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Sections 

Section 1: methods of each team 

See the originally submitted team reports and compound lists on the following repository: 

https://github.com/hermanslab/COVID-19. Below are the ~1 page summaries of the method of 

each participating team. 

ai4science (1) 

Team members. Katarina Elez, Tim Hempel, Robin Winter, Tuan Le, Lluís Raich, Simon Olsson 
and Frank Noé. 
 
Target structures. We conduct all-atom molecular dynamics (MD) simulations of apo and holo 
models of the full activated form of the protease domain of TMPRSS2 (residues 256 to 490) taken 
from1 to account for possible artifacts of the homology model2 and target flexibility. We initialize 
our apo simulations from the homology model based on Enteropeptidase-1 (PDB: 3W94) and our 
holo simulations from docked poses with the confirmed inhibitors Camostat and Nafamostat3,4. 
We run a standard MD protocol mirroring physiological conditions with OpenMM 7.4.05 using the 
CHARMM 36 force field6. Using a dataset of 50 microseconds and hidden Markov models7, we 
selected a total of 20 representative protein conformations - 10 from apo simulations, 4 from 
Nafamostat7-bound and 6 from Camostat-bound simulations. 
 
Drug libraries. We considered the following libraries: (1) ZINC (“standard”-reaction database with 
purchasability status “wait OK”, ~997.4M compounds); (2) DrugBank (Mw <= 550 Da) and (3) 
ChEMBL (different assays of serine protease inhibitors clustered to obtain diverse compounds 
with strong binding affinity to Trypsin). 
 
Initial drug library. We first gathered a total of ~24,000 drug candidates as follows: (1) ~9,000 
diverse ZINC compounds that were structurally most similar (Tanimoto similarity > 0.6 based on 
extended connectivity fingerprints) to 18 lead compounds reported to inhibit TMPRSS2 or other 
Trypsins1,8–11; (2) ~6,000 diverse ZINC compounds containing a guanidinium group; (3) ~6,500 
molecules from DrugBank and (4) ~2,500 ChEMBL molecules that strongly inhibit serine 
proteases. All ~24,000 initial compounds were docked and scored to the 20 target structures 
before entering the active learning cycle. 
 
Docking. We retrieved 3D structures (as mol2 files) from the ZINC database (reference molecule) 
when they were available. Otherwise, we generated them from SMILES strings with the optimal 
ionization states at pH 7.05 using LigPrep12. To prepare the receptor and the ligand structures for 
docking we used MGLTools13. 
We docked each ligand against each of the 20 receptor structures using the smina software 
package14,15. We defined the search space as a box of size 30 Å3, centered on the catalytic serine 
(SER441). We used the Vinardo16 scoring function with the exhaustiveness of 10. Side chains of 
GLU299, LYS300, ASP435, GLN438 and TRP461 were kept flexible throughout the docking run. 
 

https://github.com/hermanslab/COVID-19
https://www.zotero.org/google-docs/?ZVkIYi
https://www.zotero.org/google-docs/?gcx1KD
https://www.zotero.org/google-docs/?9ZRcSn
https://www.zotero.org/google-docs/?3PW9fL
https://www.zotero.org/google-docs/?esW6uL
https://www.zotero.org/google-docs/?ko0gxG
https://www.zotero.org/google-docs/?sV6Ogd
https://www.zotero.org/google-docs/?cQaLkz
https://www.zotero.org/google-docs/?eReA37
https://www.zotero.org/google-docs/?QD9xWy
https://www.zotero.org/google-docs/?WmfNAJ
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Scoring. We collected raw docking scores of the best binding poses for each receptor-ligand pair. 
For each receptor structure, we normalized the ligand scores and computed the distance maps 
for each pose to retain only those in which the ligand formed at least 2 contacts (based on heavy 
atom distance, threshold = 3.5 Å) with residues 435-441 and 459-464. Based on the retained 
poses, we computed the mean normalized score across the receptor structures for each of the 
ligands. 
 
Active learning cycle for drug library expansion. We performed three cycles of active learning as 
follows: (1) define a set of new molecules from ZINC that are structurally close to the already 
scored compounds (Tanimoto similarity > 0.4) but diverse to each other; (2) using a machine-
translation-based autoencoder model17, encode these molecules to a continuous latent space 
representation; (3) train a kernel Support Vector Regressor (sklearn) on these latent 
representations and available scores to predict the score of all new molecules; (4) assemble a list 
of ~7,000 diverse compounds with the highest predicted scores for another docking round. 
Overall, a total of ~10,000,000 compounds were considered by the machine learning model and 
~21,000 new compounds were added to the drug library, resulting in a total library size of ~45,000 
compounds. 
 
Compound grouping and ranking strategy. We grouped the compounds into 3 distinct groups: 
DrugBank (6490 compounds), covalent (6010 compounds), and non-covalent (31485 
compounds). We employ this distinction as DrugBank molecules may be preferable for treatment 
even if they have inferior scores and covalent/non-covalent binders cannot be ranked together by 
docking score. We considered a compound as covalent if it had at least one of the following 
groups: esters, aldehydes, trifluoromethylketones, chloromethylketones or sulfonyl fluorides. We 
compile a ranked list for each of the three groups and a final ranked list of compounds. For the 
final list we took the top-100 compounds from the DrugBank list, all compounds from the covalent 
list and as many compounds from the noncovalent list as needed to reach a total of 10,000 
compounds. 
 

aiwinter (2) 

Team members. Filipp Gusev , Evgeny Gutkin, Roman Zubatyuk, Chamali Narangoda, Hatice 

Gokcan, Maria Kurnikova, Olexandr Isayev 

 

We screened 4.59 billion of molecules against three (Mpro, PLpro, TMPRSS2) targets. All 

molecules were triaged according to the following protocol: 

1. All 4.59B molecules were screened with three independent methods: AutoDock Vina, 

OpenEye Fred and Global QSAR model (see detailed description below) 

2. Hits were triaged through 21 ML models for ADME, off-target activities (receptors, ion 

channels, kinases & GPCRs) and solubility (LogS). Molecules with low solubility and/or 

more than four liabilities were discarded. 

3. Remaining molecules were filtered through Local QSAR model (see detailed description 

below) 

4. Final ranking was determined by consensus of Local QSAR model and penalized 

composite docking score. 

 

https://www.zotero.org/google-docs/?i5Nc2R


 

 

 

4 

Protein system preparation. X-ray crystal structures for Mpro (PDB IDs 6M03, 6WNP, and 7BQY) 

and PLpro (6WRH, 3E9S, 3MJ5, 4OVZ, and 4OW0) were obtained from PDB.  For TMPRSS2, a 

homology model of the catalytic chain residues 260-489 (UniProt accession number O15393) was 

generated in SwissModel1518 using hepsin (PDB ID 5CE1) as a template. All structures were 

protonated, solvated, and parametrized using tleap program of AMBER 1819. AMBER ff99SB-

ILDN20, GAFF21 and TIP3P22 parameters were used for protein, ligands and water 

correspondingly. Molecular dynamics (MD) simulations were performed for all structures using 

pmemd.cuda program of AMBER 1819. A detailed description of the system preparation and 

simulation protocol is provided elsewhere23. Representative structures extracted from production 

trajectories were used as receptors for docking.  

 

Virtual chemical library preparation. Our overall screening library was 4.59B small-molecule 

ligands. Molecules were obtained from 8 chemical databases (WuXi GalaXi, ZINC, Enamine 

REAL, PubChem & ChEMBL, Mcule Purchasable (Full), Merck, ChemSpace «In Stock», and CAS 

Antiviral DB). All SMILES were curated according to our well-established best practices24,25 

including standardization, the cleaning of salts, and the removal of mixtures, inorganics, and 

organometallics using ChemAxon 21 software26. 

 

Docking protocol. For each target, ligands were docked to several receptors using AutoDock Vina 

software15 with exhaustiveness setting of 16. For each docking experiment, five highest score 

ligand poses were saved and re-scored with OpenEye ChemGauss4 (CG4) score27. For each 

target, residues that have conserved interactions with native ligands (key residues) were identified 

by inspection of crystal structures. Penalized composite docking score S* was computed for each 

pose using the following formula: 

 𝑆∗ = 𝑆 + 2.0∑𝑀𝑘
𝑛(𝑑𝑘)

𝑁
 

where S is the consensus docking score (average of Vina and CG4 scores), M is number of key 

residues, n(dk) is rank of minimum distance dk from the ligand to a key residue for this particular 

protein target, and N is the number of ligands docked. The final composite docking score was 

calculated as the average of scores for several receptors. To accelerate the screening of billions-

size database, we have employed AIMNet-2D deep neural network model, a modification of the 

original AIMNet28 adjusted to operate on molecular graphs and use topological distance, to predict 

docking scores from 2D molecular structure of ligands. Similar to the Deep Docking approach29, 

we have applied an active learning technique to construct a dataset iteratively, selecting 

molecules with high docking score predicted on the model trained on the previous iteration. As a 

seed dataset, we used a random sample of 100k molecules from an in-vitro subset of the ZINC 

dataset. For every subsequent iteration we have added 100k random molecules from combined 

4.5B dataset with predicted docking score less than 10th percentile of docking score distribution 

in the current version of the dataset. 

 

QSAR modeling protocol. All models were trained within two nested five-fold cross validation 

loops using xGBoost[ref]. All splits were random. Final scoring was done by simple averaging of 

https://www.zotero.org/google-docs/?qtjQkD
https://www.zotero.org/google-docs/?mNaT2R
https://www.zotero.org/google-docs/?IVkNSz
https://www.zotero.org/google-docs/?xA4TeE
https://www.zotero.org/google-docs/?RQIy2S
https://www.zotero.org/google-docs/?AhIbnE
https://www.zotero.org/google-docs/?TVSExQ
https://www.zotero.org/google-docs/?CQxqKT
https://www.zotero.org/google-docs/?BQRjSh
https://www.zotero.org/google-docs/?8TfsXP
https://www.zotero.org/google-docs/?klSX7D
https://www.zotero.org/google-docs/?EHJtuP
https://www.zotero.org/google-docs/?Ixln7C
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five predictions from the external CV loop. Internal CV loop was used to perform hyperparameters 

search and variable selection for the corresponding fold using the protocol described elsewhere24. 

Each target dataset was curated according to well-established best practices25. 

To model MPro and PLpro we used historical data of putative inhibitors screening SARS-CoV 

from publicly available databases: BindingDB, PubChem, ChEMBL. To model TMPRSS2 due to 

lack of data for the TMPRSS2, we’ve selected set of representative proteins ST14_HUMAN, 

TRYB1_HUMAN, FA11_HUMAN, HEPS_HUMAN, KLKB1_HUMAN, PLMN_HUMAN, 

TMPS6_HUMAN such each pair of them share at least one inhibitor with pIC50 10nM or less (pX 

6 or more) whose data from BindingDB we used to build a QSAR model. 

For each collected dataset (to be referred as local) we build a complementary one, referred as 

global. We augmented each of the local dataset with synthetic presumed inactive molecules. 

Using the MinMax picker algorithm several thousands of presumed inactive molecules were 

selected from libraries ZINC-diverse and ChEMBL. 

As part of the pipeline we have used our ML method to develop 13 absorption, distribution, 

metabolism, excretion, and toxicity (ADMET) prediction models. Additionally we considered 

solubility (logS) and off target activity (9 models). Off targets include human kinases (AKT1, AKT2, 

AKT3, AURKA, AURKB) and GPCRs (CHRM1, CHRM2, CHRM3, HRH1). 

 

Novelty. To assess the novelty of a reported aiwinter hit compound (nsp5-14) we performed a 

search for a nearest neighbor based on Tanimoto similarity score (Ts). Tanimoto similarity was 

computed using ECFP with radius 2 and bit vector length 2048. The closest analog had similarity 

score  Ts=0.51 with annotated active molecules from nsp5 (MPro) training dataset. The closest 

analog from Chembl 29 (published in July 2021) has Ts=0.54. Overall this suggests that the 

observed hit was novel at the time of the competition 

 

belarus (3) 

Team members. Alexander Tuzikov , Alexander Andrianov, Yuri Kornoushenko, Hanna 

Karpenka, Ivan Bosko, Nikita Shuldov, Artsemi Yushkevich, Konstantin Furs 

 

Target structures. The target proteins were taken from the Protein Data Bank30. We used the main 

protease of the SARS-CoV-2 virus (3CLpro) with the X77 inhibitor (PDB ID: 6W63), the main 

protease of the SARS-CoV2 virus (3CLpro) (PDB ID: 6Y84), the S1 protein receptor-binding 

domain in complex with the ACE2 protein (PDB ID: 6M0J). 

