually at the reporter protein level in mice and human cells (Extended 
Fig. 7 and 8).  
 
4. In summary, this is a compelling dataset that supports an improved and possibly more 
streamlined, time/resource-effective screening method for engineering AAV capsids. However, 
the choice of the specific application in improving liver gene transfer is underwhelming, the 
prospective applications of engineered leads for liver GT and the lack of significant new insight 
on how these multiple traits (titer vs in vitro transduction vs mouse vs NHP) are connected by 
the enriched sequences - all of which remain significant weaknesses of the overall study. 
 
We respectfully disagree that what we have achieved with this liver focused MultiFunction effort 
is underwhelming. We engineered capsids that transduced the macaque liver and multiple 
human hepatocyte-like cell lines significantly better than AAV9, a capsid that has relatively 
strong liver targeting compared to other serotypes used in liver gene therapies.  
 
While there are other capsids that are capable of transducing liver cells in humans as 
highlighted by two recently approved liver-directed gene therapies, the doses used for each of 
these therapies (Hemgenix, 2e13 vg/kg; Roctavian, 6e13 vg/kg) remain high. As with any 
technology, new iterations will improve the product. Capsids engineered to provide more 
efficient liver delivery should enable efficient expression at lower doses, which would reduce 
cost of goods and enable lower costs to patients and the health care system (Hemgenix and 
Roctavian were launched at $3.5M/dose and ~1.5M Euros/dose, respectively). Lower doses 
may also allow for shorter courses of immunosuppressive regimens.  
 
As it stands, our strategy has achieved a significant advance in the field of biological ML and is 
an essential step towards using ML to search the vast sequence space of modified capsids (not 
limited to single peptide insertion libraries) for variants possessing multiple traits across different 
species. No other group has reported a ML-guided approach with the level of accuracy and 
generalizability demonstrated in our work, not to mention applying such an approach to 
accurately predict capsids that have multiple functions. Our strategy enables us to 
systematically determine the functional assays or combinations thereof that drive cross-species 
transferability. This is again a new advance that no other group has achieved. We are currently 
applying Fit4Function to other types of modified capsids, targeting other disease-relevant cell 
types and/or receptors expressed on these cells. That next step will require a large screening 
effort in multiple species, including in NHP, and will be published in a future manuscript. 
 
Reviewer #4 (Remarks to the Author): 
AAV capsid design is vital for efficient gene delivery. Eid et al developed a machine-learning 
approach to the systematical design of AAV capsid. In this work, the authors trained LSTM 
models to predict the functions of 7-mer amino acids (AA) inserted into VP1 residues 588-589 of 



AAV9. The sequences are sampled from the amino acids space rather than the nucleotide 
space. The result shows less bias caused by codons in this way. The prediction result is 
accurate and highly correlated with the measurement. Most training and test process of the 
machine learning model meets the specification. 
I have some questions about the detail of the training and testing process. These details should 
be declared for the reader to better understand the processes. 
Major: 
In this study, the authors trained multiple models to predict the fitness functions of 7-mer amino 
acids (AAs), which showed strong performance, suggesting that the models have learned the 
underlying sequence rules. For instance, specific k-mers or AA interactions might significantly 
impact high production or other functions. Extracting these rules from the models could offer 
valuable biological insights to readers. Nonetheless, further analysis of all the models is lacking. 
Therefore, I strongly recommend that the authors employ techniques such as counting k-mer 
frequency or using neural network interpretation methods, such as Saliency Maps or AA 
perturbation, to identify rules that contribute to different functions. 
 
