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Abstract 

A large range of sophisticated brain image analysis tools have been developed by the 

neuroscience community, greatly advancing the field of human brain mapping. Here we 

introduce the Computational Anatomy Toolbox (CAT) – a powerful suite of tools for brain 

morphometric analyses with an intuitive graphical user interface, but also usable as a shell 

script. CAT is suitable for beginners, casual users, experts, and developers alike providing a 

comprehensive set of analysis options, workflows, and integrated pipelines. The available 

analysis streams – illustrated on an example dataset – allow for voxel-based, surface-based, 

as well as region-based morphometric analyses. Notably, CAT incorporates multiple quality 

control options and covers the entire analysis workflow, including the preprocessing of cross-

sectional and longitudinal data, statistical analysis, and the visualization of results. The 

overarching aim of this article is to provide a complete description and evaluation of CAT, 

while offering a citable standard for the neuroscience community. 
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Significance Statement 

The Computational Anatomy Toolbox (CAT) marks a significant advancement in brain imaging 

analysis, providing an accessible yet sophisticated suite of brain morphometric analysis tools. 

Designed for a wide range of users, from novice to expert, CAT combines an intuitive graphical 

interface with powerful scripting capabilities. Its comprehensive analysis options, which 

include voxel-based, surface-based and region-based methods, are complemented by 

extensive quality control features. Uniquely, CAT supports the entire workflow from 

preprocessing to visualization of both cross-sectional and longitudinal data. Significantly, 

CAT's superior performance in processing speed and sensitivity in detecting neuroimaging 

effects, even under varying noise levels, positions it as a central tool for advancing the field 

of neuroscience. 

Main 

The study of the human brain using neuroimaging methods is still in its infancy, but rapid 

technical advances in image acquisition and processing are enabling ever more refined 

characterizations of its micro- and macro-structure. Enormous efforts, for example, have 

been made to map differences between groups (e.g., young vs. old, diseased vs. healthy, male 

vs. female), to capture changes over time (e.g., from infancy to old age, in the framework of 

neuroplasticity, as a result of a clinical intervention), or to assess correlations of brain 

attributes (e.g., measures of length, volume, shape) with behavioral, cognitive, or clinical 

parameters. Popular neuroimaging software packages include tools for analysis and 

visualization, such as SPM (RRID:SCR_007037) [1], FreeSurfer (RRID:SCR_001847) [2], the 
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Human Connectome Workbench [3], FSL (RRID:SCR_002823) [4], BrainVISA [5], CIVET [6], or 

the LONI tools [7], just to name a few. 

SPM (short for Statistical Parametric Mapping) is one of the most frequently used 

software packages, which works with Matlab (RRID:SCR_001622) as well as Octave. Its library 

of accessible and editable scripts provide an ideal basis to extend the repertoire of 

preprocessing and analysis options. Over the years, SPM has inspired developers to create 

powerful tools that use SPM’s functionality and interface [8]. These tools are more than just 

extensions of SPM offering a comprehensive range of cutting-edge options across the whole 

analysis spectrum, from the initial data processing to the final visualization of the statistical 

effects.  

One such tool is CAT (short for Computational Anatomy Toolbox; [9]). CAT constitutes 

a significant step forward in the field of human brain mapping by adding sophisticated 

methods to process and analyze structural brain MRI data using voxel-, surface-, and region-

based approaches. CAT is available as a collection of accessible scripts, with an intuitive user 

interface, and uses the same batch editor as SPM, which allows for a seamless integration 

with SPM workflows and other toolboxes, such as Brainstorm [10] and ExploreASL [11]. Not 

only does this enable beginners and experts to run complex state-of-the-art structural image 

analyses within the SPM environment, it will also provide advanced users as well as 

developers the much appreciated option to incorporate a wide range of functions in their 

own customized workflows and pipelines.  
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Results 

Concept of CAT 

CAT12 is the current version of the CAT software and runs in Matlab (Mathworks, Natick, MA) 

or as a standalone version with no need for a Matlab license. It was originally designed to 

work with SPM12 [12] and is compatible with Matlab versions 7.4 (R2007a) and later. No 

additional software or toolbox is required. The latest version of CAT can be downloaded here: 

[9]. The pre-compiled standalone version for Windows, Mac, or Linux operating systems can 

be downloaded here: [13]. All steps necessary to install and run CAT are documented in the 

user manual [14] and in the complementary online help, which can be accessed directly via 

CAT’s help functions. The CAT software is free but copyrighted and distributed under the 

terms of the GNU General Public License, as published by the Free Software Foundation. 

 CAT can be either started through SPM, from the Matlab command window, from a 

shell, or as a standalone version. Except when called from the command shell (CAT is fully 

scriptable), a user interface will appear (see Figure 1) allowing easy access to all analysis 

options and most additional functions. In addition, a graphical output window will display the 

interactive help to get started. This interactive help will be replaced by the results of the 

analyses (i.e., in that same window), but can always be called again via the user interface.  
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— Figure 1 (GUI) —  

 

Figure 1: Elements of the graphical user interface. 

The SPM menu (a) and CAT menu (b) allow access to the (c) SPM batch editor to control and combine a variety 

of functions. At the end of the processing stream, cross-sectional and longitudinal outputs are summarized in a 

brain-specific one-page report (d, e). In addition, CAT provides options to check image quality (f) and sample 

homogeneity (g) to allow outliers to be removed before applying the final statistical analysis, including 

threshold-free cluster enhancement – TFCE (h); the numerical and graphical output can then be retrieved (i), 

including surface projections (j). For beginners, there is an interactive help (k) as well as a user manual (l). For 

experts, command line tools (m) are available under Linux and MacOS.  

 

Computational Morphometry 

CAT’s processing pipeline (see Figure 2) contains two main streams: (1) voxel-based 

processing for voxel-based morphometry (VBM) and (2) surface-based processing for surface-

based morphometry (SBM). The former is a prerequisite for the latter, but not the other way 

round. Both processing streams can be extended to include additional steps for (3) region-

based processing and region-based morphometry (RBM). 
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— Figure 2 (main processing pipelines) —  

 

Figure 2: Main processing streams 

(a) Simplified pipeline: Image processing in CAT can be separated into a mandatory voxel-based processing 

stream and an optional subsequent surface-based processing stream. Each stream requires different templates 

and atlases and, in addition, tissue probability maps for the voxel-based stream. The voxel-based stream consists 

of two main modules – for tissue segmentation and spatial registration – resulting in spatially registered (and 

modulated) gray matter / white matter segments, which provides the basis for voxel-based morphometry (VBM). 