 

Virtual screening. Pharmacophore-based virtual screening was performed using the Pharmit 

server software31, utilizing all the nine available molecular libraries (Pubchem, Molport, ZINC, 

ChemDiv, etc.), containing over 213.5 million chemical structures. For the 3CLpro targets, several 

pharmacophore models were built on the basis of the interaction of the X77 inhibitor with the 

SARS-CoV2 main protease. For S1 protein, the pharmacophore models were built on the basis 

of the interaction of Lys353 ACE2 receptor residue with S1 protein residues. The selected 

databases were searched for compounds that match the specified pharmacophore using the 

Pharmit web server31. The best screening compound was used to create a new pharmacophore 

https://www.zotero.org/google-docs/?D2eUjc
https://www.zotero.org/google-docs/?KBSRXR
https://www.zotero.org/google-docs/?sbKRrI
https://www.zotero.org/google-docs/?UBgxMR
https://www.zotero.org/google-docs/?hI9vvW
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model. A repeated search was performed on the selected databases. Energy minimization of 

results was used to optimize both the pose and conformation of identified hits with respect to the 

provided receptor using the AutoDock Vina15 scoring function and Smina14, a fork of AutoDock 

Vina with enhanced minimization functionality. Minimized results were sorted by affinity and saved 

as a compressed SDF structure file. 

 

Molecular docking. Before docking, hydrogen atoms were added to the ligand and receptor 

structures and their optimization was performed in the UFF force field32. For this purpose, the 

Open Babel33 program was used. Molecular docking of all compounds was performed using the 

Quick Vina 2 program34 with a conformational coverage parameter of 10. 

 

Molecular dynamics. The values of binding free energy were calculated with Amber1819 using the 

MM/GBSA method. The calculations were made for 200 snapshots extracted from the final 40 ns 

of the MD trajectories, by keeping the snapshots every 0.2 ns. The polar solvation energies were 

computed in a continuum solvent using the Poisson-Boltzmann continuum-solvation model with 

ionic strength of 0.10 M. The non-polar terms were estimated using solvent accessible surface 

areas. 

 

Machine learning. Molecular ACCess System (MACCS) fingerprints35 were obtained from SDF 

structure files and binding free energy was parsed using docking results. Fingerprints for each 

compound were matched with corresponding binding energy to form a dataset used for training 

of an adversarial generative autoencoder36. The training was conducted in a semi-supervised 

manner, where fingerprints were fed to the encoder, while binding energy was fed to the special 

neuron on the latent layer, and the decoder used both the compressed representation obtained 

by the encoder and the binding energy to restore original fingerprints. Data on the latent layer 

were additionally discriminated with a normal distribution, to enforce the encoder to make 

meaningful compressed representation. Later, the model was used to generate new molecular 

descriptors (fingerprints) with a preset property of the binding energy. Namely, in order to 

generate new fingerprints, numbers from normal distribution were sampled to the latent layer, 

while the neuron responsible for binding energy was given a threshold value to generate new 

fingerprints with (e.g. -10 kcal/mol). For the generated fingerprints, a similarity search was 

conducted among ZINC library compounds, using L1 distance as a metric. Closest compounds 

were subjected to docking procedures. Python package RDKit37 was used for preprocessing and 

MACCS fingerprints generation. Tensorflow 2.1 for Python38 was used as a deep learning 

framework. 

 

cermn (4) 

Team members. Ronan Bureau, Patrick Bousquet-Melou, Beatrice Charton, Bertrand Cirou, 

Mohammed Benabderrahmane  

 

Targets. Three targets were considered : 1) COVID-19 main protease39,40 (3C-like proteinase, 

pdb: 6W63), 2) ADP ribose phosphatase of NSP341 (Papain-like protease (PLpro)), pdb: 6W02),   

https://www.zotero.org/google-docs/?oJyNgB
https://www.zotero.org/google-docs/?Y2n45y
https://www.zotero.org/google-docs/?I32NH1
https://www.zotero.org/google-docs/?7FXJuh
https://www.zotero.org/google-docs/?sC4OVO
https://www.zotero.org/google-docs/?b9zgD7
https://www.zotero.org/google-docs/?GUc7gv
https://www.zotero.org/google-docs/?5FihAe
https://www.zotero.org/google-docs/?VOXDg0
https://www.zotero.org/google-docs/?cbgCY9
https://www.zotero.org/google-docs/?0Je5ad
https://www.zotero.org/google-docs/?U5b2ME
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3) Human transmembrane protease serine 213 (TMPRSS2): Source: covid.molssi.org., Homology 

model based on the structure of TMPRSS15/enteropeptidase11(pdb: 4DGJ). 

 

Chemical libraries. Five chemical libraries were considered in the overall studies with Real 

database as the main basis: 1) Real database from HTVS project42 (MW between 375 and 500 

daltons / logP between 1 and 4,5 (382 millions compounds) and MW between 325 to 375 daltons 

/ logP between 2,5 and 4,5 (240 millions compounds)), 2) Sweetlead library43 from SimTK 

(selection of 7134 compounds with MW between 200 and 700 Daltons) 3) Merck library (more 

than 5 millions compounds) 4) ChEMBLDB44 for proteases (53092 compounds for which at least 

a pKi/pIC50 value is superior to 6),  5) Chembl4303835 (SARS-CoV-2, 5653 compounds). 

 

Docking. Virtual Screening (VS) was based on docking approaches by two methods: High-

Throughput Virtual Screening (HTVS42: VIRTUAL FLOW with QVINA2, AutoDockTools13 for the 

definition of the configuration file) for big dataset and classical VS (Glide45 from Schrodinger) for 

a small database (sweetlead). 

 

Data analysis. A clustering of the HTVS / VS results was done with kmeans (Pipeline Pilot) with 

a selection/ranking of the best ligands. This was carried in four steps : a) clustering with ECFP4 

as descriptors (1024 bit) / Coefficient of Tanimoto for the distances / 3000 clusters b) For each 

cluster, extraction of the centroid and the 5 best ligands (QVINA2 score) c) For the selection, 

determination of a druglikeness with calculation of the Quantitative Estimate of Druglikeness 

(QED, the ligands should have a value superior or equal to 0.5) and d)  Ranking of the final 

selection in function of the QVINA2 score. 

 

Results. Target 1. 3C-like proteinase.  Scoring data for 559887710 compounds (Min : -11.5 / Max 

: 400.3 / Median : -7.1). Cutoff at -9.0 for the first selection : 930619 compounds. Second HTVS 

on the 930619 compounds (flexibility of the active site and the ligands with an exhautiveness level 

of 8). Cutoff at -9.5 for the second selection : 57038 compounds selected. Clustering of the final 

results (towards 10000 compounds) : 10613 compounds selected (classification in function of the 

docking score). Similarities between the 57038 compounds and the 271 compounds described 

as active towards SARS-COV2 (Chembl4303835) : 32 compounds with similarities >= 0.5. 

Target 2.  ADP ribose phosphatase of NSP3. Scoring data for 567746375 compounds (Min : -

13.6 / Max : 355.7 / Median : -4.8). Cutoff at -10.1 for the first selection : 1106522 compounds. 

Second HTVS on the 1106522 compounds (flexibility of the active site and the ligands with an 

exhautiveness level of 8).  Cutoff at -10.7 for the second selection : 50616 compounds selected. 

3. Clustering of the final results : 12227 compounds selected (classification in function of the 

docking score).  Similarities between the 50616 compounds and the 271 compounds described 

as active towards SARS-COV2 (Chembl4303835) : 13 compounds with similarities >= 0.5. 

Target 3. TMPRSS2. Scoring data for 586252945 compounds (Min : -11.8 / Max : 127.5 / Median 

: -6.7). Cutoff at -9.0 for the first selection : 1185453 compounds. Second HTVS on the 1185453 

compounds (flexibility of the active site and the ligands with an exhautiveness level of 8). Cutoff 

at -9.6 for the second selection : 58407 compounds selected. Clustering of the final results : 9009 

compounds selected (NSP5-5 is in this set). Similarities between the 58407 compounds and the 

https://www.zotero.org/google-docs/?ekZ5tf
https://www.zotero.org/google-docs/?kYAWKO
https://www.zotero.org/google-docs/?LV9NbF
https://www.zotero.org/google-docs/?OIzwMt
https://www.zotero.org/google-docs/?k2ezGN
https://www.zotero.org/google-docs/?xF3FLr
https://www.zotero.org/google-docs/?NcZGX8
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271 compounds described as active towards SARS-COV2 (Chembl4303835) : 23 compounds 

with similarities >= 0.5. 

covid19ddc (5) 

Team members. Stan Watowich, Suman Sirimulla, William Allen, Xiaodong Cheng, Robert Davey, 

Andrea Dimet, Francisco Enguita, Amit Gupta, Yurii Moroz, Pei-Yong Shi, Clifford Stephan, 

Adrian Varela-Alvarez, Jin Wang, Mark White 

 

Protein targets. ADP ribose phosphatase (MAC1 or X domain) (Nsp3), Main protease (Mpro; also 

called 3CL-pro) (Nsp5), RNAase (Nsp15), methyltransferase (Nsp16 / Nsp10), papain-like 

protease (PLpro) (Nsp3 domain), RNA dependent RNA polymerase (RdRp) (Nsp12) 

 

Method. Six different SARS-CoV-2 proteins (see above list) were prioritized as small molecule 

drug targets and their 3-dimensional crystallographic structures retrieved from the Protein Data 

Bank. For each protein chain in the available unique PDB structures, active sites conducive for 

inhibitor binding were identified. For example, two PDB (Protein Data Bank) entries (6W02, 

6W6Y) were available for the SARS-CoV-2 nsp3 ADP ribose phosphatase protein, and each PDB 

file contained two structures in the crystallographic asymmetric unit, which resulted in four unique 

structures for use in the virtual screening calculations. All unique protein chains (a total of 17 

different structures) for each SARS-CoV-2 protein target, together with chemical libraries 

containing 2.6 million drug-like, commercially-available small molecules, were optimized and 

parameterized for very large-scale virtual screening. Scripts were streamlined to efficiently 

perform large-scale Vina-based virtual screening calculations on TACC supercomputing systems 

(Frontera, Stampede2, Lonestar5, and BOINC@TACC). 

Vina-based virtual screening calculations against the SARS-CoV-2 proteins were rapidly 

completed. The virtual screening phase of this project systematically calculated optimal binding 

structures and energies between each small molecule in a 2.6 million-member library 

(encompassing Enamine Ltd's HTS, Advanced, and Premium chemical collections) and each 

SARS-CoV-2 non-structural protein (e.g., Mpro, RdRp, helicase, RNAase, papain-like protease). 

These calculations identified several thousand small molecules ("hits") predicted to tightly bind 

and inhibit critical active sites within each of the SARS-CoV-19 non-structural proteins. This list 

of several thousand hits for each protein target was subjected to a second round of virtual 

screening using the Schrodinger Glide algorithm. Results from the Vina and Glide scoring 

calculations were re-ordered using ordinal averaging to produce a consensus list of compounds 

ranked by average consensus ordinal score. 

deeplab (6) 

Team members. Nick Antonopoulos, Nikolaos Epitropakis, Agamemnon Krasoulis, Vassilis 

Pitsikalis, and Stavros Theodorakis. 
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Target structures and preprocessing. We downloaded all targets from the Protein Data Bank 

(PDB)30. We used the following three targets: spike protein S (PDB ID: 6M0J), 3CLpro / Nsp5 

(PDB ID: 6Y7M) and PLpro / Nsp3 (PDB ID: 6WUU). We extracted a total of 15 pockets using the 

P2Rank algorithm46, three for the spike protein and six for each of the 3CLpro and PLpro targets. 

We extracted both atomic47 and pocket surface48 features from the protein pockets. 

 

Ligand databases and preprocessing. We used four small molecule databases for virtual 

screening: ZINC15, MERC, CAS and SWEETLEAD. We only used ligand atomic features47. 

 

Binding affinity prediction. For each target we approached the problem of ligand ranking via 

binding affinity prediction using graph neural networks (GNNs). The pocket and ligand feature 

graphs were transformed into fixed-vector representations using dedicated GNNs. The two 

vectors were then combined using an outer-product layer and a dense layer was finally used to 

predict binding affinity (Kd or Ki). We used two distinct types of networks, each one using as input 

either the atomic or pocket surface feature representation. 

