Cell Reports, Volume 41

Supplemental information

Inhibition of HCK in myeloid cells restricts

pancreatic tumor growth and metastasis

Ashleigh R. Poh, Megan O'Brien, David Chisanga, Hong He, David Baloyan, Jasmin Traichel, Christine Dijkstra, Michaël Chopin, Stephen Nutt, Lachlan Whitehead, Louis Boon, Ashleigh Parkin, Clifford Lowell, Marina Pajic, Wei Shi, Mehrdad Nikfarjam, and Matthias Ernst

Figure S1. HCK expression is restricted to the myeloid cell compartment of mouse and

human PDAC. Related to Figure 1.

(A) Pancreas and liver weights of treatment naïve WT and Hck^{KO} hosts. Each symbol represents an individual mouse. n \geq 6 mice per group.

(B) Representative H&E sections of secondary organs from WT and Hck^{KO} hosts (n \ge 11 mice per group) as described in Figure 1D. T: tumor. Dotted lines indicate tumor boundary. Scale bar: 100µm.

(C) *Hck* gene expression in TAMs (CD45⁺CD11b⁺F4/80⁺), m-MDSCs (CD45⁺CD11b⁺Ly6c⁺Ly6g⁻), g-MDSCs (CD45⁺CD11b⁺Ly6c^{int}Ly6g⁺), DCs (CD45⁺CD11c⁺F4/80⁻MHCII⁺), T-cells (CD45⁺TCR β^+), NK cells (CD45⁺NK1.1⁺), cancer cells (EpCAM⁺CD45⁻), and CAFs (CD45⁻EpCAM⁻ CD31⁻PDPN⁺PDGFR α^+) isolated from orthotopic and intrasplenic KPC tumors. n = 4 mice per group.

(D) Kaplan-Meier survival analysis of WT and Hck^{KO} bone marrow chimeras (Recipient^{\leftarrow Donor}) following intrasplenic injection of KPC tumor cells. n = 8 mice per group. A Mantel-Cox log-rank test was used to evaluate statistical significance (see Table S1).

(E) Mass of primary PDAC tumors from WT hosts treated twice daily with vehicle or the small molecule HCK inhibitor RK20449. Treatment commenced 1 week after orthotopic injection of KPC tumor cells and continued for 4 weeks. Each symbol represents an individual mouse. n = 10 mice per group.

(F) Quantification of metastatic tumor burden by liver weight in WT hosts treated twice daily with vehicle or the small molecule HCK inhibitor RK20449. Treatment commenced on the 5th day after intrasplenic KPC tumor cell injection and continued for 2 weeks. Each symbol represents an individual mouse. $n \ge 10$ mice per group.

Data represents mean \pm SEM; ***p < 0.001, n.s not significant, with statistical significance determined by an unpaired Student's T-test for comparison between two means.

Figure S2. Genetic ablation of HCK in myeloid cells promotes immune cell activation. Related to Figure 2.

(A) qPCR analysis on CD45⁺CD11c⁺F4/80⁻MHCII⁺ DCs and CD45⁺CD11b⁺F4/80^{High}Ly6c⁻Ly6g⁻ TAMs isolated from KPC liver metastases of WT and *Hck*^{KO} hosts for genes associated with immune cell activation (i.e., *Tnf*, *II12*, *Ifny*, *CxcI9*, *CxcI10*), immune-suppression (i.e., *II4*, *II10*, *II13*, *Tgfβ*, *Arg1*) and matrix remodeling (i.e., *Mmp3*, *Mmp7*, *Mmp9*). n \geq 6 mice per group.

(B) Kaplan-Meier survival analysis of tumor-bearing WT and Hck^{KO} hosts treated with α IL12, α CXCR3, or a matched IgG isotype control until clinical endpoint. Shaded area indicates treatment period. $n \ge 8$ mice per group. A Mantel-Cox log-rank test was used to evaluate statistical significance (see Table S2).