The surface-based stream also consists of two main modules – for surface creation and registration – resulting 

in spatially registered surface maps, which provide the basis for surface-based morphometry (SBM). Both 

streams also include an optional module each to analyze regions of interest (ROIs) resulting in ROI-specific mean 

volumes (mean surface values, respectively). This provides the basis for region-based morphometry (RBM). 

(b) Detailed pipeline: To illustrate the differences from SPM, the CAT pipeline is detailed with its individual 

processing steps. The SPM methods used are shown in blue and italic font: images are first denoised by a 

spatially adaptive non-local means (SANLM) filter [15] and resampled to an isotropic voxel size. After applying 

an initial bias correction to facilitate the affine registration, SPM’s unified segmentation [16] is used for the skull 

stripping and as a starting estimate for the adaptive maximum a posteriori (AMAP) segmentation [17] with 
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partial volume estimation (PVE) [18]. In addition, SPM’s segmentation is used to locally correct image intensities. 

Finally, the outcomes of the AMAP segmentation are registered to the MNI template using SPM’s shooting 

registration. 

The outcomes of the AMAP segmentation are also used to estimate cortical thickness and the central surface 

using a projection-based thickness (PBT) method [19]. More specifically, after repairing topology defects [20] 

central, pial and white matter surface meshes are generated. The individual left and right central surfaces are 

then registered to the corresponding hemisphere of the FreeSurfer template using a 2D version of the DARTEL 

approach [21]. In the final step, the pial and white matter surfaces are used to refine the initial cortical thickness 

estimate using the FreeSurfer thickness metric [22,23]. 

  

 

Voxel-based Processing  

Voxel-based processing steps can be roughly divided into a module for tissue segmentation, 

followed by a module for spatial registration. 

● Tissue Segmentation: The process is initiated by applying a spatially adaptive non-

local means (SANLM) denoising filter [15], followed by SPM’s standard unified 

segmentation [16]. The resulting output serves as a starting point for further 

optimizations and CAT’s tissue segmentation steps: first, the brain is parcellated into 

the left and right hemispheres, subcortical areas, ventricles, and cerebellum. In 

addition, local white matter hyperintensities are detected (to be later accounted for 

during the spatial registration and the optional surface processing). Second, a local 

intensity transformation is performed to reduce the effects of higher gray matter 

intensities in the motor cortex, basal ganglia, and occipital lobe, which are influenced 

by varying degrees of myelination. Third, an adaptive maximum a posteriori (AMAP) 

segmentation is applied which does not require any a priori information on the tissue 

probabilities [17]. The AMAP segmentation also includes a partial volume estimation 

[18]. Figure 3a provides information on the accuracy of CAT’s tissue segmentation.  
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● Spatial Registration: Geodesic Shooting [24] is used to register the individual tissue 

segments to standardized templates in the ICBM 2009c Nonlinear Asymmetric space 

(MNI152NLin2009cAsym; [25], hereafter referred to as MNI space. While MNI space 

is also used in many other software packages, enabling cross-study comparisons, 

users may also choose to use their own templates. Figure 3b provides information on 

the accuracy of CAT’s spatial registration.  

 

Voxel-based Morphometry (VBM) 

VBM is applied to investigate the volume (or local amount) of a specific tissue compartment 

[16,26] - usually gray matter. VBM incorporates different processing steps: (a) tissue 

segmentation and (b) spatial registration as detailed above, and in addition (c) adjustments 

for volume changes due to the registration (modulation) as well as (d) convolution with a 3D 

Gaussian kernel (spatial smoothing). As a side note, the modulation step results in voxel-wise 

gray matter volumes that are the same as in native space (i.e., before spatial registration) and 

not corrected for brain size yet. To remove effects of brain size, users have at least two 

options: (1) calculating the total intracranial volume (TIV) and including TIV as a covariate in 

the statistical model [27] or (2) selecting ‘global scaling’ (see second level options in SPM). 

The latter is recommended if TIV is linked with (i.e., not orthogonal to) the effect of interest 

(e.g., sex), which can be tested (see ‘Design orthogonality’ in SPM). 
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Surface-based Processing 

The optional surface-based processing comprises a series of steps that can be roughly divided 

into a module for surface creation, followed by a module for surface registration. 

● Surface Creation: Figure 3 illustrates the surface creation step in CAT for data obtained 

on scanners with different field strengths (1.5, 3.0, and 7.0 Tesla). CAT uses a 

projection-based thickness method [19] which estimates the initial cortical thickness 

and initial central surface in a combined step, while handling partial volume 

information, sulcal blurring, and sulcal asymmetries, without explicit sulcus 

reconstruction. After this initial step, topological defects (i.e., anatomically incorrect 

connections between gyri or sulci) are repaired using spherical harmonics [20]. The 

topological correction is followed by a surface refinement, which results in the final 

central, pial and white surface meshes. In the last step, the final pial and white matter 

surfaces are used to refine the initial cortical thickness estimate using the FreeSurfer 

thickness metric [22,23]. Alternatively, the final central surface can be used to 

calculate metrics of cortical folding, as described under Surface-based Morphometry. 

● Surface Registration: The resulting individual central surfaces are registered to the 

corresponding hemisphere of the FreeSurfer FsAverage template [28]. During this 

process, the individual central surfaces are spherically inflated with minimal 

distortions [29] and a one-to-one mapping between the folding patterns of the 

individual and template spheres is created by a 2D-version of the DARTEL approach 

[21,30]. Figure 3d provides information on the accuracy of CAT’s surface registration. 
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— Figure 3 (processing accuracy / consistency) — 

Figure 3: Evaluation of segmentation and registration accuracy 

(a) Segmentation Accuracy: Most approaches for brain segmentation assume that each voxel belongs to a 

particular tissue class, such as gray matter (GM), white matter (WM), or cerebrospinal fluid (CSF). However, the 

spatial resolution of brain images is limited, leading to so-called partial volume effects (PVE) in voxels containing 

a mixture of different tissue types, such as GM/WM and GM/CSF. As PVE approaches are highly susceptible to 

noise, we combined the PVE model [18] with a spatial adaptive non-local means denoising filter [15]. To validate 

our method, we used a ground truth image from the BrainWeb [31] database with varying noise levels of 1-9%. 

The segmentation accuracy for all tissue types (GM, WM, CSF) was determined by calculating a kappa coefficient 

(a kappa coefficient of 1 means that there is perfect correspondence between the segmentation result and the 

ground truth). Left panel: The effect of the PVE model and the denoising filter on the tissue segmentation at the 

extremes of 1% and 9% noise. Right panel: The kappa coefficient over the range of different noise levels. Both 

panels demonstrate the advantage of combining the PVE model with a spatial adaptive non-local means 

denoising filter, with particularly strong benefits for noisy data.  