 

Model training. We trained the two binding affinity networks on the refined set of the PDBbind 

v.2019 database (4,852 protein-ligand pairs). The mean-squared-error loss function was used for 

model training. We generated artificial negative samples during training by combining protein 

pockets and ligands from different complexes in the training set. We assigned negative samples 

a zero log-affinity value and the positive to negative sample ratio was set to unity. 

 

Final selection. We screened all ligands against all 15 pockets. For each target, we aggregated 

estimates made for all corresponding pockets by considering for each target-pair combination the 

pocket that yielded the highest binding affinity score. For each target we then compiled two lists 

of the 10K top-ranked (i.e. highest binding affinity score) ligands, one for each type of network. 

All ligands included in both lists were selected for the final submission. The remaining ligands for 

each target were selected based on their maximum estimated score across the two models. A 

total of 10K ligands were selected for each of the three targets. 

 

Further information. Our submission was based on our Deep Neural Virtual Screening (DENVIS) 

algorithm described in ref.49. An inference API using our models is publicly available50. 

imolecule (7) 

Team members. Petr Popov, Alexander Medvedev, Igor Kozlovkii, Mark Zaretckii, Anton Maliutin. 

 

Method. Our goal was to investigate cryptic binding sites in the COVID targets followed by the 

virtual ligand screening campaigns (VLS) against the identified binding sites. Therefore, on the 

first stage we analyzed the three-dimensional  structures of the SARS-CoV-2 proteins using our 

recently developed deep learning approach called BiteNet51 for spatiotemporal identification of 

binding sites in protein structures. BiteNet is applicable to molecular dynamics trajectories and 

capable to identify the most promising protein conformation for VLS. We applied BiteNet to all 

available three-dimensional structures, models, and available molecular dynamics trajectories (for 

https://www.zotero.org/google-docs/?jdLQfS
https://www.zotero.org/google-docs/?O0ZETN
https://www.zotero.org/google-docs/?IrgzIJ
https://www.zotero.org/google-docs/?u4Q2eC
https://www.zotero.org/google-docs/?2frGo6
https://www.zotero.org/google-docs/?kD4ZY1
https://www.zotero.org/google-docs/?QpR3Pj
https://www.zotero.org/google-docs/?S4OOoz
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3CLPro, RNAPolymerase, and Spike) retrieved from the molssi resource52. All the protein 

conformations for each target were superimposed, the predicted binding sites were clustered, and 

the top 3 binding sites per target were selected for VLS campaigns. 

On the next stage we used the ligand-based screening of the REAL Enamine library consisting of 

~1.4B small molecules. As the first filter we used the ‘rule of three’ criteria, thus focusing on ~70M 

lead-like molecules. As the second filter we used the derived target-specific QSAR models. More 

precisely, to derive QSAR models we have used SARS-CoV datasets from collected from AICure 

(https://www.aicures.mit.edu) and Chembl (http://chembl.blogspot.com/ 2020/05/chembl27-sars-

cov-2-release.html?m=1) resources. In total we derived three independent QSAR models: 

general, 3CLPro-specific, and PLPro-specific. The general model was directly trained on the set 

of anticovid compounds, while the 3CLPro- and PLPro-specific models was trained on SARS-

CoV datasets and tested on SARS-CoV-2 datasets in order to obtain optimal hyperparameters. 

We used Morgan fingerprints, as the molecular descriptors, and Xgboost, as the machine learning 

algorithm. We used precision as the target metric in order to minimise number of false positive 

predictions. The best precision on the test sets was ~0.25 for all datasets. Overall by applying the 

QSAR filters we further narrowed down the chemical libraries to the ~1.5M of the most promising 

compounds. 

Given the identified binding sites and the filtered chemical libraries, we run structure-based VLS 

campaigns. We used VirtualFlow (https://virtual-flow.org) installed to the Skoltech HPC cluster 

Zhores53 and the Smina docking software (https://sourceforge.net/projects/smina/). In total we 

used ~500K CPU hours to dock ~1.5M compounds in 15 docking runs: single docking run per 

binding site, 3 binding sites per protein target, 5 protein targets.  

In order to take into account the FDA-approved small molecules as well as the investigational 

drugs, we used the ICM-Pro docking software (http://molsoft.com/) for molecular docking of the 

DrugBank library (https://www.drugbank.ca/). We used semi-empirical quantum mechanics 

calculations to generate 3D conformers for this chemical library. Similarly we used 15 independent 

docking runs: single docking run per binding site, 3 binding sites per protein target, and 5 protein 

targets.  

Finally, to explore possibility to experimentally test custom small molecules, we used structure-

based deep learning approach for de novo drug design for the RNA polymerase and the 3CLPro 

targets starting from known active compounds docked into the corresponding structures. We 

applied our recently developed 3D shape generator (unpublished) to the voxelized representation 

of small molecules bound to proteins, thus, generating ~1K de novo small molecules. We ranked 

the designed compounds using the derived QSAR models and selected up to 10 best molecules 

into the final list.  

As we used different scoring functions and different binding sites within each target, we cannot 

rigorously estimate the binding affinities. Instead we firstly ranked predictions with respect to each 

binding site giving priority to the Drug Bank compounds with the ICM score < -30.0. Then from 

each binding site we selected top 4000 hits and combined the results, hence list of 12K 

compounds. Then, we multiply the inner rank of each compound by the rank of the corresponding 

binding site. Finally, we removed the duplicated compounds and manually rearranged the top 50 

compounds to ensure that top compounds for each binding site present within top 50. 

Our main idea was to investigate vulnerable regions on the SARS-CoV-2 protein structures, that 

are ‘druggable’. For this purposed we applied BiteNet, state-of-the-art binding site detection 

https://www.zotero.org/google-docs/?pwuCro
https://www.zotero.org/google-docs/?6c3OeK
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approach to the conformational ensembles of SARS-COV-2 protein targets : Spike, 3CLPro, 

PLPro, Nucleocapsid, RNA polymerase. In general we seek for the binding sites that are hidden 

from the naked human eye using artificial intelligence approach. The main resource we used for 

the structures and MD simulations was covid.molssi.org. In case of experimentally determined 

three-dimensional structures we used the refined structures from insidecorona.net. Routine 

standartization of the structures, e.g. adding hydrogens, missing heavy atoms, rotamer 

optimizaiton, etc, was done using ICM-Pro; converting to the .pdbqt format was done using the 

Open Babel suite (http://openbabel.org).  

Library 1 - REAL Enamine. The REAL Enamine contains more than 1.4B compounds. On the first 

stage we applied RO3 filter and keep only compounds with i) octanol-water partition coefficient 

log P not greater than 3, ii) molecular mass less than 300 daltons, iii) not more than 3 hydrogen 

bond donors, iv) not more than 3 hydrogen bond acceptors, v) not more than 3 rotatable bonds, 

vi) Polar surface area no greater than 140 A^2, yielding 71.3M compounds. On the next step we 

applied the derived QSAR models in order to obtain 3CLPro-specific, PLPro-specific and general 

anticovid chemical libraries (for N protein, Spike, and RNA polymerase) of ~1.1M, ~1.5M, and 

~1.0M compounds respectively.  

Library 2 - DrugBank. We retrieved small molecules from DrugBank and applied sanitazing 

procedure according to the Chembl structure standartization pipeline yielding 8282 compounds. 

Then we generated 3D conformers and assign partial charges for each molecule using semi-

empirical quantum mechanics approach implemented in the ORCA software 

(https://orcaforum.kofo.mpg.de). 

jku (8) 

Team members. Starting with the lead and continuing then in alphabetical order, the team 

members are Peter Ruch, Hamid Eghbal-zadeh, Christina Halmich, Helga Ludwig, Andreas Mayr, 

Philipp Renz, Elisabeth Rumetshofer, Johannes Schimunek, Philipp Seidl, Andreu Vall and 

Michael Widrich. 

 

Method. The ligand-based screening54,55 consists of five independent Machine Learning methods 

for compound selection namely RandomForest, Gradient Boosting, Self-Normalizing Networks 

(SNN)56 and two LSTM-based sequence models57. For the first LSTM-based approach, several 

models were trained with a Multi-Task objective, followed by a target-specific model selection to 

identify the models which work best for a specific target. For the second LSTM-based-approach, 

the model was pretrained on a large dataset and then fine-tuned in a transfer-learning scheme. 

The RandomForest, Gradient Boosting and the SNNs are descriptor-based, whereas the LSTM-

based models directly operate on the molecular SMILES representation. Merging the results of 

the different models, the output of the SNNs are weighted higher, since SNNs showed high-

robustness against domain shifts. 

 

https://www.zotero.org/google-docs/?KD0L3o
https://www.zotero.org/google-docs/?KD0L3o
https://www.zotero.org/google-docs/?rLIXHm
https://www.zotero.org/google-docs/?Z2eD7P
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kyuken (9) 

Team members. Ashutosh Kumar, Francois Berenger, Yoshihiro Yamanishi, Kam Y. J. Zhang 

 

Method. Screened virtual chemical library: 1,002,510,499 molecules in total. Made of ZINC15, 

AMS, CAS antivirals, KEGG drugs, SWEETLEAD. Full details available in our report, included in 

the supplementary materials. Here is only a high level view of our massive virtual screening effort, 

dictated by the challenge rules (need to screen 1B+ molecules, using three different ranking 

methods each time). Our strategy was to use first fast ligand-based models to trim down the whole 

1B+ molecules library to our docking capacity, estimated at maximum 90M molecules (10M 

molecules per protein target, three times per target, three targets). This approach was later refined 

by the same authors as the "lean-docking" protocol58 to make docking scale to large chemical 

libraries. 

Target 1 - 3CLpro (PDB:6Y2F). A SARS-Cov-1 dataset (CHEMBL3927) was used to train one 

regressor and two classifiers. Those models reduced the whole library down to 770,326 molecules 

(ranking 1). Those 770,326 molecules were rank-ordered by an OpenEye ROCS query using the 

bioactive conformation of alpha-ketoamide 13b from PDB:6Y2F (ranking 2). 

A docking screen using OpenEye FRED and CCDC Gold provided the third ranking for this target. 

Target 2 - ACE2 (PDB:6LZG). We targeted on human ACE2 the Protein-Protein Interface (PPI) 

with the receptor binding domain of the viral spike protein. First, a classifier was trained using 

IPPIDB plus a 25 times larger random chemical background drawn from ChEMBL-24 not included 

in IPPIDB. This model trimmed down the chemical library to 2,461,774 molecules. The FTMap 

server was used to define a probable ligand-binding site on this PPI. Docking was performed 

using OpenEye FRED (1st ranking) and CCDC Gold (2nd ranking). OpenEye ROCS was used 

using a query generated from FTMap probes located on the ACE2/spike PPI (3rd ranking). 

Target 3 - PLpro (PDB:6WUU). Two ligand-based classifiers were trained using PubChem assay 

1944. They trimmed down the chemical library to 4,001,268 molecules (ranking 1). OpenEye 

ROCS was used to rank-order those molecules using shape and chemical similarity to the 

bioactive conformer of peptide inhibitor VIR250 from PDB:6WUU (ranking 2). Docking was 

performed using OpenEye FRED and CCDC Gold to obtain a 3rd ranking for this target. 

 
Figure S1: top five predicted ligands and their binding mode for 3CLpro (left), hACE2/viral-spike PPI 

(middle) and PLpro (right). 

lambdazero (10) 

Team members. Brooks Paige, Jose Miguel Hernandez Lobato, John Bradshaw, Joanna Chen, 

Bianca Dumitrascu, Matt Kusner, Marwin Segler, Jarrid Rector-Brooks, Paul Bertin, George 

https://www.zotero.org/google-docs/?DDnuN6
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Lamb, Simon Verret, Jian Tang, Will Hamilton, Chenghao Liu, Bruno Rosseau, Kostiantyn 

Lapchevsky, Aga Slowik, Michael Bronstein, Emmanuel Bengio, Doina Precup, Pierre-Luc Bacon, 

Yoshua Bengio, Scott Fujimoto, Pierre Thodoroff, Clement Gehring, Shivam Patel, Victor Butoi, 

Samira Kahou, Riashat Islam, Howard Huang, Evgenii Nikishin, Moksh Jain, Sumana Basu 

 

Method. This project leverages a previously tested, novel and yet unpublished deep reinforcement 

learning algorithm derived from the recent successes of DeepMind's AlphaZero and of MIT's 

approach to represent drug molecules. It also uses a new approach to search molecular space 

using reinforcement learning algorithms developed by the team at MILA and collaborating 

universities led by prof. Yoshua Bengio (whole team listed at: https://mila.quebec/en/ai-

society/exascale-search-of-molecules/). This new approach is based on the definition of a set of 

molecular building blocks which can be combined to form molecules and search the space at a 

more abstract level, as opposed to searching by modifying individual atoms. 