(C) Kaplan-Meier survival analysis of WT, Hck^{KO} and lymphocyte-deficient $Rag1^{KO}$ and Hck^{KO} ; $Rag1^{KO}$ hosts following intrasplenic injection of KPC tumor cells. n = 8 mice per group. A Mantel-Cox log-rank test was used to evaluate statistical significance (see Table S4).

(D) Representative immunohistochemical staining and quantification of CD8⁺ T-cells in KPC liver metastases of WT and *Hck*^{KO} hosts. Scale bar: 100µm. Each symbol represents an individual mouse. $n \ge 10$ mice per group.

(E) qPCR analysis on CD45⁺TCR β ⁺CD8⁺ T-cells and CD45⁺NK1.1⁺ NK cells isolated from KPC liver metastases of WT and *Hck*^{KO} hosts for genes associated with immune cell activation. n = 7 mice per group.

(F) Flow cytometry quantification of CD8⁺ T-cells from KPC liver metastases of WT and Hck^{KO} hosts treated with α IL12, α CXCR3, or a matched IgG isotype control for 3 weeks. Each symbol represents an individual mouse. n = 5 mice per group.

(G) qPCR analysis on CD45⁺TCR β ⁺CD8⁺ T-cells isolated from KPC liver metastases of WT and *Hck*^{KO} hosts treated with α IL12, α CXCR3, or a matched IgG isotype control for 3 weeks. n = 4 mice per group.

Data represents mean \pm SEM; *p < 0.05, **p < 0.01, ***p < 0.001, with statistical significance determined by an unpaired Student's T-test for comparison between two means or one-way ANOVA followed by Tukey's multiple comparison test for comparison between multiple groups.

Figure S3. Genetic ablation of HCK in myeloid cells overcomes resistance to immunotherapy and improves the efficacy of chemotherapy in PDAC. Related to Figure 4. (A) Representative H&E-stained liver sections from WT and Hck^{KO} hosts ($n \ge 15$ mice per group) treated once every 3 days with α PD1 or a matched IgG isotype control. Treatment commenced on the 5th day after intrasplenic KPC tumor cell injection and continued for 2 weeks. A solid black line separates tumor (T) and normal tissue (N). Scale bar of top panel: 2mm, Scale bar of bottom panel (dotted insets): 300µm.

(B) Representative H&E-stained liver sections from WT and Hck^{KO} hosts (n \ge 10 mice per group) treated twice weekly with Gemcitabine or PBS vehicle. Treatment commenced on the 5th day after intrasplenic KPC tumor cell injection and continued for 2 weeks. A solid black line separates tumor (T) and normal tissue (N). Scale bar of top panel: 2mm, Scale bar of bottom panel (dotted insets): 300µm.

Figure S4. Therapeutic inhibition of HCK improves the efficacy of immunotherapy and chemotherapy in PDAC. Related to Figure 4.

(A) Representative whole mounts and corresponding liver weights of WT hosts treated with the small molecule HCK inhibitor RK20449 (twice daily) and/or α PD1 (once every 3 days). Treatment commenced on the 5th day after intrasplenic KPC tumor cell injection and continued for 2 weeks. Scale bar: 1cm. Each symbol represents an individual mouse. n ≥ 11 mice per group.

(B) Flow cytometry quantification of CD8⁺ T-cells in KPC liver metastases of WT mice treated as described in Figure S4A. Each symbol represents an individual mouse. n = 6 mice per group.

(C) qPCR analysis on CD45⁺TCR β ⁺CD8⁺ T-cells isolated from KPC liver metastases of WT mice treated as described in Figure S4A. n = 4 mice per group.

(D, E) Liver weights of WT hosts treated with the small molecule HCK inhibitor RK20449 (twice daily) and/or (D) α CTLA4 or (E) α CD40 (once every 3 days). Treatment commenced on the 5th day after intrasplenic KPC tumor cell injection and continued for 2 weeks. Each symbol represents an individual mouse. n ≥ 10 mice per group.