(b) Registration Accuracy: To ensure an appropriate overlap of corresponding anatomical regions across brains, 

high-dimensional nonlinear spatial registration is required. CAT uses a sophisticated Shooting approach [24], 

together with an average template created from the IXI dataset [32]. The figure shows the improved accuracy 
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(i.e., a more detailed average image) when spatially registering 555 brains using the so-called ‘shooting’ 

registration and the Dartel registration compared to the SPM standard registration.  

(c) Preprocessing Accuracy: We validated the performance of region-based morphometry (RBM) in CAT by 

comparing measures derived from automatically extracted regions of interest (ROI) versus manually labeled 

ROIs. For the voxel-based analysis, we used 56 structures, manually labeled in 40 brains that provided the basis 

for the LPBA40 atlas [33]. The gray matter volumes from those manually labeled regions served as the ground 

truth against which the gray matter volumes calculated using CAT and the LPBA40 atlas were then compared. 

For the surface-based analysis, we used 34 structures that were manually labeled in 39 brains according to 

Desikan [34]. The mean cortical thickness from those manually labeled regions served as the ground truth 

against which the mean cortical thickness calculated using CAT and the Desikan atlas were compared. The 

diagrams show excellent overlap between manually and automatically labeled regions in both voxel-based (left) 

and surface-based (right) analyses.  

(d) Consistency of Segmentation and Surface Creation: Data from the same brain were acquired on MRI scanners 

with different isotropic spatial resolutions and different field strengths: 1.5T MPRAGE with 1 mm voxel size; 3T 

MPRAGE with 0.8 mm voxel size; and 7T MP2RAGE with 0.7 mm voxel size. Section views: The left hemispheres 

depict the central (green), pial (blue), and white matter (red) surfaces; the right hemispheres show the gray 

matter segments. Rendered Views: The color bar encodes point-wise cortical thickness projected onto the left 

hemisphere central surface. Both section views and hemisphere renderings demonstrate the consistency of the 

outcomes of the segmentation and surface creation procedures across different spatial resolutions and field 

strengths. 

 

Surface-based Morphometry (SBM) 

SBM can be used to investigate cortical thickness or various parameters of cortical folding. 

The measurement of ‘cortical thickness’ captures the width of the gray matter ribbon as the 

distance between its inner and outer boundary at thousands of points (see Figure 4). To 

obtain measurements of ‘cortical folding’ the user has a variety of options in CAT, ranging 

from Gyrification [35] to Sulcal Depth (van Essen, 2005) to Cortical Complexity [37] to the 

Surface Ratio [38], as explained and illustrated in Figure 4. Similar to VBM, SBM incorporates 

a series of different steps: (a) surface creation and (b) surface registration as detailed above, 

and (c) spatial smoothing. As a side note, since the measurements in native space are mapped 

directly to the template during the spatial registration, no additional modulation (as in VBM) 

is needed to preserve the individual differences. In contrast to VBM, SBM does not require 
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brain size corrections because cortical thickness and cortical folding are not closely associated 

with total brain volume (unlike gray matter volume) [39]. 

 

— Figure 4 (cortical measures) —  

 

Figure 4: Cortical Measurements 

Surface-based morphometry is applied to investigate cortical surface features (i.e., cortical thickness and various 

parameters of cortical folding) at thousands of surface points. Cortical Thickness: One of the best known and 

most frequently used morphometric measures is cortical thickness, which captures the width of the gray matter 

ribbon as the distance between its inner boundary (white matter surface) and outer boundary (pial surface). 

Cortical Folding: CAT provides distinct cortical folding measures, derived from the geometry of the central 

surface: ‘Gyrification’ is calculated via the absolute mean curvature [35] of the central surface. ‘Sulcal Depth’ is 

calculated as the distance from the central surface to the enclosing hull (van Essen, 2005). ‘Cortical Complexity’ 

is calculated using the fractal dimension of the central surface area from spherical harmonic reconstructions 

[37]. Finally, ‘Surface Ratio’ is calculated as the ratio between the area of the central surface contained in a 

sphere of a defined size and that of a disk with the same radius [38]. 

 

 

Region-based Processing and Morphometry 

In addition to voxel- or point-wise analyses via VBM or SBM, CAT provides an option to 

conduct regional analyses via region-based morphometry (RBM). For this purpose, the 

processing steps under voxel-based processing (surface-based processing, respectively) 

should be applied and followed by automatically calculating regional measurements. This is 
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achieved by working with regions of interest (ROIs), defined using standardized atlases. The 

required atlases are provided in CAT (see Supplemental Table 1 and Supplemental Table 2), 

but users can also work with their own atlases. 

● Voxel-based ROIs: The volumetric atlases available in CAT have been defined on brain 

templates in MNI space and may be mapped to the individual brains by using the 

spatial registration parameters determined during voxel-based processing. 

Volumetric measures, such as regional gray matter volume, can then be calculated for 

each ROI in native space. 

● Surface-based ROIs: The surface atlases available in CAT are supplied on the 

FsAverage surface and can be mapped to the individual surfaces by using the spherical 

registration parameters determined during the surface-based processing. Surface-

based measures, such as cortical thickness or cortical folding, are then calculated for 

each ROI in native space. 

 

Performance of CAT 

CAT allows processing streams to be distributed to multiple processing cores, to reduce 

processing time. For example, CAT’s analysis of 50 subjects (see Example Application) 

leveraging the inbuilt parallel processing capabilities on four cores, required seven hours 

processing time when analyzing one image per subject (cross-sectional stream), and 18 hours 

when processing three images per subject (longitudinal stream) for the entire sample. 

Application of all available workflows for a single T1-weighted image takes around 35 
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minutes, as timed on an iMac with Intel Core i7 with 4 GHz and 32 GB RAM using Matlab 

version 2017b, SPM12 version r7771, and CAT12.8 version r1945. 

CAT’s performance has been thoroughly tested by evaluating its accuracy, sensitivity 

and robustness in comparison to other tools frequently used in the neuroimaging community. 

For this purpose, we applied CAT and analyzed real data (see Example Application) as well as 

simulated data generated from BrainWeb [40]. The evaluation procedures are detailed in 

Supplemental Note 1 and Supplemental Note 2; the outcomes are presented in 

Supplemental Figure 1 and Supplemental Figure 2. CAT proved to be accurate, sensitive, 

reliable, and robust outperforming other common neuroimaging tools.  