The research plan consists of the following main steps. (1) Run docking simulations on 200M 

randomly chosen molecules to bind on virus targets. (2) Keep the highest score as training 

examples for the initial value function network which approximates the docking scoring function. 

(3) Train Lambda-Zero (our novel RL algorithm) using the docking score, drug-likeness, and 

predicted cost of synthesis as the reward function and select top-scoring molecules. (4) Send 

these molecules to simulated retrosynthesis collaborators (Molecule.one, Dr. Piotr Byrski) (which 

will identify which of these molecules can be fabricated) and actual chemical synthesis. (5) Send 

best molecules designed by RL algorithm to computational biophysics collaborators (DE Shaw 

Research) to perform (a) long-term molecular dynamics and (b) Free Energy Perturbation (6) 

Send the best performing molecules in the MD simulations to our experimental collaborators for 

biological assays (IRIC, Dr. Mike Tyers) (measuring actual biological binding to the target) and 

biomedical assays (measuring protein binding energy, and effectiveness in cells and then animal 

models). (7) Feed back the results of these assays as additional data to constrain and improve 

the search, iterating back to step (3) but with a modified reward function which incorporates both 

docking and empirical data from (5) as part of a trained reward function neural network. 

The project delivers molecular structures deemed good candidates for antiviral drugs. If these 

molecules have good binding energy to the targets, this should convince biomedical collaborators 

to pursue the pipeline of evaluation of these molecules, leading eventually to clinical trials as well 

as compassionate use distribution. The project also delivers code for efficient implementation and 

parallelization of the previously developed LambdaZero algorithm honed in for the search of 

SARS-CoV-2 antivirals. 

lci (11)  

Team members. Dragos Horvath, Gilles Marcou, Alexandre Varnek 

Method. The following chemoinformatics strategies were used in our approach: 

1.  Database standardization: The ~1.3 billion ZINC compounds (zinc.docking.org; highest 

reactivity: “standard”, minimum purchasability “boutique”) plus the the 5M compounds 

of the AMS Merck library were standardized on the chemoinformatics web server 

http://infochim.u-strasbg.fr/webserv/VSEngine.html. 

https://mila.quebec/en/ai-society/exascale-search-of-molecules/
https://mila.quebec/en/ai-society/exascale-search-of-molecules/
http://infochim.u-strasbg.fr/webserv/VSEngine.html
http://infochim.u-strasbg.fr/webserv/VSEngine.html
http://infochim.u-strasbg.fr/webserv/VSEngine.html
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2.   Chemoinformatics-driven preselection.  

a.  55K ZINC molecules present within the Relevant Antiviral Spaces (RAS) of at minimum 

three of the seven Universal Maps59 were selected following the already published 

procedure60 which originally reported the >400 compounds residing in 4/7  of these RAS.  

b. 58K ZINC molecules were selected by a consensus similarity screening using as references 

84 antiviral compounds from the DrugBank (compound names ending in “-vir”), using the 

seven ISIDA fragment descriptor61,62 spaces at the basis of above-mentioned Universal 

maps and Tanimoto score. Only ZINC compounds which “made it” into the top 1000 

neighbors in two or more of the seven descriptor spaces (consensus neighbors) were kept 

c.  The published audit60 of coronavirus-related structure-activity data revealed a very small 

series of compounds confirmed to be active on the SARS-CoV 3CL protease in ChEMBL 

(as of March 2020). These 25 molecules were at their turn employed as references for 

similarity-based virtual screening of ZINC, as described above. A pool of 24885 

compounds resulted. 

d.   In absence of any RNA polymerase structure-activity data on coronaviruses, a search for 

RNA polymerase inhibitors of any viruses was conducted in ChEMBL, and 29 most potent 

nanomolar inhibitors were selected. They too were used in the similarity search-driven 

virtual screening.The best-ranked 10K of these were reported as such as RNA polymerase 

inhibitor candidates (no further docking). 

3.  The program PLANTS was used for docking (in “precision mode” speed1, with the 

ChemPLP score) of above preselected sets for the two viral proteases 3CLpro (PDB ID 

6W63) and papain-like protease (6W9C). In addition, machine-learning-enhanced docking 

(protocol not published) was used to process the entire AMS Merch database. The final 

selections were compounds containing between 20 and 40 heavy atoms located at the 

“Pareto front” of optimal ChemPLP docking score and ChemPLP ligand efficacy (i.e. 

docking score/number of heavy atoms). 

https://www.zotero.org/google-docs/?tVghXD
https://www.zotero.org/google-docs/?Kusfkb
https://www.zotero.org/google-docs/?xb40XP
https://www.zotero.org/google-docs/?D0ueVk
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Figure S2: Enlarged Pareto front (Global ChemPLP docking score:X, ligand efficiency:Y) for the 108K 

(ZN-RAS+ZINC-VIR) compounds docked into 6W9C. In green: selected 10K compounds, of intermediate 

sizes (between 20 and 40 heavy atoms). 

luxscreen (12)  

Team members. Enrico Glaab 

 

Targets considered. 1) 3CLPro/Nsp5 (PDB: 5R8T); 2) helicase / Nsp13 (PDB: 6JYT); 3) 

TMPRSS2 (homology model template: PDB: 5TJX). 

 

Protein structure pre-processing. The initial structures for 3CLPro (PDB: 5R8T) and the viral 

helicase Nsp13 (PDB: 6JYT) were obtained from the Protein Data Bank (rcsb.org). For the human 

protein TMPRSS2 no public crystal structure was available, but high-quality template structures 

could be obtained for homology modeling. For this purpose, the software PRIMO 

(primo.rubi.ru.ac.za) was used, creating the homology model by using the crystal structure for 

human plasma kallikrein as template (PDB: 5TJX; this template shows a 42.6% sequence identity 

to TMPRSS2, and provided the best DOPE Z-Score in the PRIMO software in comparison to 

other candidate template structures with high sequence similarity). 

The receptor structures were pre-processed using the Schroedinger Maestro software by adding 

hydrogens, generating protonation states, and optimizing hydrogen positions. The quality of the 

original and final structures was assessed using Verify3D, WHATCHECK and PROCHECK. For 

proteins with multiple chains, the chain with the highest Verify3D score was chosen for further 

analysis. 

  

Ligand pre-processing, feature tree search & docking. All ligands from the Merck AMS and 

SWEETLEAD libraries were preprocessed using the AutoDock ligand preparation script, and 

docked using AutoDock-GPU. For the ZINC database, in order to focus on compounds that are 

commercially available and have drug-like chemical and ADMET properties, the ZINC database 



 

 

 

16 

was filtered to download all compounds with the properties “drug-like”, “purchasable” (minimum 

purchasability = “Wait OK”) and reactivity = “clean”. These compounds were downloaded as 

SMILES, using the “ZINC-downloader-2D-smi.wget” script derived from the “Tranches” web-page 

on ZINC. 

The collection of ZINC compounds was further filtered using a feature trees representation and 

similarity assessment approach (software: BioSolveIT Ftrees v6.2) to score the topological and 

physicochemical similarity to small-molecule binders reported in the literature and top-scored 

candidate inhibitors from the AutoDock-GPU screening on the Merck AMS and SWEETLEAD 

libraries for each of the chosen target proteins. Specifically, the literature-derived query 

compounds for 3CLPro include: ebselen, amentoflavone, hesperetine, pectolinarin, baicalein and 

dieckol; for the helicase they include: SSYA10-001 and FSPA; for TMRPSS2 they include: 

nafamostat, camostat and bromhexine hydrochloride. These literature-derived query compounds 

for the feature tree search were completed by the top-ranked compounds from the Merck AMS 

and SWEETLEAD libraries obtained from the AutoDock-GPU screening as further query 

compounds, such that 10 query compounds in total were obtained for each target protein. All 

ZINC compounds exceeding a minimum similarity threshold of 0.8 in the FTrees screen to the 

query compounds were retained for further docking analyses. 

For the final docking runs, the prefiltered compounds for each of the target proteins were docked 

by three different approaches: AutoDock-GPU, OpenEye FRED/HYBRID, and BioSolveIT 

FlexX+HYDE (initially, Schroedinger Glide was included as a fourth docking approach, but due to 

the availability of only a single-user license and long runtimes, this additional screening was not 

completed and not taken into consideration for the final ranking). Since FlexX+HYDE was the 

most time-consuming docking approach among the three methods considered, to save time, it 

was first run complete on the SWEETLEAD library, and for the larger Merck AMS and ZINC-

derived compounds, only run on compounds with higher than average scores from the AutoDock-

GPU and OpenEye FRED/HYBRID screens in the order of their rankings (since compounds with 

lower scores in the first two docking approaches would in any case not reach the top 10k of the 

final combined ranking). 

The final ranking was determined by the sum-of-ranks across the three docking tools, and the 

binding energy estimates were obtained from the best predicted binding affinity by the BioSolveIT 

HYDE software from among the top 30 docking poses. 

nuwave (13) 

NUWAVE (Northeastern University Warriors of the Anti-Viral Enterprise). 

Team Members. PI: Mary Jo Ondrechen; PhD students: Suhasini M Iyengar, Kelly K Barnsley; 

Undergraduates: Hoang Yen Vu, Ian Jef A. Bongalonta, Alyssa S. Herrod, Jasmine A. Scott 

Methods. For the binding site prediction, Partial Order Optimum Likelihood (POOL)63–65 was used. 

Partial Order Optimum Likelihood (POOL) is a machine learning method that predicts 

biochemically active amino acids using the three-dimensional structure of the query protein as 

input. POOL predicts multiple types of binding sites in proteins which include catalytic sites, 

https://www.zotero.org/google-docs/?68cZ44
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allosteric sites and other sites, some of which may not be detected by other predictive methods 

because POOL is based primarily on computed electrostatic and chemical properties of the query 

protein. POOL points to the residues involved in reversible binding, including catalytic sites and 

non-catalytic binding sites such as allosteric sites, ligand transport sites, and some protein-protein 

interaction sites. The other input features for POOL consist of properties of the local environment 

and surface topological metrics. 

Molecular Docking was performed using Schrödinger Glide 2019-3 on the Discovery Cluster at 

the Massachusetts Green High-Performance Computing Center. Glide Standard Precision (SP) 

was used as an initial screen and top predicted ligands with docking score of <=-7 kcal/mol were 

used for Glide Extra Precision (XP). 

Targets. The target proteins were downloaded from the protein data bank, except for NSP1, for 

which a comparative model structure was built. The N Protein model structure was built in 

YASARA66 using a series of structures from the Protein Data Bank. These structures were 

obtained after a BLAST search of the N Protein sequence. The model was built by manually 

providing template structures with sequence homology to N Protein. These templates are Crystal 

Structure of SARS-CoV-2 nucleocapsid protein N-terminal binding domain (PDB ID:6M3M), 

Crystal structure of RNA binding domain of nucleocapsid phosphoprotein from SARS-CoV-2 

(PDB ID: 6VYO) crystal structure of C-terminal dimerization domain of Nucleocapsid 

Phosphoprotein from SARS-CoV-2 (PDBID: 6WJI) and the N-Terminal binding domain of the 

SARS-CoV-2 nucleocapsid phosphoprotein (PDBID: 6YI3). Using these three structures as 

templates, YASARA built a hybrid model for the N protein. Details of our method, the screened 

ligand libraries, and the types of interactions between active amino acids in the target proteins 

have been reported67. 

pharmAI (14) 

Team members. Joachim Haupt, Florian Kaiser, Michael Schroeder 

 

Method. PharmAI uses own proprietary, knowledge-based algorithms that exploit hidden 

information in protein structures. It is a combination of several methods, including: protein binding 

site similarity68, protein-ligand interaction similarity69, and sophisticated chemical similarity. The 

PharmAI DiscoveryEngine allows to quickly select from millions of compounds to obtain a ranked 

list specific for the given target. The results from the independent methods are ranked and 

combined using an empirical P-value. In a recent benchmark study, this so-called Focused Library 

approach, achieved a hit rate of 6% and identified 7 new lead compounds cGMP-dependent 3',5'-

cyclic phosphodiesterase inhibition. For more details see ref.70. The unique approach of our 

DiscoveryEngine guarantees a maximal scaffold diversification to discover new chemical entities. 