(F) Liver weights of WT hosts treated with the small molecule HCK inhibitor RK20449 (twice daily) and/or Gemcitabine (weekly). Treatment commenced on the 5th day after intrasplenic KPC tumor cell injection and continued for 2 weeks. Each symbol represents an individual mouse. n = 10 mice per group.

(G) Kaplan-Meier survival analysis of WT hosts treated with the small molecule HCK inhibitor RK20449 (twice daily) and/or α PD1 (once every 3 days). Treatment commenced on the 5th day after intrasplenic KPC tumor cell injection and continued until clinical endpoint. Shaded area indicates treatment period. n = 8 mice per group. A Mantel-Cox log-rank test was used to evaluate statistical significance (see Table S10).

(H) Kaplan-Meier survival analysis of WT hosts treated with the small molecule HCK inhibitor RK20449 (twice daily) and/or Gemcitabine (weekly). Treatment commenced on the 5th day after intrasplenic KPC tumor cell injection and continued until clinical endpoint. Shaded area indicates treatment period. n = 8 mice per group. A Mantel-Cox log-rank test was used to evaluate statistical significance (see Table S11).

Data represents mean \pm SEM; ***p < 0.001, with statistical significance determined by one-way ANOVA followed by Tukey's multiple comparison test or Mantel-Cox log-rank test for Kaplan-Meier analysis.

	WT ^{←w⊤}	KO ^{←wT}	КО < ко	WT ^{←κο}
WT ^{←WT}	-	n.s	***	***
KO ^{←w⊤}	n.s	-	***	***
КО €ко	***	***	-	n.s
WT ^{←ĸo}	***	***	n.s	-

Table S1. Mantel-Cox log-rank test, related to Figure S1D.

n.s = not significant; ***p < 0.001

Table S2. Mantel-Cox log-rank test, related to Figure S2B.

	Hck ^{KO} + IgG	<i>Hck^{KO}</i> + αCXCR3	<i>Hck</i> ^{κο} + αlL12
<i>Hck^{ко}</i> + IgG	-	***	***
<i>Hck^{KO}</i> + αCXCR3	***	-	n.s
<i>Hck</i> ^{κο} + αlL12	***	n.s	-

n.s = not significant; ***p < 0.001

Table S3. Mantel-Cox log-rank test, related to Figure 2C.

	WT + RK20449	WT + αCSF1R + RK20449	cDC1 ^{ko} + RK20449	cDC1 ^{κο} + αCSF1R + RK20449
WT + RK20449	-	n.s	***	***
WT + αCSF1R + RK20449	n.s	-	***	***
сDC1 ^{ко} + RK20449	***	***	-	***
cDC1 ^{κο} + αCSF1R + RK20449	***	***	***	-

n.s = not significant; ***p < 0.001

Table S4. Mantel-Cox log-rank test, related to Figure S2C.

	WT	Rag1 ^{KO}	<i>Нск</i> ^{ко}	Hck ^{KO} ;Rag1 ^{KO}
WT	-	n.s	***	***
Rag1 ^{KO}	n.s	-	***	***
Hck ^{KO}	***	***	-	***
Нск ^{ко} ;Rag1 ^{ко}	***	***	***	-

n.s = not significant; ***p < 0.001

Table S5. Mantel-Cox log-rank test, related to Figure 2D.

	<i>Hck^{ко}</i> + IgG	<i>Hck</i> ^{κο} + αCD4	<i>Ηck^{κo}</i> + αCD8	<i>Hck</i> ^{κο} + αNK1.1
<i>Hck</i> ^{ко} + IgG	-	***	***	***
<i>Hck</i> ^{KO} + αCD4	***	-	***	**
<i>Hck</i> ^{κο} + αCD8	***	***	-	***
<i>Ηck^{κο}</i> + αΝΚ1.1	***	**	***	-

p < 0.01, *p < 0.001

	WT + IgG	Hck ^{ĸo} + IgG	WT + αPD1	<i>Hck</i> ^{κο} + αPD1
WT + IgG	-	***	n.s	***
<i>Hck^{ко}</i> + IgG	***	-	***	***
WT + αPD1	n.s	***	-	***
<i>Hck</i> ^{κο} + αPD1	***	***	***	-

Table S6. Mantel-Cox log-rank test, related to Figure 4B.

n.s = not significant; ***p < 0.001

Table S7. Mantel-Cox log-rank test, related to Figure 4D.