 

Five Selected Features of CAT 

1. Longitudinal Processing 

Aside from offering a standard pipeline for cross-sectional analyses, CAT has specific 

longitudinal pipelines that ensure a local comparability both across subjects and across time 

points within subjects. Compared to the cross-sectional pipeline, these longitudinal pipelines 

render analysis outcomes more accurate when mapping structural changes over time. The 

user can choose between three different longitudinal pipelines: the first one for analyzing 

brain plasticity (over days, weeks, months); the second one for analyzing brain development 

(over months and years); and the third one for brain aging (over months, years, decades). For 

more details, refer to Supplemental Note 3. 
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2. Quality Control  

CAT introduces a retrospective quality control framework for the empirical quantification of 

essential image parameters, such as noise, intensity inhomogeneities, and image resolution 

(all of these can be impacted, for example, by motion artifacts). Separate parameter-specific 

ratings are provided as well as a handy overall rating [41]. Moreover, image outliers can be 

easily identified, either directly based on the aforementioned indicators of the image quality 

or by calculating a Z-score determined by the quality of the image processing as well as by 

the anatomical characteristics of each brain. For more details, refer to Supplemental Note 4. 

 

3. Mapping onto the Cortical Surface 

CAT allows the user to map voxel-based values (e.g., quantitative, functional, or diffusion 

parameters) to individual brain surfaces (i.e., pial, central, and/or white matter) for surface-

based analyses. The integrated equi-volume model [42] also considers the shift of 

cytoarchitectonic layers caused by the local folding. Optionally, CAT also allows mapping of 

voxel values at multiple positions along the surface normal at each node - supporting a layer-

specific analysis of ultra-high resolution functional MRI data [43,44]. For more details, refer 

to Supplemental Note 5. 

 

4. Threshold-free Cluster Enhancement (TFCE)  

CAT comes with its own TFCE toolbox and provides the option to apply TFCE [45] in any 

statistical second-level analysis in SPM, both for voxel-based and for surface-based analyses. 

It can also be employed to analyze functional MRI (fMRI) or diffusion tensor imaging (DTI) 
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data. A particularly helpful feature of the TFCE toolbox is that it automatically recognizes 

exchangeability blocks and potential nuisance parameters [46] from an existing statistical 

design in SPM. For more details, refer to Supplemental Note 4. 

 

5. Visualization 

CAT allows a user to generate graphs and images, which creates a solid basis to explore 

findings as well as to generate ready-to-publish figures according to prevailing standards. 

More specifically, it includes two distinct sets of tools to visualize results: the first set prepares 

both voxel- and surface-based data for visualization by providing options for thresholding the 

default SPM T-maps or F-maps and for converting statistical parameters (e.g., T-maps and F-

maps into p-maps). The second set of tools visualizes the data offering the user ample options 

to select from different brain templates, views, slices, significance parameters, significance 

thresholds, color schemes, etc. (see Figure 5). 

 

— Figure 5 (visualization) —  
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Figure 5: Examples of CAT’s visualization of results. 

Both surface- and voxel-based data can be presented on surfaces such as (a) the (inflated) FsAverage surface, 

or (b) the flatmap of the Connectome Workbench. Volumetric maps can also be displayed as (c) slice overlays 

on the MNI average brain, or (d) as a maximum intensity projection (so-called “glass brains”). All panels show 

the corrected p-values from the longitudinal VBM study in our example (see Example Application). 

 

Example Application 

To demonstrate an application of CAT, we investigated an actual dataset focusing on the 

effects of Alzheimer’s disease on brain structure. More specifically, we set out to compare 25 

patients with Alzheimer’s disease and 25 matched controls. We applied (I) a VBM analysis 

focusing on voxel-wise gray matter volume, (II) an RBM analysis focussing on regional gray 

matter volume (i.e., a voxel-based ROI analysis), (III) a surface-based analysis focusing on 

point-wise cortical thickness, and (IV) an RBM analysis focussing on regional cortical thickness 

(i.e., a surface-based ROI analysis). Given the wealth of literature on Alzheimer’s disease, we 

expected atrophy in gray matter volume and cortical thickness in patients compared to 
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controls, particularly in regions around the medial temporal lobe and the default mode 

network [47,48]. In addition to distinguishing between the four morphological measures (I-

IV), all analyses were conducted using both cross-sectional and longitudinal streams in CAT. 

Overall, we expected that longitudinal changes would manifest in similar brain regions to 

cross-sectional group differences, but that cross-sectional effects would be more pronounced 

than longitudinal effects. The outcomes of this example analysis are presented and discussed 

in the next section. 

 
 

Discussion 

 

Example Application 

As shown in Figure 6, all four cross-sectional streams – investigating voxel-based gray matter 

volume, regional gray matter volume, point-wise thickness, and regional thickness – revealed 

widespread group differences between AD patients and matched controls. Overall, the 

effects were comparable between cross-sectional and longitudinal streams, but the 

significant clusters were more pronounced cross-sectionally (note the different thresholds 

cross-sectionally and longitudinally).  

More specifically, using VBM, significantly smaller voxel-wise gray matter volumes 

were observed in AD patients compared to controls, particularly in the medial and lateral 

temporal lobes and within regions of the default mode network (Figure 6a top). Similarly, the 

longitudinal follow-up revealed a significantly stronger gray matter volume loss in patients 

compared to controls, with effects located in the medial temporal lobe as well as the default 



 

20 

mode network (Figure 6a bottom). The voxel-based ROI analysis resulted in a significance 

pattern similar to the VBM study, with particularly pronounced group differences in the 

temporal lobe that extended into additional brain areas including those comprising the 

default mode network (Figure 6b top). Again, the longitudinal analysis yielded similar but less 

pronounced findings than the cross-sectional analysis, although longitudinal effects were 

stronger than in the VBM analysis (Figure 6b bottom).  

Using SBM, the point-wise cortical thickness analysis yielded a pattern similar to the 

VBM analysis with significantly thinner cortices in patients, particularly in the medial and 

lateral temporal lobe and within regions of the default mode network (Figure 6c top). Just as 

in the VBM analysis, significant clusters were widespread and reached far into adjacent 

regions. Again, the results from the longitudinal stream were less widespread and significant 

than the results from the cross-sectional stream (Figure 6c bottom). Finally, the surface-

based ROI analysis largely replicated the local findings from the SBM analysis (Figure 6d top 

/ bottom). 