Please understand that we cannot disclose any more details about the algorithm as this is our 

main IP. 

safan (15) 

Team members. Luisa Pugliese1 

https://www.zotero.org/google-docs/?syawX2
https://www.zotero.org/google-docs/?E4jLdy
https://www.zotero.org/google-docs/?svpCTR
https://www.zotero.org/google-docs/?viXxF5
https://www.zotero.org/google-docs/?6l4D35
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1S.A.F.AN. BIOINFORMATICS, Turin, Italy 

 

Methods. The computational profiling was carried out using our proprietary technology SAFAN-

ISP. It is a ligand based method calculating the binding affinities between each ligand and more 

than 4500 targets from 15 different protein classes. As many ligand based methods SAFAN-ISP 

is based on the molecular similarity evaluation between the submitted molecule(s) and those in 

an active compound database containing experimental data concerning the interactions between 

molecules and protein targets. SAFAN-ISP calculates similarities using newly derived fingerprints 

based on small substructures. The similarity (Tanimoto) is computed matching atoms to 

substructures and evaluating common atoms. 

For the experimental data we use a refactored bioactivity database derived from the CHEMBL25 

database. 

The technology involves three steps: 

1. Molecule fragmentation: The input molecule is split into fragments following a newly 

derived scheme. Each fragment is compared to SAFAN-ISP database of fragments, 

derived from the compounds included in our bioactivities database. Fragments are used 

to : 

● select targets sharing similar fragments with the input compounds, 

● calculating affinities combining concerning different compounds binding the same 

target 

2. Affinity calculation based on compound similarity: The similarity of the input compound is 

derived with all the compounds present in SAFAN-ISP database. Next the binding 

constant on all targets outputted from step 1. is computed combining similarities and 

experimental data using four different schemes, two including chiral fingerprints and two 

excluding them. 

3. Weka Machine Learning approach: The REPTree algorithm, available from the WEKA 

open source package, is used to combine all binding constants derived in steps 1. and 2. 

in a single value that will be the final output. RepTree uses the regression tree logic and 

creates multiple trees in different iterations. After that it selects the best one from all 

generated trees. 

sarstroopers (16) 

Team members. Goutam Mukherjee, Giulia D’Arrigo, Eleonora Gianquinto, Sandra Kovachka, S. 

Kashif Sadiq, Daria B. Kokh, Alexandros Tsengenes, Christina Athanasiou, Abraham Muniz 

Chicharro, Ariane Nunes-Alves, Anton Hanke, Giulia Paiardi, Jonas Gossen, Simone Albani, 

Benjamin Philipp Joseph, Francesco Musiani, Candida Manelfi, Carmine Talarico, Andrea 

Beccari, Paolo Carloni, Giulia Rossetti, Francesca Spyrakis and Rebecca C. Wade 

 

Method. The computational virtual screening pipeline was carried out by three research groups, 

who independently conducted different parts of the pipeline and then together merged the results 

and ranked the compounds.  The pipeline included rapid virtual screening using several methods 

(scaffold searching, RASPD+71, ligand similarity searches and ROCS ligand pharmacophore-

based screening72), molecular docking with three independent methods (GOLD73,74, Glide45,75, 

https://www.zotero.org/google-docs/?Gf2Yi7
https://www.zotero.org/google-docs/?pgMucI
https://www.zotero.org/google-docs/?BXe99w
https://www.zotero.org/google-docs/?15Nkcu
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FRED76), molecular dynamics simulation of docked complexes and trajectory analysis using the 

MD-IFP77 workflow, and ADMET screening with the  Schrodinger Qikprop78 module. The pipeline 

allowed us to assign compounds to different classes according to their ranking as potential 

binders to the four SARS-CoV-2 protein targets studied: Nsp3, Nsp5, RdRp and S receptor 

binding domain.  All data for this virtual screening, including a list of compound libraries screened 

and the scaffolds used for screening, have been deposited on Sciebo: https://fz-

juelich.sciebo.de/s/j3S598yadmudMow  

sarswars (17) 

Team members. Vishwesh Venkatraman, Daniel R. Olson, Jeremiah Gaiser, Conner J. Copeland, 

Travis J. Wheeler, and Amitava Roy 

 

Methods. We targeted only viral proteins (NSP12, 3CLPro, and N), as this aligns with our long-

term research goal. As a pre-processing step, we identified potential binding pockets for the target 

proteins  through a combination of the cavity detection tools FTMAP79 and POCASA80, literature 

review, and visual inspection. Six pocket-like regions were identified: 2 each for N, NSP12 and 

3CLpro. Some of the pocket-like regions were too large to be occupied by a typical sized ligand, 

so these larger pocket-like regions were subdivided into smaller pockets. In total, 22 pockets (8 

each for N and NSP12 and 6 for 3CLPro) were finalized as targets. 

To identify candidate ligands, we developed a multi-stage screening pipeline that can rapidly 

explore drug candidates from a library of billions of molecules. The pipeline, drugsniffer, has since 

been released81, and required ∼40,000 total compute hours to screen for potential ligands for the 

3 target proteins among a library of ∼3.7 billion candidate molecules. 

For each pocket, drugsniffer designs a collection of ligand molecules from scratch, using the 

software AUTOGROW482. Unique structures were generated over 5 independent runs of 

AUTOGROW against each pocket, resulting in a total of 30,000 designed molecules. Using these 

molecules as seeds, the union of several chemical libraries was queried to identify library-sourced 

compounds similar to the seeds.  Similarity was assessed using 1024-bit ECFP4 fingerprints, 

which were computed on all AUTOGROW4 molecules, and also for all ~3.7 billion library 

compounds (fingerprints computed using RDKIT83). Among all library compounds, ~97,000 had 

Tanimoto similarity greater than 0.6 to some seed ligand, and another ~955,000 had Tanimoto 

similarity of 0.5-0.6. Among the 97K closer neighbors: ~43K were identified for nsp12, ~34k for 

N, ~20k for 3CLPro. 

All ~1.05M neighbors were docked into the respective protein targets using AUTODOCK VINA84. 

Up to 4 docking poses for each ligand were retained. The drugsniffer pipeline includes a deep 

learning module, dock2bind, that is trained to discriminate between binding and non-binding 

compounds based on pose data (see ref.81 for details). This module serves as a method for re-

scoring the results of docking, and was applied to each of the molecule neighbor molecules, and 

produced a ranked set of candidates. This list was passed through drugsniffer‘s custom ADMET 

filter to produce the final candidate list.  

https://www.zotero.org/google-docs/?Exs4li
https://www.zotero.org/google-docs/?2tHL7w
https://www.zotero.org/google-docs/?DmimnS
https://fz-juelich.sciebo.de/s/j3S598yadmudMow
https://fz-juelich.sciebo.de/s/j3S598yadmudMow
https://www.zotero.org/google-docs/?cAbGg4
https://www.zotero.org/google-docs/?V4mJne
https://www.zotero.org/google-docs/?iEWj6P
https://www.zotero.org/google-docs/?Shrsfm
https://www.zotero.org/google-docs/?TVhE6U
https://www.zotero.org/google-docs/?Ed83PT
https://www.zotero.org/google-docs/?MlZMJB
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virtualflow (18) 

Team members: Christoph Gorgulla, Amit Singh, Georg Steinkellner, Karl Gruber, Klara Blaschitz, 

Konstantin Fackeldey, Marco Cespugli, Michael Hetmann, Vedat Durmaz, Christian C. Gruber, 

Haribabu Arthanari 

 

Methods: We used the recently developed ultra-large in silico screening platform VirtualFlow42 to 

screen for inhibitors of SARS-CoV-2. In this unprecedented structure-based virtual campaign, we 

screened approximately 1 billion molecules against each of 40 different target sites on 17 different 

potential virus and host targets. We targeted not only the active sites of viral enzymes, but also 

critical auxiliary sites such as functionally important protein-protein interactions. Target 

preparation was done in part using molecular dynamics simulations and binding site 

characterization using Innophore's CavitOmiX and Catalophore platform. Further methodological 

details have been published by the VirtualFlow team in ref.85. 

way2drug (19) 

Team members: Vladimir Poroikov; Dmitry Filimonov; Dmitry Druzhilovskiy; Alexander 

Veselovsky; Alexey Lagunin; Vladlen Skvortsov, Anastasia Rudik; Alexander Dmitriev; Pavel 

Pogodin; Leonid Stolbov; Olga Tarasova; Sergey Ivanov; Boris Sobolev; Dmitry Karasev; Tatyana 

Gloriozova; Kirill Shcherbakov, Polina Savosina; Nikita Ionov; Nadezhda Biziukova; Vladislav 

Sukhachev 

Methods: Taking into account the incomplete and sometimes contradictory information about 

SARS-CoV-2 virus and its interaction with the host cell, which was available on May 6th, 2020 

when the project began, we decided to apply the approach for virtual screening of anticoronavirus 

hits in the big chemical libraries included three sequential stages. 

(1) Selection of the potential hits among the 1+ billion compounds based on the similarity 

assessment using as the “reference drugs” molecules with experimentally determined 

anticoronavirus action. 

(2) Further filtration and ranking of the selected hits using machine-learning methods implemented 

in our software PASS (Naïve Bayes Classifier) and GUSAR(Self-Consistent Regression). The 

training sets were extended and improved permanently in the framework of the whole project. 

 (3) Verification of the representative examples of the selected compounds using the molecular 

modeling approach. 

General workflow for selection of hits with potential anti-SARS-CoV-2 activity is given in Figure 

S3. 

https://www.zotero.org/google-docs/?gFd03P
https://www.zotero.org/google-docs/?aaso1E
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Figure S3. General workflow and results of selection of anti-SARS-CoV-2 hits. 

  

The similarity estimates were carried out using the method based on Multilevel Neighborhoods of 

Atoms (MNA) and Quantitative Neighborhoods of Atoms (QNA) descriptors (for details see: ref.86). 

Machine learning approaches were applied using our software PASS87 and GUSAR88. Molecular 

modeling was performed using Dock 6.589 and AutoDock Vina90. 

yoda (20) 

Team members. Maria Rita Gulotta, Nedra Mekni, Maria De Rosa, Giada De Simone, Jessica 

Lombino, Ugo Perricone 

 

Methods. SPIKE GLYCOPROTEIN. A preliminary computational alanine scanning of the complex 

between spike (S) receptor-binding domain (RBD) and angiotensin-converting enzyme 2 (ACE2) 

peptidase domain (PD), using the PDB structures 6M1791 and 6M0J92, respectively was done, 

then two molecular dynamics (MD) simulations using Desmond (each lasting for 200 ns) were  

performed on both PDBs. This analysis allowed identifying the key residues of S RBD, and 

putative hot-spots guided the virtual screening campaign (ZINC12 and SWEATLEAD libraries) 

based on docking and pharmacophore screenings using Glide (Docking)45,75,93 and Ligandscout 

(structure-based pharmacophore)94. From the consensus retrieved molecules (43,800), PAINS 

and REOS filters were applied and finally, the first 10,000 consensus compounds were ranked 

and retained according to the best score values.  

https://www.zotero.org/google-docs/?vWWR7I
https://www.zotero.org/google-docs/?0GfsHN
https://www.zotero.org/google-docs/?BXX4HB
https://www.zotero.org/google-docs/?2xH5C7
https://www.zotero.org/google-docs/?aTCYbu
https://www.zotero.org/google-docs/?eiqTzN
https://www.zotero.org/google-docs/?TJf4qg
https://www.zotero.org/google-docs/?DOsF1l
https://www.zotero.org/google-docs/?7kOQpS
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3-CHYMOTRYPSIN-LIKE PROTEASE (3CLpro or Mpro). Several SARS-CoV-2 3-chymotrypsin-

like proteases (3CLpro  /Mpro), X-ray structures were available. Particularly, Diamond Light Source 

synchrotron facility has largely contributed to enrich this collection with numerous Mpro complexes 

co-crystallized with fragments of covalent and non-covalent nature. From the analysis of these 

PDBs, we focused on the key residues non-covalently bound to the substrate with the help of 

Maestro GUI and short MD of 50 ns for molecular contacts exploration. X-ray resolution and 

chemical diversity of co-crystallized ligands were considered to select three Mpro PDB structures 

including non-covalent inhibitors. PDB structures 6W63, 5RF7 and 5R83 were chosen in order to 

build docking models45,75,93 to screen ZINC12 and SWEATLEAD libraries on each of these 

models. The final outcomes were filtered from PAINS and REOS groups and only the consensus 

molecules from the three models were retained.  