We agree with the reviewer that investigating the model behavior can lead to biological insights. 
We conducted an interpretation study to understand what signals each model picked up. We 
have summarized this new analysis in the Results section and Extended Data Figure 9, and 
added to the Methods section. This is the text added to the Results section:  
 
“Our finding that six of seven individually tested MultiFunction liver-enriched variants exhibited 
reduced targeting of the brain, spinal cord, and kidney compared to AAV9 (Fig. 4d) suggested 
that the models did not simply learn to predict capsid variants with generally improved uptake 
into cells. To gain insight into the features learned by the models, we investigated how each 
amino acid residue at each position in the 7-mer, different physicochemical properties at each 
position, as well as epistatic interactions contribute to explaining the signals learned by each of 
the models. Across the six models, we observed that certain charged residues had a large 
overall impact on the predicted scores regardless of which position they occupied within the 7-
mer; the presence of Cysteine or Tryptophan at any position led to reduced production fitness 
predicted scores, and the presence of Arginine, Lysine, or Cysteine tended to lead to 
predictions of increased liver cell targeting (Extended Data Fig. 9a). Positive and negative 
charges contributed to increases and decreases in predicted scores, respectively (Extended 
Data Fig. 9b). However, physicochemical properties alone could not fully account for the signal 
learned by the models (Extended Data Fig. 9b). The models learned both first-degree (single 
residue) and second-degree (paired residues) interactions but those interactions could not fully 
explain the original model’s predictions, indicating that more complex signals or higher order 
epistasis drive the functional fitness (Extended Data Fig. 9c).” 
 
Minor: 
1.Fit4Function enables reproducible data. But it’s not clear to me why the Fit4Function library 
consistently yield higher replication quality than the NNK library? Could the author further 
explain this? 
 



Fit4Function libraries are designed to have a known and limited membership and to have low 
bias at the AA level. In contrast, with NNK libraries, the likelihood of generating quantitative data 
for each variant is reduced due to AA bias (Fig. 2c) and the much larger number of variants in 
the library. This affects replication quality because it is both more challenging to obtain accurate 
measurements of the amount of each variant in the unselected NNK virus library and after 
selection from the functional assays, which reduces the reliability of the calculated enrichment 
scores.  
 
Our manuscript has the following text: “Fit4Function libraries are designed to enable the 
generation of reproducible and ML-compatible functional screening data. Specifically, the library 
is limited to a moderate size that enables deeper sequencing depth and samples only 
production-fit variants, which both enable more quantitative and reliable detection of each 
variant in the library.”  
 
We have added the following new text to the manuscript to clarify this point:  
 
These results are unsurprising because NNK libraries have theoretically millions of random 
variants, some of which can be at levels that are two or more orders of magnitude higher than 
other variants in the library. As a result, state-of-art sequencing is not able to accurately quantify 
a great number of the underrepresented variants in NNK libraries before and after screens. In 
addition, the unknown variant membership in NNK libraries and the resulting low quality data 
mean that ML models cannot be trained to discriminate between truly non-functional variants 
and variants that cannot be reliably detected. In comparison, the Fit4Function library sizes (we 
set these at 240K or smaller) have a manageable, known membership and focus on production-
fit variants, which increases the likelihood of detection for each variant. Critically, this allows for 
learning from both positive and negative data. Furthermore, Fit4Function libraries used for 
training functional models are populated with variants sampled uniformly across the sequence 
space. Compared to NNK libraries, the higher replication quality and reduced bias in 
Fit4Function libraries enable more accurate modeling.  
 
2. In line 382, the authors discussed: “variants that are maximally optimized for multiple 
objectives may not exist, especially in cases where performance on functions are negatively 
correlated.” I’d like to know based on the models in this paper, which groups of objectives are 
negatively correlated. For example, could the author provide a spearman correlation matrix to 
visualize the associations and correlations among different experiments read out, which can 
clearly show the positive and negative correlated groups of objects. 
 
We have now added a reference to the Extended Data Fig. 4 in the discussion (line 382, 
previously); Extended Data Fig. 4 shows a correlation matrix including examples of anti-
correlated tropisms.  



Reviewers' Comments: 

Reviewer #2: 

Remarks to the Author: 

Concerns addressed 

Reviewer #4: 

Remarks to the Author: 

The authors have addressed my comments properly.
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