Overall, the results of all analysis streams corroborate prior findings in the Alzheimer’s 

disease literature, particularly the strong disease effects within the medial temporal lobe and 

regions of the default mode network [47,48]. Furthermore, the comparable pattern across 

measures suggests a considerable consistency between available morphometric options, 

even if gray matter volume and cortical thickness are biologically different and not perfectly 

related [49,50]. 
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Evaluation of CAT12 

As shown in Supplemental Figure 1 and Supplemental Figure 2, CAT12 proved to be accurate, 

sensitive, reliable, and robust outperforming other common neuroimaging tools. Similar 

conclusions have been drawn in independent evaluations testing one or more software in 

comparison with CAT12. For example, Guo et al. [51]evaluated the repeatability and 

reproducibility of brain volume measurements using FreeSurfer, FSL-SIENAX and SPM, and 

highlighted the reliability of CAT12. Similarly, CAT12 emerged as a robust option when 

demonstrating that the choice of the processing pipeline influences the location of 

neuroanatomical brain markers [52]. Last but not least, Khlif et al. [53] compared the 

outcomes of CAT12’s automated segmentation of the hippocampus with those achieved 

based on manual tracing and demonstrated that both approaches produced comparable 

hippocampal volume.  

In addition, numerous evaluations suggest that CAT12 performs at least as well as 

other common neuroimaging tools and, as such, offers a valuable alternative. For example, 

Tavares et al. [54] conducted a VBM study and concluded that the segmentation pipelines 

implemented in CAT12 and SPM12 provided results that are highly correlated and that the 

choice of the pipeline had no impact on the accuracy of any brain volume measure. Along the 

same lines, but for SBM, Ay et al. [55] reported that CAT12 and FreeSurfer produced equally 

valid results for parcel-based cortical thickness calculations. de Fátima Machado Dias et al. 

[56] addressed the issue of reproducibility and observed that cortical thickness measures 

using CAT12 and FreeSurfer were comparable at the individual level. Moreover, Seiger et al. 

[57] conducted a study in patients with Alzheimer's disease and healthy controls, in which 
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CAT12 and FreeSurfer provided consistent cortical thickness estimates and excellent test-

retest variability scores. Velázquez et al. [58] supported these findings when comparing 

CAT12 and FreeSurfer with three voxel-based methods in a test-retest analysis and clinical 

application. Finally, Righart et al [59] compared volume and surface-based cortical thickness 

measurements in multiple sclerosis and emphasized CAT12’s consistent performance. 

These collective findings from multiple studies support the notion that CAT is a robust 

and reliable tool for both VBM and SBM analyses, producing results that are comparable to, 

and in some cases, superior to, other established neuroimaging software.  

 

 

 

–  Figure 6 (example application) –   
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Figure 6: Pronounced atrophy in gray matter and cortical thickness in patients with Alzheimer’s disease 

compared to healthy control subjects.  

(a) Voxel-based Morphometry (VBM) findings: Results were estimated using threshold-free cluster enhancement 

(TFCE), corrected for multiple comparisons by controlling the family-wise error (FWE), and thresholded at 

p<0.001 for cross-sectional data and p<0.05 for longitudinal data. Significant findings were projected onto 

orthogonal sections intersecting at (x=-27mm, y=-10mm, z=-19mm) of the mean brain created from the entire 

study sample (n=50).  

(b) Volumetric Regions of Interest (ROI) findings: ROIs were defined using the Neuromorphometrics atlas. 

Results were corrected for multiple comparisons by controlling the false discovery rate (FDR) and thresholded 

at q<0.001 for cross-sectional data and q<0.05 for longitudinal data. Significant findings were projected onto 

the same orthogonal sections as for the VBM findings.  

(c) Surface-based Morphometry (SBM) findings: Results were estimated using TFCE, FWE-corrected, and 

thresholded at p<0.001 for cross-sectional data and p<0.05 for longitudinal data. Significant findings were 

projected onto the FreeSurfer FsAverage surface.  

(d) Surface Regions of Interest (ROI) findings: ROIs were defined using the DK40 atlas. Results were FDR-

corrected and thresholded at q<0.001 for cross-sectional data and q<0.05 for longitudinal data. Significant 

findings were projected onto the FsAverage surface. 
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Conclusion 

CAT is suitable for desktop and laptop computers as well as high-performance clusters. It is 

fully integrated into the SPM environment within Matlab, but also allows process execution 

directly from the command shell, without having to start SPM. CAT can also run without a 

Matlab license by using the stand-alone version or by using Octave instead of Matlab. In terms 

of performance, CAT allows for ultra-fast processing and analysis and also is more sensitive 

in detecting significant effects compared to other common tools used by the neuroimaging 

community. Moreover it better handles varying levels of noise and signal inhomogeneities. 

Furthermore, CAT is easy to integrate with non-SPM software packages and also supports the 

Brain Imaging Data Structure (BIDS) standards [60]. Therefore, CAT is ideally suited not only 

to process small datasets (as demonstrated in the example application), but also big datasets, 

such as samples of the UK Biobank [61] or ENIGMA [62]. Finally, while CAT is currently 

targeted at structural imaging data, some features (e.g., high-dimensional spatial registration 

or mapping onto the cortical surface) may also be used for the analysis of functional, 

diffusion, or quantitative MRI or EEG/MEG data.  

 

Methods 

Application Example 

Data Source 

Data for the application example were obtained from the Alzheimer’s Disease Neuroimaging 

Initiative (ADNI) database [63]. The ADNI (RRID:SCR_003007) was launched in 2003 as a 
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public-private partnership, led by Principal Investigator Michael W. Weiner, MD. The primary 

goal of ADNI has been to test whether serial magnetic resonance imaging (MRI), positron 

emission tomography (PET), other biological markers, and clinical and neuropsychological 

assessment can be combined to measure the progression of mild cognitive impairment (MCI) 

and early Alzheimer’s disease (AD). For up-to-date information, see [64]. 

 

Sample Characteristics 

For the purpose of the current study, we compiled a sample of fifty subjects with 3D T1-

weighted structural brain images from the ADNI database. Specifically, we randomly selected 

the first 25 subjects (16 males / 9 females) classified as AD patients (mean age 75.74±8.14 

years; mean minimal mental status examination (MMSE) score: 23.44±2.04) and matched 

them for sex and age with 25 healthy controls (mean age 76.29±3.90 years; mean MMSE: 

28.96±1.24). Informed consent was obtained from all research participants. All subjects had 

brain scans at baseline (first scan at enrolment) and at two follow-up visits, at one year and 

at two years after the first scan. All brain images were acquired on 1.5 Tesla scanners 

(Siemens, General Electric, Philips) using a 3D T1-weighted sequence with an in-plane 

resolution between 0.94 and 1.25 mm and a slice thickness of 1.2 mm. 