PAPAIN-LIKE PROTEASE (PLpro). In order to identify the key residues for SARS-CoV-2 papain-

like protease (PLpro), a similarity analysis between SARS-CoV PLpro and SARS-CoV-2 PLpro was 

performed and a high identity percentage of 86% was obtained. Furthermore, the alignment of 

the C-α, performed with the Maestro superimposition tool, highlighted that the catalytic sites were 

conserved on the same region of the two proteases. Therefore, through the study of PLprocrystal 

structures (PDB IDs: 6WUU and 6WX4), we analyzed  the crucial residues for the binding of 

inhibitors (Thr264, Asp164, Pro248, Gly171) also through MD simulation.  

On the basis of the information retrieved from PDBs analysis and the MD simulation(Desmond), 

a docking model45,75,93 was built to virtually screen ZINC12 and SWEETLEAD. Finally, the best 

ranked compounds by docking were filtered from PAINS and REOS groups. 

Section 2: Consensus ranking          

Method 1: Generative Topographic Mapping 

Generative Topographic Maps95–97 (GTMs) are grid-based chemical space mapping tools, which 

project the chemical entities represented in the high-dimensional descriptor space onto (square) 

a 2D-grid of nodes, by fuzzily associating each compound to one or more of these nodes. 

Association is based on the closeness in descriptor space between the image of a compound (its 

descriptor vector) and the node coordinates. A compound is said to “reside” in a node, with a 

“residence time” proportional to its distance to the node. Thus, GTMs are fuzzy Self-Organizing 

Maps98,99 (SOMs) – the latter adopting the stricter rule “a compound resides 100% in the node 

closest to it”. On a GTM, the compound may “spend most of its time” in the closest node, but also 

be marginally associated with slightly more distanced ones. The sum of these residence “times” 

– technically called responsibilities – must equal one. Compounds are said to have distinct 

Responsibility Patterns59,100 (RP), the concept of which is a natural, intuitive approach to explore 

chemical space. Each RP corresponds to a well-defined chemical space zone populated by 

molecules of near-identical responsibility vectors, a “cell” in chemical space. Interesting RPs (for 

a given target) should be both a) highly populated, and b) “cosmopolitan”, in the sense that its 

residents have different origins (were proposed by different participants, based on different virtual 

screening protocols). There is one criterion combining both aspects: the total Shannon entropy . 

https://www.zotero.org/google-docs/?ZSLsEs
https://www.zotero.org/google-docs/?3seI4r
https://www.zotero.org/google-docs/?z55aO6
https://www.zotero.org/google-docs/?HxnGjW
https://www.zotero.org/google-docs/?x4LZLI
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Above, NRP is the total number of residents in the RP, the sum of RP residents proposed by each 

group g. In short, for each protein target, each skeleton SMILES is (if ever predicted to concern 

that target) is defined by the sum of the target-specific Shannon entropies of the RPs it is 

associated with. Ranking these entries according to the sum of entropies leads to a ranked list by 

consensuality index (i.e., top-ranked is the most consensual), which was done for each of the 

protein targets.  

 
Figure S4: Center, large landscape: global GTM landscape of all Nsp5-selected compounds, all 

contributors confounded, colored by consensus rank: red - consensus zones, blue – “non-cosmopolitan” 

areas proposed by a single contributor. Surrounding example landscapes detail the chemical spaces 

selected by the given contributors for Nsp5 (not all shown), following the same consensus rank-based color 

code.  

 

Method 2: k-medoids clustering.  

The cluster analysis was done separately for each target-protein. For each team and each protein 

target, the top-1000 valid molecules of each team were collected. Then the extended-connectivity 

fingerprints101 or, synonymous Morgan Fingerprints,  of size 2048, with radius 2 for each molecule 

were calculated. This means that each molecule was represented by a vector of substructures or 

a set of substructures. Next, the Tanimoto similarity matrix, or equivalently the Jaccard index, was 

calculated. Different Clustering methods with different parameters were then compared (e.g., 

https://www.zotero.org/google-docs/?E4fIf4
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Agglomerative Clustering, k-medoids, DBSCAN, Affinity propagation...) and compared with 

respect to their ability to produce meaningful and even-sized clusters of molecules. Based on 

these criteria, k-medoids clustering with 700 pre-defined cluster-centers was selected. The 700 

cluster-medoids were sorted by cluster size, considering the largest cluster as the most important 

one (i.e., top-ranked). An advantage of k-medoids clustering is that each cluster is represented 

by an exemplar or a prototype molecule. Thus, the procedure allowed us to provide a ranked list 

of exemplar molecules that represent a cluster of similar molecules, where the ranking is in 

decreasing order by cluster size. The lists contained for each molecule also information about 

each team having proposed that molecule, for which target they proposed it, their position, the 

cluster size, as well as the molecule encoded as Inchii and SMILES. 

 

Selected molecules list. 

For each target, the list of cluster medoids was fused with the top N ranked molecules proposed 

by every team, where N was chosen such as to accumulate ~1300 different entries in the resulting 

fused pool. N is therefore dependent on the number of groups having proposed molecules for the 

given target and the degree of mutual overlap of their proposed lists. The fused pool of each target 

was further enriched by (not yet included) entries ranked by consensuality index, and herewith 

expanded to include 2700 distinct molecules (adding the ~1400 most consensual picks not 

amongst the ~1300 selected at the first step). A global merit index was calculated for each of the 

2700 pooled items, as the unbiased average of the “clustering”, “top ranking” and “consensuality” 

scores (clustering score being proportional to the size of the cluster represented by the medoid – 

minimum 3). 

The pool of 2700 was eventually ranked by global merit, and a procedure to remove lower-merit 

redundant structural analogues was applied. For each target, the 2700 compounds were encoded 

as IIRAB-FF-1-2 ISIDA descriptors (these are like Morgan circular fragment fingerprints but use 

force field types instead of element symbols to “color” atoms) and the full inter-compound 

similarity matrix was computed. Compound pairs were sorted by their degree of redundancy 

(Tanimoto similarity), and out of each pair of close neighbors the compound with the lesser global 

merit score was withdrawn - iteratively, until the selection size of 2700 was reduced to the desired 

2000. The final distribution of compounds was 38% top-ranked, 47% GTM, and 15% k-medoids 

and called the “selected compound lists” (one for each of the 6 protein targets). 

Section 3: Detailed team comparison 

Hit rate. Table 1 and Table 2 in Section 2.3 and Section 2.4 of the main text show selected 

molecule counts, synthesized molecule counts and hit rates whereby the numbers were computed 

only considering compounds which were submitted for the target on which it was tested. Due to 

the molecule selection procedure, in which some molecules were chosen based on consensus 

scores, some teams submitted compounds which were not tested on the predicted target but on 

another one. Table S1 and Table S3 present selected molecule counts, synthesized molecule 

counts and hit rates irrespective of the predicted target. 
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Table S1. Overview of selected and synthesized molecules across teams (rows) and drug targets 

(columns). Molecules which were selected or tested for a specific target but submitted for another target 

contribute - in contrast to Table 1 - to the team counts. 

  Selected molecules (section 2.3 main text)  Synthesized molecules (section 2.4 main text) 

 N Nsp3 Nsp5 Nsp12 S 

TMPR

SS2 SUM  N Nsp3 Nsp5 

Nsp1

2 S 

TMPR

SS2 SUM 

ai4science (1) 60 19 14 25 39 499 656  1 0 0 1 0 16 18 

aiwinter (2) 0 64 88 1 1 63 217  0 12 8 0 0 0 20 

belarus (3) 0 0 32 1 68 0 101  0 0 0 0 0 0 0 

cermn (4) 9 77 82 5 4 626 803  0 8 3 1 0 49 61 

covid19ddc (5) 0 79 55 82 1 0 217  0 6 5 10 0 0 21 

deeplab (6) 0 60 69 1 160 2 292  0 8 7 0 11 0 26 

iMolecule (7) 1013 81 71 358 403 17 1943  73 4 6 42 22 0 147 

jku (8) 0 86 259 63 0 0 408  0 0 62 6 0 0 68 

kyuken (9) 0 81 52 0 424 0 557  0 15 0 0 41 0 56 

lambdazero (10) 0 0 32 0 0 0 32  0 0 0 0 0 0 0 

lci (11)  0 1150 700 60 1 2 1913  0 86 54 5 0 0 145 

luxscreen (12) 3 5 76 331 9 256 680  0 0 2 14 0 5 21 

nuwave (13) 0 39 26 9 2 4 80  0 0 0 0 0 0 0 

pharmai (14) 5 16 43 15 293 3 375  0 2 0 0 35 0 37 

safan (15) 3 67 81 209 14 7 381  0 2 17 15 1 0 35 

sarstroopers (16) 20 61 58 215 132 29 515  0 5 0 19 2 0 26 

sarswars (17) 472 2 86 299 0 0 859  8 0 2 9 0 0 19 

virtualflow (18) 547 53 112 372 219 487 1790  46 9 2 45 24 44 170 

way2drug (19) 3 78 59 57 11 98 306  0 13 3 0 2 21 39 

yoda (20) 0 69 90 1 341 2 503  0 3 11 0 24 1 39 

SUM 2135 2087 2085 2104 2122 2095 12628  128 173 182 167 162 136 948 
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Table S2. Number of active molecules, i.e. hits, confirmed with in-vitro testing and hit-rates (ratio of active 

against tested molecules). The best hit-rate is marked bold. The number of tested compounds is taken from 

Table 3. Analogous to Table 3, hit counts include compounds for which the predicted target and the tested 

target is different. 

 

Hits 

 N Nsp3 Nsp5 Nsp12 S TMPRSS2 hits tested 

Hit Rate1 

% 95% conf-int 

jku 0 0 14 0 0 0 14 89 15.7 [8.9-25.0] 

covid19ddc 0 0 1 1 0 0 2 21 9.5 [1.2-30.4] 

kuyken 0 2 1 0 2 0 5 74 6.8 [2.2-15.1] 

aiwinter 0 0 1 0 0 0 1 20 5.0 [0.1-24.9] 

ai4sciences 0 0 1 0 0 0 1 34 2.9 [0.1-15.3] 

deeplab 0 0 0 0 1 0 1 47 2.1 [0.1-11.3] 

cermn 0 0 1 0 0 0 1 64 1.6 [0.0-8.4] 

way2drug 0 1 0 0 0 0 1 76 1.3 [0.0-7.1] 

iMolecule 12 0 0 1 0 0 2 314 0.6 [0.1-2.3] 

virtualflow 0 0 1 0 0 0 1 225 0.4 [0.0-2.5] 

Ici 0 0 0 0 0 0 0 157 0.0 [0.0-2.3] 

yoda 0 0 0 0 0 0 0 54 0.0 [0.0-6.6] 

safan 0 0 0 0 0 0 0 42 0.0 [0.0-8.4] 

sarstroopers 0 0 0 0 0 0 0 29 0.0 [0.0-11.9] 

luxscreen 0 0 0 0 0 0 0 24 0.0 [0.0-14.2] 

sarswars 0 0 0 0 0 0 0 19 0.0 [0.0-17.6] 

belarus 0 0 0 0 0 0 0 0 NA NA 

lambdazero 0 0 0 0 0 0 0 0 NA NA] 

nuwave 0 0 0 0 0 0 0 0 NA NA 

pahrmai 0 0 0 0 0 0 0 0 NA NA 

All teams 1 3 193 2 3 0 285 878 3.2 [2.2-4.8] 

 

  

                                                
1 Hit rate from the pooled analysis described in this paper. 
2 The related compound is not considered a hit due to its low confidence and therefore is not included in 

the main text. 
3 One hit was found by two teams 
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Table S3. SMILES ID of hit compounds 