	WT + lgG	Hck ^{KO} + IgG	WT + αCTLA4	<i>Hck^{κo}</i> + αCTLA4
WT + lgG	-	***	n.s	***
<i>Hck^{ко}</i> + IgG	***	-	***	***
WT + αCTLA4	n.s	***	-	***
<i>Нск</i> ^{ко} +	***	***	***	-
αCTLA4				

n.s = not significant; ***p < 0.001

Table S8. Mantel-Cox log-rank test, related to Figure 4F.

	WT + lgG	<i>Hck</i> ^{ко} + IgG	WT + αCD40	<i>Hck</i> ^{κο} + αCD40
WT + IgG	-	***	n.s	***
<i>Hck</i> ^{ко} + IgG	***	-	***	***
WT + αCD40	n.s	***	-	***
<i>Hck</i> ^{KO} + αCD40	***	***	***	-

n.s = not significant; ***p < 0.001

Table S9. Mantel-Cox log-rank test, related to Figure 4H.

	WT + Vehicle	Hck ^{KO} + Vehicle	WT + Gem	Hck ^{KO} + Gem
WT + Vehicle	-	***	***	***
Hck ^{KO} + Vehicle	***	-	n.s	***
WT + Gem	***	n.s	-	***
Hck ^{KO} + Gem	***	***	***	-

n.s = not significant; ***p < 0.001

Table S10. Mantel-Cox log-rank test, related to Figure S4G.

	Vehicle	RK20449	αPD1	RK20449 + αPD1
Vehicle	-	***	n.s	***
RK20449	***	-	***	***
αPD1	n.s	***	-	***
RK20449 + αPD1	***	***	***	-

n.s = not significant; ***p < 0.001

	Vehicle	RK20449	Gem	RK20449 + Gem
Vehicle	-	***	***	***
RK20449	***	-	**	***
Gem	***	**	-	***
RK20449 + Gem	***	***	***	-

Table S11. Mantel-Cox log-rank test, related to Figure S4H.

p < 0.01, *p < 0.001

Table S12. Taqman probes for qPCR analysis, related to STAR Methods.

Probe ID (Gene)	Source	Identifier
18s	ThermoFisher	Mm04277571_s1
Gapdh	ThermoFisher	Mm99999915_g1
Hck	ThermoFisher	Mm01241463_m1
114	ThermoFisher	Mm00445259_m1
116	ThermoFisher	Mm00446190_m1
<i>II10</i>	ThermoFisher	Mm01288386_m1
<i>II11</i>	ThermoFisher	Mm00434162_m1
<i>ll13</i>	ThermoFisher	Mm00434204_m1
Arg1	ThermoFisher	Mm00475988_m1
Tgfβ	ThermoFisher	Mm01227699_m1
ΙΙ12α	ThermoFisher	Mm00434169_m1
lfnγ	ThermoFisher	Mm01168134_m1
Cxcl9	ThermoFisher	Mm00434946_m1
Cxcl10	ThermoFisher	Mm00445235_m1
Tnf	ThermoFisher	Mm00443258_m1
Prf1	ThermoFisher	Mm00812512_m1
GzmB	ThermoFisher	Mm00442837_m1
Mmp3	ThermoFisher	Mm00440295_m1
Mmp7	ThermoFisher	Mm00487724_m1
Mmp9	ThermoFisher	Mm00442991_m1
Col1a1	ThermoFisher	Mm00801666_g1