 

Data Processing 

All T1-weighted data were processed using CAT12 following the cross-sectional (or 

longitudinal, respectively) processing stream for VBM, SBM (cortical thickness), and ROI 

analyses (see Figure 2) according to the descriptions provided under Computational 
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Morphometry. For each subject, only their first time point was included in the cross-sectional 

stream, whereas all three time points were included in the longitudinal stream. The 

processing streams for the VBM analysis resulted in modulated and registered gray matter 

segments, which were smoothed using a 6 mm Gaussian kernel. The image processing 

streams for the SBM analysis resulted in the registered point-wise cortical thickness 

measures, which were smoothed using a 12 mm Gaussian Kernel. The voxel-based ROI 

analysis used the Neuromorphometrics atlas (RRID:SCR_005656) [65] to calculate the 

regional gray matter volumes; the surface-based ROI analysis employed the DK40 atlas [34] 

to calculate regional cortical thickness.  

 

Statistical Analysis 

For each variable of interest – voxel-wise gray matter volume, regional gray matter volume, 

point-wise cortical thickness, and regional cortical thickness – the dependent measures (e.g., 

the registered, modulated, and smoothed gray matter segments for voxel-wise gray matter) 

were entered into the statistical model. For the cross-sectional stream, group (Alzheimer’s 

disease patients vs. controls) was defined as the independent variable. For the longitudinal 

stream, the interaction between group and time was defined as the independent variable, 

whereas subject was defined as a variable of no interest. For the VBM and the voxel-based 

ROI analyses, data were corrected for TIV using ‘global scaling’ (because TIV correlated with 

group, the effect of interest). Since cortical thickness does not scale with brain size [39], no 

corrections for TIV were applied for the SBM and the surface-based ROI analyses. For the 

cross-sectional analysis we additionally included age as a nuisance parameter. 
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For the VBM and SBM analyses, results were corrected for multiple comparisons by 

applying TFCE [45] and controlling the family-wise error at p≤0.001 (cross-sectional) and 

p≤0.05 (longitudinal). For the voxel-based and surface-based ROI analyses, results were 

corrected for multiple comparisons by controlling the false discovery rate [66] at q≤0.001 

(cross-sectional) and q≤0.05 (longitudinal). All statistical tests were one-tailed given our a 

priori hypothesis that AD patients present with less gray matter at baseline and a larger loss 

of gray matter over time. 

The outcomes of the VBM and voxel-based ROI analyses were overlaid onto 

orthogonal sections of the average brain that was created from the spatially registered T1-

weighted images of the study sample (n=50); the outcomes of the SBM and surface-based 

ROI analyses were projected onto the FsAverage surface. 
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Supplemental Material 

Supplemental Notes  

Supplemental Note 1: Comparison with other tools 

We evaluated the performance of CAT12 by comparing it to other tools commonly used in 

the neuroimaging community. More specifically, we assessed the accuracy and sensitivity 

using CAT12, SPM12, FSL-FAST6, Freesurfer6 and CIVET 2.1 in detecting subtle alterations in 

brain structure that are critical for early diagnosis and monitoring of Alzheimer's disease. 

Note, the primary aim of our comparison is to provide insights into the tool’s performances; 

revealing aberrations associated with Alzheimer’s disease is only a secondary aim of this 

paper. To conduct the comparisons we used the same baseline data of our example 

application (25 patients with Alzheimer's disease and 25 matched controls), as described in 

the main article. The analyses focussed on (1) voxel-wise gray matter volume and (2) point-

wise cortical thickness. Analyses pertaining to (1) were conducted using voxel-based 

morphometry (VBM) while processing the data with (1a) SPM version 12 [12] as well as with 

(1b) FSL-FAST  version 6 [4]. Analyses pertaining to (2) were conducted using surface-based 

morphometry (SBM) while processing the data with (2a) Freesurfer version 7.2 [2] as well as 

with (2b) Civet version 2.1 [6]. 

 

 

Data Processing for VBM data 

1a – SPM12: We applied the Unified Segmentation [16] in SPM12 with default settings to 

extract rigidly registered gray and white matter segments. These individual segments 

provided the basis to create a mean segment using the Shooting toolbox [24] in SPM12. This 

mean segment functions as an initial template and is warped to each of the individual 

segments, which is followed by calculating the resulting deformations, applying the inverses 

of the deformations to the individual images, and re-calculating the template (aka the mean 

segment). This process is repeated several times. The results are spatially registered 
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segments which will be adjusted for volume changes introduced by the registration 

(modulation) and convoluted with a Gaussian kernel of  FWHM 6mm (smoothing).  

1b – FSL-FAST6: We applied the FSLVBM script from FSL6 to process the data [70]. The default 

there is using BET to skull-strip the data. However, the achieved output was of poor quality, 

which is why we used the aforementioned SPM12 segments (in native space) to skull-strip 

the data. The skull-stripped data were then processed using the FSLVBM script and smoothed 

with a 6mm Gaussian kernel, as described above.  

 

Data Processing for SBM data 

2a – Freesurfer7.2 The data were processed using the recon-all script for Freesurfer7.2 [2] 

with default settings. For a better comparison between tools, the resulting cortical thickness 

measures were resampled and smoothed (FWHM 12 mm) using CAT12. 

 

2b – CIVET2.1: The data were uploaded to CBRAIN (RRID:SCR_005513) [71] and processed 

with the CIVET2.1 pipeline using default settings. Again, the cortical thickness measures were 

resampled and smoothed (FWHM 12 mm) using CAT to allow for a better comparison 

between tools. 

 

Statistical Analysis 

For details on the statistical model (e.g., dependent variables, independent variables, and 

variables of no interest), refer to the Methods section in the main document. All results were 

corrected for multiple comparisons by applying TFCE [45] and controlling the family-wise 

error at p<0.001. All statistical tests were one-tailed given our a priori hypothesis that AD 

patients present with less gray matter at baseline and a larger loss of gray matter over time. 

In addition, we calculated the effect sizes to allow for a direct comparison across tools with 

respect to their sensitivity in detecting significant differences between AD patients and 

controls. 
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Supplemental Figure 1: Comparisons between CAT12 and other common tools. Here we compared the 
baseline gray matter images of 25 patients with Alzheimer's disease and 25 matched controls. Panel a: VBM 
analyses of voxel-wise gray matter volume using FSL-FAST6 (top), SPM12-Shooting (middle), and CAT12 
(bottom). Panel b: SBM analyses of point-wise cortical thickness using CIVET2.1 (top), Freesurfer7.2 (middle), 
and CAT12 (bottom). Panels c and d: Sensitivity of VBM and SBM analyses. The effect sizes (Cohen’s d) are shown 
on the x-axis; their frequency is shown on the y-axis (occurrence is normalized to one to facilitate comparisons 
between histograms). For both VBM and SBM, CAT12 demonstrates a larger sensitivity in detecting structural 
differences. This is reflected in the more extended significance clusters and lower p-values (panels a and b) as 
well as larger effect sizes (panels c and d).   