Hit information 

ID SMILES Target 

S-1 CC(C(=O)NC(Cc1c[nH]c2ccccc12)C(O)=O)c1ccc(Cl)cc1 S 

S-2 CCc1cc(NC(=O)C2(CC2)c2cccc(F)c2)[nH]n1 S 

S-3 COC(=O)C(Cc1c[nH]c2cc(F)ccc12)NC(=O)C(C)Oc1ccccc1 S 

Nsp5-1 CC(N(C)C(=O)Cn1nnc2ccccc12)c1cccc(Cl)c1 Nsp5 

Nsp5-2 O=C(Nc1nc2CCN(Cc3ccccc3)Cc2s1)c1ccc2C(=O)N3CCCCCC3=Nc2c1 Nsp5 

Nsp5-3 Fc1ccc2c(CCNC(=O)c3cccc(Nc4ccc(cc4)C#N)c3)c[nH]c2c1 Nsp5 

Nsp5-4 O=C(Nc1nc2cc3OCCOc3cc2s1)C1CCN(CC1)S(=O)(=O)c1ccc2CCCc2c1 Nsp5 

Nsp5-5 O=C(Nc1nc2CN(Cc3ccccc3)CCc2s1)c1ccc2C(=O)N3CCCCCC3=Nc2c1 Nsp5 

Nsp5-6 Cc1ccc(Nc2cccc(c2)C(=O)Nc2cc([nH]n2)C(=O)OCc2ccccc2)nn1 Nsp5 

Nsp5-7 CC(C)N(Cc1ccccc1)C(=O)Cn1nnc2ccccc12 Nsp5 

Nsp5-8 CN(Cc1cccc(F)c1)C(=O)Cn1nnc2ccccc12 Nsp5 

Nsp5-9 O=C(Cn1nnc2ccccc12)N1CCCCCC1c1ccccc1 Nsp5 

Nsp5-10 CCN(C(c1ccccc1)c1ccccc1)C(=O)Cn1nnc2ccccc12 Nsp5 

Nsp5-11 CC(C)CN(Cc1ccccc1)C(=O)Cn1nnc2ccccc12 Nsp5 

Nsp5-12 CC(N(C1CC1)C(=O)Cn1nnc2ccccc12)c1ccccc1 Nsp5 

Nsp5-13 CC(N(C)C(=O)Cn1nnc2ccccc12)c1ccccc1 Nsp5 

Nsp5-14 CC(NC(=O)Cn1nnc2ccccc12)c1cccc(Cl)c1 Nsp5 

Nsp5-15 COc1ccc(Cl)cc1CN(C)C(=O)Cn1nnc2ccccc12 Nsp5 

Nsp5-16 CCN(Cc1ccccc1)C(=O)Cn1nnc2ccccc12 Nsp5 

Nsp5-17 CN(Cc1ccccc1)C(=O)Cn1nnc2ccccc12 Nsp5 

Nsp5-18 CC(N(C1CC1)C(=O)Cn1nnc2ccccc12)c1cccc(c1)C(F)(F)F Nsp5 

Nsp5-19 CCC(N(CC)C(=O)Cn1nnc2ccccc12)c1ccccc1 Nsp5 

Nsp3-1 COc1ccc(cc1OC)C(C)NC(=O)c1cc(N)ccc1C Nsp3 

Nsp3-2 Fc1ccc2[nH]c(CNC(=O)c3ccc(F)nc3)nc2c1 Nsp3 

Nsp3-3 Fc1ccc(cn1)C(=O)NCc1nc2ccc(Cl)cc2[nH]1 Nsp3 

Nsp12-1 O=C(CC1=NNC(=O)c2ccccc12)Nc1ccc(NS(=O)(=O)c2ccc3OCCOc3c2)cc1 Nsp12 

Nsp12-2 Oc1nc(no1)-c1ccc(NC(=O)C2CCCS2)cc1 Nsp12 
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Further experimental tests and hit rate evaluation by individual teams. The SARStrooper 

team experimentally tested a few of the compounds that the team had ranked highly and found 7 

inhibitors with IC50 <10 uM (Mukherjee et al., in preparation). 

 

Pharm.ai compared their top 100 predictions for Nsp5 against public data published after the 

competition deadline and obtained a hit rate of 17% on a highly diverse set of scaffolds.102 

 

 
Figure S5a. Selected compounds list (~2000 compounds for each of the 6 targets) broken down by team, 

target, and selection method. See the main text ‘Biases in compound selection and synthesis’ paragraph 

(section 2.4 of the main text). 

 

 

 

 

https://www.zotero.org/google-docs/?ULti6P
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Figure S5b: Synthesized compounds list (878 compounds for all of the 6 targets combined) broken down 

by team, target, and selection method. See the main text ‘Biases in compound selection and synthesis’ 

paragraph (section 2.4 of the main text). 
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Figure S6. Histograms of selected compounds (blue) and synthesized compounds (orange) as a function 

of the ranking of each individual team that submitted to any of the 6 protein targets. Left: full view up to (the 

maximum allowed number of) 10000 compounds. Right: zoomed in section up to the top 500 ranked 

compounds. 
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Figure S7: Ratio synthesized compounds list (878 total) versus selected compounds list (12082 

compounds; ~2000 for each of the 6 targets). 

 

 
Figure S8. Overall percentages of origin by selection method. Left: selected molecules list (6 protein targets 

with ~2000 compounds each), right: synthesized compound list (878 molecules in total over 6 targets) 

 

Details on t-SNE embeddings. All compounds displayed in Figure S9a and Figure S9b (and 

main text Figure 2a) were mapped to a vector with dim 1024, using folded ECFPs. Based on 
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these features, a two-dimensional t-SNE embedding was created, whereby the manifold package 

by scikit-learn was used and the t-SNE algorithm was run with default hyperparameters. 

 

 
Figure S9a: For the Nsp5 target, the different hits (colored dots) are t-SNE embedded into the space of 

submitted compounds for the Nsp5 target. The black dots (in each figure panel) show single team 

submissions which contributed to the Nsp5 list. The directions of t-SNE dimension 1 and 2 are indicated by 

arrows (see top left, next to the legend). 
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Figure S9b: The same plot as Figure S9a, but in gray dots all team submissions to the Nsp5 are shown in 

the background. 
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Figure S10: Scatterplots in t-SNE coordinates which show the hits and the prior-art compounds (gray/black 

circles). Colored dots are hits found in the current work. For Nsp5 a zoomed-in region is shown in the red 

box, with the chemical structures of proximal prior-art compounds, where several benzotriazolyl acetamides 

can be identified. 
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Section 4: Details on biological assays and testing 

procedures  

4.1 Compound feasibility, synthesis and purity. 

All compounds were synthesized by WuXi Apptec (China) upon instructions from the organizing 

team. The final compounds were selected based on 3 criteria by WuXi Apptec using proprietary 

methods: 1) cADME (computational absorption, distribution, metabolism, and excretion) filtering 

was done to arrive at compounds with molecular weight (MW) below 500 g mol–1, CLogP < 5, 

Hydrogen bond acceptors HBA < 10, Hydrogen bond donors HBD < 5, TPSA < 140, Number of 

rotatable bond < 5. In addition, possible PAINS (Pan-assay interference compounds) were 

removed; 2) Chemical feasibility: a similarity search versus the WuXi Apptec virtual library was 

performed to assess feasibility; 3) reagent availability and cost was considered (approx. 245 000 

$ in compound costs alone). The organizing team supplied the top-ranked ~2000 compounds 

from the ‘selected compounds list’ of each of the 6 protein targets to WuXi Apptec (i.e., 11440 

total compounds), which then used the 3 criteria to select 1414 feasible compounds in total. The 

synthesis period lasted from November 2020 to February 2021, and 878 compounds were 

delivered as 20 mM DMSO (dimethylsulfoxide) stock solution on well-plates. The compound purity 

was determined by LC-MS and has been reported previously.103 Of all 878 compound, 58 (i.e., 

6.6%) had a purity below 90%. The latter data set also includes information on solubility, and on 

compound chirality. Duplicate compound plates with DMSO stock solutions were shipped to the 

MIT-Broad institute (USA), Crelux GmbH (Germany), Pasteur Institute (France), and the Diamond 

Light Source (UK), for further experiments. For purity of the compounds in the main text see the 

caption of Table 3 for details.  

4.2 Binding assays using microscale thermophoresis.  

Binding assays were performed by Crelux GmbH.  

 

4.2.1 Binding assays Nsp12 – Materials and Methods 

Attempts to stabilize the Nsp7/8/12 complex using a literature procedure104 were only partially 

successful (see Figure S11). The complex could be obtained, but was found to destabilize over 

time and with (gentle) heating. This is sufficient for structure determination (in ref.104), but not for 

MST measurements.  Therefore only the Nsp12 domain was used instead. 

https://www.zotero.org/google-docs/?ck5WCH
https://www.zotero.org/google-docs/?TCmKWS
https://www.zotero.org/google-docs/?l8RADp
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Figure S11. Purification and stabilization of Nsp7/8/12 complex. 

 

Nsp12 containing a C-terminal His-Strep tag (lot PC13929-1, aa 4393-5324) was purchased from 

Crelux GmbH - a WuXi Apptec company. Suramin was purchased from Sigma Aldrich (574625). 

Nsp12 was labeled in an assay buffer using 25 nM protein and 12.5 nM dye, following the labeling 

protocol as specified in NanoTemper Technologies RED-NHS 2nd Generation labeling kit. The 

assay buffer for all experiments was 20 mM Hepes pH 7.5, 150 mM NaCl, 1 mM MgCl2, 2.5 mM 

DTT, 0.005% TWEEN® 20, and a final volume of 20 μL per datapoint was used for both the 8-pt-

screen and the affinity screen (12 points) in Dianthus 384-well microwell plates.  

The compound library and Suramin were dissolved in 100% DMSO at a concentration of 20 mM. 

For the 8-pt-screen, we diluted the compounds from 20 mM stock solutions to 4 mM and Suramin 

to 0.8 mM in 100% DMSO and transferred the first dilution into a conventional microwell plate. 

The second and all following 3-fold dilution steps were prepared in DMSO in the microwell plate, 

using at each step 5 µl of the preceding dilution and 10 µl of DMSO. Then, 19.5 µl of labeled 

nsp12 at a final concentration of 25 nM was transferred into the Dianthus 384-well microplate, 

and 0.5 µl of compound dilution series was added and mixed thoroughly. Final concentrations 

were 2.5% DMSO and 100 µM – 45.7 nM compound, 3-fold dilution series. Final Suramin 

concentrations were 20 µM – 9.14 nM, 3-fold dilution series. For the 12-pt affinity screen, 

concentrations were adapted to obtain final compound concentrations of 250 µM – 1.41 nM and 

Suramin concentrations of 100 µM – 0.56 nM, 3-fold dilution series for both. 

After the Dianthus 384-well microplates were loaded with the compounds + nsp12 mix, they were 

equilibrated for 30 min at RT and centrifuged for 30 sec at 400 x g before loading into the Dianthus 

NT.23PicoDuo. The system was set to 25°C as set temperature. The samples were first measured 

for 1 sec without heating and for 5 sec with the IR-laser turned on. The two optical systems in 

Dianthus were used in parallel. Measured fluorescence values collected are displayed as relative 

fluorescence, where the fluorescence obtained at ambient temperature is normalized to one, and 

as normalized fluorescence (Fnorm) which describes the ratio between fluorescence values (F1) 

after and the fluorescence values (F0) prior to IR laser activation and is typically given in ‰. The 

dissociation constant or KD, is obtained by fitting a dose-response curve to a plot of Fnorm vs. 

ligand concentration. 

References for Dianthus: 
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● APPLICATION NOTE “Fast molecular interaction screening of epigenetic gene 

regulator G9a with fragments from a large chemical space”, ©2019 NanoTemper 

Technologies, Inc. South San Francisco, CA, USA. All Rights Reserved. 

 

 

 

4.2.2 Binding assays Nucleocapsid – Materials and Methods 

His-tagged SARS-CoV-2 (COVID-19) Nucleocapsid protein was purchased from Acro 

Biosystems (NUN-C51H9). Nanobodies against the N- and C-terminal domain of Nucleocapsid 

were provided by Pasteur institute (by Dr. Pierre Lafaye). 

Nucleocapsid was labeled in assay buffer at a concentration of 100 nM using 25 nM dye, following 

the labeling protocol as specified in NanoTemper Technologies RED-NHS 2nd Generation 

labeling kit. The assay buffer for all experiments was 20 mM Hepes pH 7.5, 150 mM NaCl, 2 mM 

DTT, 0.05% TWEEN® 20, 0.1% PEG-8000.  

The compound library was dissolved in 100% DMSO at a concentration of 20 mM. For the 8-pt-

screen, compounds were diluted to 4 mM in 100% DMSO and transferred into well 1 of a 

conventional 384-well plate. The second and all following 3-fold dilution steps were prepared in 

DMSO in the microwell plate, using at each step 5 µl of the preceding dilution and 10 µl of DMSO. 