 

 

Supplemental Note 2: Evaluation with simulated data 

To comprehensively evaluate the performance of CAT12 in comparison with other 

neuroimaging tools (SPM12 and FSL-FAST6), we conducted evaluations using simulated data 
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generated from BrainWeb [40]. More specifically, we compared the output of CAT12, SPM12, 

and FSL-FAST6 to ground truth data represented by a brain phantom. As the phantom 

contains known variations in noise levels and signal inhomogeneities, it aids in objectively 

assessing the accuracy and robustness of CAT12 and the other tools in dealing with different 

sources of variation. To measure the agreement between the ground truth and the results of 

CAT12, SPM12, and FSL-FAST6, we calculated the kappa coefficient.  
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Supplemental Figure 2: Evaluation of CAT12 and other common tools using Brainweb data. Higher kappa 
values correspond to a better overlap, larger reliability, and increased robustness. Panel a: Overlap between 
ground truth and segmentation outputs for different noise levels. CAT12 is similar to FSL-FAST6 at lower noise 
levels but clearly outperforms both SPM12 and FSL-FAST6 at higher noise levels. The latter is due to the 
implemented denoising step (see also Figure 3a for the effect of denoising). Panel b: Overlap between ground 
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truth and segmentation outputs for different signal inhomogeneities. CAT12 is extremely robust across the 
entire range of intensity non-uniformity; it outperforms both SPM12 and FSL-FAST6. 

 

Supplemental Note 3: Longitudinal Processing 

The majority of morphometric studies are based on cross-sectional data in which one image 

is acquired for each subject. Nevertheless, the mapping of structural changes over time 

requires specific longitudinal designs that consider additional time points (and thus images) 

for each subject. In theory, all images could be processed using the standard cross-sectional 

processing workflow. In practice, however, longitudinal data strongly benefit from workflows 

specifically tailored towards longitudinal analyses, where MR-based noise and 

inhomogeneities are further reduced and where spatial correspondences are ensured, the 

latter not only across subjects but also across time points within subjects [72–74]. As a 

consequence, analyses become more sensitive, as shown in Supplemental Figure 3. 

 

 
Supplemental Figure 3: Comparison between CAT12’s cross-sectional and longitudinal pipelines. Here we 
compared the longitudinal gray matter images of 25 patients with Alzheimer's disease and 25 matched controls. 
Voxel-based morphometry (VBM) results are shown on the left and surface-based morphometry (SBM) results 
on the right. For both VBM and SBM the longitudinal preprocessing leads to an increased sensitivity compared 
to cross-sectional processing, which is evident as larger clusters and lower p-values (panels a and b) as well as 
larger effect sizes (panels c and d). The effect sizes are captured as Cohen’s d on the x-axis with the frequency 
of its occurrence normalized to a total sum of one (to ease comparisons between histograms) on the y-axis.  
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CAT12 offers three optimized processing pipelines for longitudinal studies: One for 

neuroplasticity, one for aging, and one for neurodevelopmental studies. Studies in the 

framework of neuroplasticity are confined to short time-frames of weeks to months, and 

even days [75,76]. In contrast, studies in the framework of aging and neurodevelopment 

cover longer time frames of years and, sometimes, even decades. For such extended study 

durations, it is particularly important to model systematic changes of the brain over time to 

maintain a voxel- or point-wise comparability across time points. Studies in the framework of 

neurodevelopment require additional considerations of increasing brain and head sizes. A 

detailed description of all three longitudinal processing workflows is provided in 

Supplemental Figure 4. 

 

 

Supplemental Figure 4: CAT12’s longitudinal processing workflows to examine (a) neuroplasticity, (b) aging, and 

(c) neurodevelopment. The first step in all three workflows is the creation of a high-quality average image over 

all time points. For this purpose, CAT12 realigns the images from all time points for each participant using 

inverse-consistent (or symmetric) rigid-body registrations and intra-subject bias field correction. While this is 

sufficient to create the required average image for the neuroplasticity and aging workflows, the 

neurodevelopmental workflow requires non-linear registrations in addition. In either case, the resulting average 

image is segmented using CAT12’s regular processing workflow to create a subject-specific tissue probability 

map (TPM). This TPM is used to enhance the time point-specific processing to create the final segmentations. 

The final tissue segments are then registered to MNI space to obtain a voxel-comparability across time points 

and subjects, which differs between all three workflows. In the neuroplasticity workflow, an average of the time 

point-specific registrations is created to transform the tissue segments of all time points to MNI space. The aging 
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workflow does the same in principle but adds additional (very smooth) deformations between the individual 

images across time points to account for inevitable age-related changes over time (e.g., enlargements of the 

ventricles). In contrast, the neurodevelopmental workflow needs to account for major changes, such as overall 

head and brain growth, which requires independent non-linear registrations to MNI space of all images across 

time points (which are obtained using the default cross-sectional registration model).  

 
Supplemental Note 4. Quality Control  

Processing of MRI data strongly depends on the quality of the input data. Multi-center studies 

and data sharing projects, in particular, need to take into account varying image properties 

due to different scanners, sequences and protocols. However, even scans acquired on a single 

scanner and using the same scanning protocol may vary due to motion or other miscellaneous 

artifacts. CAT12 provides options to perform quality checks, both on the subject level and on 

the group level. More specifically, on the subject level, CAT12 introduces a novel 

retrospective quality control framework for the quantification of quality differences between 

different scans obtained on a single scanner or across different scanners. The quality control 

allows for the evaluation of essential image parameters (i.e., noise, intensity 

inhomogeneities, and image resolution) and is automatically performed for each brain when 

running CAT12’s image processing workflow (see Supplemental Figure 5). On the group-level, 

CAT12 provides options to check and visualize the homogeneity of the entire study sample, 

thus allowing the user to identify any outliers (see Supplemental Figure 6). 
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Supplemental Figure 5: Subject-specific quality control. Individual quality ratings for each scan are helpful for 

determining potential problems and issues for the use of single scans. The ‘Image Quality Ratings’ (top) employ 

measures of noise, bias, and image resolution to generate a summary grade for each image [41]. A ‘CAT 

Processing Report’ (left) is automatically saved for each image after the processing workflow is completed; it 

provides information on image quality measures and the overall grade, in addition to visualizations which allow 

for an easy assessment of the quality of the skull stripping, tissue segmentation, and surface mapping. 

Moreover, a ‘Longitudinal Report’ (right) is automatically saved when any of the longitudinal pipelines have 

been used (see Supplemental Note 3). This longitudinal report – considering all images of one brain across all 

time points – provides the same information as the standard cross-sectional report but focuses on the 

assessment of differences between the individual time points.  
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Supplemental Figure 6: Group-specific quality control. In addition to the subject-specific quality control, larger 

studies in particular might benefit from scrutinizing those images that are either low in their individual quality 

ratings and/or different from the other images, suggesting anatomic anomalies, imperfect processing, or other 

issues that might hamper the subsequent statistical analysis. The ‘Group Boxplot’ (left) allows one to compare 

any image based on their similarity to the mean and reflects the homogeneity of the sample, by calculating the 

average Z-score of all spatially registered images (or surface parameter files). Lower average Z-score values 

indicate that the data points are more similar to the mean. Outliers (i.e., images with high Z-score values) 

indicate either a potential problem (with the image per se or with the outcomes of the image processing), or 

simply a variation in the neuroanatomy (e.g., enlarged ventricles). Such outliers should be checked carefully. An 

additional ‘IQR x Mean Z-Score Window’ (right) compares the average Z-scores with the weighted image quality 

rating (IQR) for each subject and allows a combined view of sample homogeneity and overall image quality. 

 

Supplemental Note 5. Mapping onto the Cortical Surface 

Surface-based analyses offer some advantages over voxel-based approaches, such as better 

inter-subject registration and surface-based smoothing, which may result in a larger 

statistical power and improved accuracy [77,78]. CAT12 provides a range of options to map 

voxel-based values (e.g., functional, quantitative or diffusion parameters) to individual brain 

surfaces for a subsequent surface-based analysis. For this purpose, voxel-based values are 

extracted at multiple positions along the surface normal at each node of the surface (see 

Supplemental Figure 7). The exact positions along the surface normal are determined by an 

equi-volume model [42], which reflects the normal shift of cytoarchitectonic layers caused by 

the local folding. In addition to default settings, users can specify both the number and 

location of those positions along the surface normal. The extracted values along the surface 

normal are then summarized as one value per node. The default here is to summarize values 
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by using the absolute maximum value. However, other options than using the absolute 

maximum exist, such as using the minimum, mean, or weighted mean value. Alternatively, 

users may choose to map voxel values at a specified distance (in mm) from the surface or 

even at multiple positions along the surface normal. The latter is useful, for example, when 

conducting a layer-specific analysis of ultra-high resolution functional MRI data [43,44].  

 

 

Supplemental Figure 7: Volume mapping. CAT12 offers multiple ways to map voxel values onto the surface. The 
default mapping extracts voxel values at multiple positions along a surface normal between the white matter 
surface and the pial surface. The exact location of these positions along the normal is determined by an equi-
volumetric model [42], which reflects the shift of cortical layers caused by local folding. However, voxel values 
can also be extracted at a specific user-defined displacement (in mm) from any given surface location.  

 

Supplemental Note 6. Threshold-free Cluster Enhancement (TFCE)  

SPM’s standard correction for multiple comparisons is based either on the magnitude of the 

T or F statistic (correction on voxel-level) or on the extent of clusters in a thresholded 

statistical map (correction on cluster level). The principle of TFCE – as implemented in CAT12’s 

TFCE toolbox – is to combine both approaches, which has several theoretical and practical 

advantages, as detailed elsewhere [45]. Briefly, it retains the sensitivity of cluster-based 

inferences, while avoiding their main downsides, such as arbitrary cluster-forming thresholds 

or susceptibility to non-stationarity that may compromise the statistical validity [79–81]. As 

a special feature in CAT, the TFCE toolbox automatically recognizes exchangeability blocks 

and potential nuisance parameters [46], which would otherwise need to be specified by the 

user.  

 

Supplemental Note 7. Customized Methods for Clinical Data  

Stroke Lesion Correction (SLC) 

To mitigate improper deformations during spatial registration in brains with stroke lesions, 

the CAT12 toolbox offers a Stroke Lesion Correction (SLC) method. This feature suppresses 

strong (high-frequency) deformations during the Shooting registration step, which can occur 

due to the presence of lesions. To utilize this method, the lesions must be set to zero. This 

can be achieved by employing the Manual Image Masking batch, where a lesion mask can be 
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created. Subsequently, the SLC flag should be enabled in the expert mode of CAT12. This 

ensures that the regions containing lesions are excluded from the spatial registration, 

preventing large deformations that might otherwise arise when aligning the lesioned brain 

with a template brain. 

By implementing this correction, CAT12 facilitates more accurate spatial alignment, 

particularly for clinical data involving stroke patients. This approach is essential for 

neuroimaging studies, where a precise alignment of brain structures is crucial for the 

subsequent analysis. 

 

White Matter Hyperintensity Correction (WMHC) 

The accurate detection of white matter hyperintensities (WMHs) is crucial to prevent 

registration errors, such as the inappropriate mapping of WMHs to typical gray matter 

locations. Additionally, WMHs in close proximity to the cortex can lead to surface 

reconstruction errors by being misinterpreted as gray matter. 

To address this issue, CAT12 initially employs a low-resolution shooting registration 

technique [24] on the preliminary SPM segments to align the tissue probability map and the 

CAT12 atlas with the individual image space. Subsequently, local tissue and region corrections 

are conducted using region-growing and bottleneck algorithms [19]. 

Within the individual segmentation map, isolated GM islands within the WM and voxels 

adjacent to the lateral ventricles that have high WM probability but GM-like intensity are 

classified as WMHs. These areas with GM-like intensity but a WMH label are either 

temporarily aligned with WM or treated as a separate tissue class, depending on the WMH 

correction (WMHC) processing parameters. 
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Supplemental Tables 

Supplemental Table 1: Voxel-based ROI atlases available in CAT12 (as of October 2023) 

Atlas Reference 

Neuromorphometrics [65] 

LPBA40 [33,82] 

Cobra 
 

[83–88] 
(built from 5 atlases provided by the Computational Brain Anatomy Laboratory at the 
Douglas Institute) 

Mori  [89,90] 

IBSR [91] 

Hammers [92,93] 

JuBrain Anatomy [94,95] 

Julich-Brain Cytoarchitectonic 
Atlas 

[96,97] 

AAL3 [98–100] 

Thalamus [101,102] 

Thalamic Nuclei [103,104] 

Melbourne Subcortical Atlas [105,106] 

SUIT Atlas of the human 
cerebellum 

[107,108] 

 

 

Supplemental Table 2: Surface-based ROI atlases available in CAT (as of October 2023) 

 

Atlas Reference 

DK40 (Desikan-Killiany) [34,109] 

Destrieux [110,111] 

Human Connectome Project 
(HCP) Multi-Modal 
Parcellation 

[112,113] 

Local-Global Intrinsic 
Functional Connectivity 
Parcellation 
 

[114,115] 
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