Then, labeled Nucleocapsid at a final concentration of 50 nM was transferred into another 384-

well microplate, and appropriate amounts of compound dilution series were added and mixed 

thoroughly. Final concentrations were 2.5% DMSO and 100 µM – 45.7 nM compound, 3-fold 

dilution series. For the 12-pt affinity screen, concentrations were adapted to obtain final compound 

concentrations of either 200 µM – 1.13 nM or 40 µM – 0.23 nM, 3-fold dilution series for both. 

As a positive control, the nanobody against NTD was titrated to Nucleocapsid from 500 nM – 0. 

23 nM, 3-fold dilution series (8 concentrations) or 500 nM – 0.24 nM, 2-fold dilution series (12 

concentrations). Final DMSO concentrations in the Nucleocapsid-nanobody mixtures were 2.5%. 

 

Compounds (or nanobody) + Nucleocapsid mixtures were equilibrated for 30 min at RT before 

filling of samples into MonolithTM NT.115 Series MST Premium Coated Capillaries and loading 

into a MonolithTM NT.115 instrument.105 Measurements were performed at 25°C. The samples 

were first measured for 3 sec without heating, then for 20 sec with the IR-laser turned on at high 

MST power, followed by 1 sec without heating. Measured fluorescence values collected are 

displayed as relative fluorescence, where the fluorescence obtained at ambient temperature is 

normalized to one. For analysis, the change in thermophoresis is expressed as the change in the 

normalized fluorescence (∆Fnorm), which is defined as the ratio between fluorescence values (Fhot) 

after and the fluorescence values (Fcold) prior to IR laser activation and is typically given in ‰. The 

dissociation constant or KD, is obtained by fitting a dose-response curve to a plot of ∆Fnorm vs. 

ligand concentration. 

https://www.zotero.org/google-docs/?KNfJhA
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Figure S12. A gradual decrease in Fnorm over time during N assays upon addition of 1–5% DMSO made 

KD determination impossible. 
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4.2.3 Binding assays Spike – Materials and Methods 

His-tagged SARS-CoV-2 (COVID-19) S protein (R683A, R685A, K986P, V987P) active trimer 

was purchased from Acro Biosystems (SPN-C52H2). Human Fc-tagged ACE2 was purchased 

from Acro Biosystems (AC2-H5257). 

Spike and ACE2 were dialyzed into assay buffer using XPRESS MicroDialyzer tubes (6-8 kDa 

MWCO). Spike was labeled in assay buffer at a concentration of 100 nM using 50 nM dye, 

following the labeling protocol as specified in NanoTemper Technologies RED-NHS 2nd 

Generation labeling kit. The assay buffer for all experiments was 20 mM Hepes pH 7.5, 150 mM 

NaCl, 0.05% TWEEN® 20, 0.1% PEG-8000.  

The compound library was dissolved in 100% DMSO at a concentration of 20 mM. For the 8-pt-

screen, compounds were diluted to 4 mM in 100% DMSO and transferred into well 1 of a 

conventional 384-well plate. The second and all following 3-fold dilution steps were prepared in 

DMSO in the microwell plate, using at each step 5 µl of the preceding dilution and 10 µl of DMSO. 

Then, labeled Spike at a final concentration of 50 nM was transferred into another 384-well 

microplate, and appropriate amounts of compound dilution series were added and mixed 

thoroughly. Final concentrations were 2.5% DMSO and 100 µM – 45.7 nM compound, 3-fold 

dilution series. For the 12-pt affinity screen, concentrations were adapted to obtain final compound 

concentrations of either 200 µM – 1.13 nM or 40 µM – 0.23 nM, 3-fold dilution series for both. As 

a positive control, ACE2 was titrated to Spike using maximum possible concentrations after 

dialysis, typically 350 nM – 0.16 nM, 3-fold dilution series (8 concentrations) or 350 nM to 0.17 

nM, 2-fold dilution series (12 concentrations). Final DMSO concentrations in the Spike-ACE2 

mixtures were 2.5%. 

Compounds (or ACE2) + Spike mixtures were equilibrated for 30 min at RT before filling of 

samples into MonolithTM NT.115 Series MST Premium Coated Capillaries and loading into a 

MonolithTM NT.115 instrument. Measurements were performed at 25°C. The samples were first 

measured for 3 sec without heating, then for 20 sec with the IR-laser turned on at medium MST 

power, followed by 1 sec without heating. Measured fluorescence values collected are displayed 

as relative fluorescence, where the fluorescence obtained at ambient temperature is normalized 

to one. For analysis, the change in thermophoresis is expressed as the change in the normalized 

fluorescence (∆Fnorm), which is defined as the ratio between fluorescence values (Fhot) after and 

the fluorescence values (Fcold) prior to IR laser activation and is typically given in ‰. The 

dissociation constant or KD, is obtained by fitting a dose-response curve to a plot of ∆Fnorm vs. 

ligand concentration. 
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Figure S13. Control experiments of Fc-tagged Ace2 binding to (stable trimer) S using microscale 

thermophoresis. On the three days that compounds were measured, control runs were done before 

(“start”) and after (“end”). 
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4.3 Other assays 

4.3.1 Nsp5 Luciferase assays.  

The viral protease activity assay was performed as described in Antiviral Research 2022, PMID: 

35278581. Briefly, ~107 HEK-293T cells were transfected in 50 cm2 dishes with 1 µg of the Rev-

Nluc-CoV reporter plasmid and 15 µg of nsp4-5-6 expression plasmids encoding the wild-type 

nsp5 or catalytically inactive (Cys145Ala) nsp5 protein. Increasing amounts of the tested 

compounds, corresponding to final concentrations of 0.1 to 50 µM with a constant DMSO 

concentration of 0.5% were distributed in 384-well white opaque plates using an Echo 555 Liquid 

Handler (Labcyte). Transfected HEK-293T cells were trypsinized at 6 hours post-transfection (hpt) 

and distributed in 384-well plates (2x104 cells per well in 50 µL). The Nanoluciferase activity was 

measured at 24 hpt.  DMSO and GC376 were used as negative and positive controls. The data 

were expressed as % of restored Nanoluc activity.  Curve fitting was performed with the 

assumption that 0% is equal to the lowest value measured with the wild-type nsp5, and 100% is 

the value measured with the catalytically inactive control. For some compounds, the 50 µM 

concentration appeared to be toxic, and therefore it was excluded from the curve fitting.     

 

 

4.3.2 Enzymatic protease (cleavage) activity  

 
Figure S14 schematic representation of the cell-based assay for nsp5 activity. Cleavage of the 

reporter Rev-Nluc protein by the nsp5 protease decreases the luminescence signal. In the presence of an 

inhibitor of the Nsp5 protease, the luminescence signal is restored. The assay is performed in 384-well 

plates and automated. Cells that co-express the nsp5 protease and the Rev-Nluc reporter are seeded into 

wells that contain the compounds to be tested. The luminescence signal is measured 24 hours later. In 

parts reproduced from ref.106 

https://www.zotero.org/google-docs/?eJWcK1
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Nsp5: The gene for SARS-CoV-2 Mpro (orf1ab polyprotein residues 3264-3569, GenBank: 

MN908947) was codon optimized for Escherichia coli and subsequently cloned into a pET28a 

backbone containing an N-terminal 6x His tag with an enterokinase cleavage site. In order to 

evaluate the assay initially and then as positive control in every experiment 111 nM of cleaved 

and purified Mpro was incubated with GC376 at various concentrations ranging 100 pM to 100 µM 

in buffer containing 20 mM Tris pH = 7.3, 100 mM NaCl, 1 mM EDTA, 1% DMSO. Cleavage of 

fluorescent peptide substrate Dabcyl-KTSAVLQSGFRKME-Edans at 26°C was monitored by 

fluorescence increase (λexcitation = 360 nm, λemission = 460 nm) for one hour. Initial velocities (Vo) 

were calculated and normalized to the Vo at lowest inhibition. IC50 value (mean ± 1 SD, N = 3) 

was determined via nonlinear regression using Graphpad Prism 8 (see figure X a). The same 

protocol was used for each test sample. 

Nsp3: The gene for SARS-CoV-2 PLpro (orf1ab polyprotein residues 1564-1880, GenBank: 

MN908947) was codon optimized for E. coli and inserted into a pET28a backbone containing an 

N-terminal 6x His tag with an enterokinase cleavage site. In order to evaluate the assay initially 

and then as positive control in every experiment 12 nM of purified His-PLpro was incubated with 

GRL0617 at various concentrations ranging 100 pM to 100 µM in buffer containing 50 mM Tris 

pH = 8, 50 mM NaCl, 1% DMSO. Cleavage of peptide substrate Z-RLRGG-AMC at 37°C was 

monitored by fluorescence increase (λexcitation = 360 nm, λemission = 460 nm) for one hour. Vo were 

calculated and normalized to the Vo at lowest inhibition. IC50 value (mean ± 1 SD, N = 3) was 

determined via nonlinear regression using Graphpad Prism 8 (see figure X b). The same protocol 

was used for each test sample. 

 

 
Figure S15. Validation of protease inhibition assays for SARS-CoV-2 Main Protease (Nsp5 / Mpro) and 

SARS-CoV-2 Papain-like Protease (Nsp3 / PLpro) via replication of IC50 values of known inhibitors. a. 

Calculation of IC50 value of SARS-CoV-2 Mpro inhibitor GC376: b. Calculation of IC50 value of SARS-CoV-

2 PLpro inhibitor GRL0617:  

 

4.3.3 Viral reduction assays  

Two thousand Vero-TMPRSS2 or HeLa-ACE2 cells (BPS Bioscience) were seeded into 96-well 

plates in DMEM (10% FBS) and incubated for 24 hours at 37°C, 5% CO2. Two hours before 

infection, the medium was replaced with 100 μL of DMEM (2% FBS) containing the compound of 

interest at concentrations 50% greater than those indicated, including a DMSO control. Plates 
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were then transferred into the BSL3 facility and 100 PFU (MOI = 0.025) was added in 50 μL of 

DMEM (2% FBS), bringing the final compound concentration to those indicated. Plates were then 

incubated for 48 hours at 37°C. After infection, supernatants were removed and cells were fixed 

with 4% formaldehyde for 24 hours prior to being removed from the BSL3 facility. The cells were 

then immunostained for the viral N protein (an inhouse mAb 1C7, provided by Dr. Thomas Moran, 

Thomas.Moran@mssm.edu) with a DAPI counterstain. Infected cells (488 nm) and total cells 

(DAPI) were quantified using the Celigo (Nexcelcom) imaging cytometer. Infectivity was 

measured by the accumulation of viral N protein (fluorescence accumulation). Percent infection 

was quantified as ((Infected cells/Total cells) - Background) *100 and the DMSO control was then 

set to 100% infection for analysis. Data was fit using nonlinear regression and IC50s for each 

experiment were determined using GraphPad Prism version 8.0.0 (San Diego, CA). Cytotoxicity 

was also performed using the MTT assay (Roche), according to the manufacturer’s instructions. 

Cytotoxicity was performed in uninfected cells with same compound dilutions and concurrent with 

viral replication assay. All assays were performed in biologically independent triplicates. 

 

4.3.4 Crystallographic screening  

Mpro protein expression, purification and crystallization was carried out as previously 

described.107 Crystals were grown with a reservoir solution containing 100 mM MES pH 6.5, 15% 

PEG4K, 5% DMSO and drop ratios of 150 nl protein solution, 300 nl reservoir solution and 50 nl 

seed stock. 

 

Nsp3-macrodomain protein expression, purification and crystallization was carried out as 

previously described.108 Crystals were grown with a reservoir solution containing 100 mM CHES 

(pH 9.5) and 30% PEG-3000 and drop ratios of 150 nl reservoir solution plus 150 nl protein 

solution. 

 

20 mM stock solutions of compounds in DMSO were directly added to the crystallization drops 

giving a final compound concentration of 2 mM and DMSO concentration of 10%. The crystals 

were incubated in the presence of the compounds for 1–2 hours before being harvested and flash 

cooled in liquid nitrogen without the addition of further cryoprotectant. X-ray diffraction data were 

collected on beamline I04-1 at Diamond Light Source and automatically processed using the 

Diamond automated processing pipelines.109 Analysis was performed as outlined previously.107 

Briefly, electron density maps were generated with Dimple110, ligand-binding events were 

identified using PanDDA111, and ligands were modeled into PanDDA-calculated event maps using 

Coot112. Ligand restraints were calculated with GRADE113 structures were refined with Refmac114 

and Buster115 and models and quality annotations cross-reviewed. 
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https://www.zotero.org/google-docs/?4eiNb0
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