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Supplemental Notes  

Supplemental Note 1: Comparison with other tools 

We evaluated the performance of CAT12 by comparing it to other tools commonly used in the 
neuroimaging community. More specifically, we assessed the accuracy and sensitivity using 
CAT12, SPM12, FSL-FAST6, Freesurfer6 and CIVET 2.1 in detecting subtle alterations in brain 
structure that are critical for early diagnosis and monitoring of Alzheimer's disease. Note, the 
primary aim of our comparison is to provide insights into the tool’s performances; revealing 
aberrations associated with Alzheimer’s disease is only a secondary aim of this paper. To conduct 
the comparisons we used the same baseline data of our example application (25 patients with 
Alzheimer's disease and 25 matched controls), as described in the main article. The analyses 
focussed on (1) voxel-wise gray matter volume and (2) point-wise cortical thickness. Analyses 
pertaining to (1) were conducted using voxel-based morphometry (VBM) while processing the 
data with (1a) SPM version 12 [1] as well as with (1b) FSL-FAST version 6 [2]. Analyses pertaining 
to (2) were conducted using surface-based morphometry (SBM) while processing the data with 
(2a) Freesurfer version 7.2 [3] as well as with (2b) Civet version 2.1 [4]. 
 
Data Processing for VBM data 
1a – SPM12: We applied the Unified Segmentation [5] in SPM12 with default settings to extract 
rigidly registered gray and white matter segments. These individual segments provided the basis 
to create a mean segment using the Shooting toolbox [6] in SPM12. This mean segment functions 
as an initial template and is warped to each of the individual segments, which is followed by 
calculating the resulting deformations, applying the inverses of the deformations to the 
individual images, and re-calculating the template (aka the mean segment). This process is 
repeated several times. The results are spatially registered segments which will be adjusted for 
volume changes introduced by the registration (modulation) and convoluted with a Gaussian 
kernel of FWHM 6mm (smoothing).  
1b – FSL-FAST6: We applied the FSLVBM script from FSL6 to process the data [7]. The default 
there is using BET to skull-strip the data. However, the achieved output was of poor quality, which 
is why we used the aforementioned SPM12 segments (in native space) to skull-strip the data. The 
skull-stripped data were then processed using the FSLVBM script and smoothed with a 6mm 
Gaussian kernel, as described above.  
 
Data Processing for SBM data 
2a – Freesurfer7.2 The data were processed using the recon-all script for Freesurfer7.2 [3] with 
default settings. For a better comparison between tools, the resulting cortical thickness measures 
were resampled and smoothed (FWHM 12 mm) using CAT12. 
 
2b – CIVET2.1: The data were uploaded to CBRAIN (RRID:SCR_005513) [8] and processed with 
the CIVET2.1 pipeline using default settings. Again, the cortical thickness measures were 
resampled and smoothed (FWHM 12 mm) using CAT to allow for a better comparison between 
tools. 
 
Statistical Analysis 
For details on the statistical model (e.g., dependent variables, independent variables, and 
variables of no interest), refer to the Methods section in the main document. All results were 
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corrected for multiple comparisons by applying TFCE [9] and controlling the family-wise error at 
p<0.001. All statistical tests were one-tailed given our a priori hypothesis that AD patients present 
with less gray matter at baseline and a larger loss of gray matter over time. In addition, we 
calculated the effect sizes to allow for a direct comparison across tools with respect to their 
sensitivity in detecting significant differences between AD patients and controls. 
 

 

Supplemental Figure 1: Comparisons between CAT12 and other common tools. Here we compared the baseline 
gray matter images of 25 patients with Alzheimer's disease and 25 matched controls. Panel a: VBM analyses of voxel-
wise gray matter volume using FSL-FAST6 (top), SPM12-Shooting (middle), and CAT12 (bottom). Panel b: SBM 
analyses of point-wise cortical thickness using CIVET2.1 (top), Freesurfer7.2 (middle), and CAT12 (bottom). Panels c 
and d: Sensitivity of VBM and SBM analyses. The effect sizes (Cohen’s d) are shown on the x-axis; their frequency is 
shown on the y-axis (occurrence is normalized to one to facilitate comparisons between histograms). For both VBM 
and SBM, CAT12 demonstrates a larger sensitivity in detecting structural differences. This is reflected in the more 
extended significance clusters and lower p-values (panels a and b) as well as larger effect sizes (panels c and d).   
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Supplemental Note 2: Evaluation with simulated data 

To comprehensively evaluate the performance of CAT12 in comparison with other neuroimaging 
tools (SPM12 and FSL-FAST6), we conducted evaluations using simulated data generated from 
BrainWeb [10]. More specifically, we compared the output of CAT12, SPM12, and FSL-FAST6 to 
ground truth data represented by a brain phantom. As the phantom contains known variations 
in noise levels and signal inhomogeneities, it aids in objectively assessing the accuracy and 
robustness of CAT12 and the other tools in dealing with different sources of variation. To 
measure the agreement between the ground truth and the results of CAT12, SPM12, and FSL-
FAST6, we calculated the kappa coefficient.  
 

 
Supplemental Figure 2: Evaluation of CAT12 and other common tools using Brainweb data. Higher kappa values 
correspond to a better overlap, larger reliability, and increased robustness. Panel a: Overlap between ground truth 
and segmentation outputs for different noise levels. CAT12 is similar to FSL-FAST6 at lower noise levels but clearly 
outperforms both SPM12 and FSL-FAST6 at higher noise levels. The latter is due to the implemented denoising step 
(see also Figure 3a for the effect of denoising). Panel b: Overlap between ground truth and segmentation outputs 
for different signal inhomogeneities. CAT12 is extremely robust across the entire range of intensity non-uniformity; 
it outperforms both SPM12 and FSL-FAST6. 
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Supplemental Note 3: Longitudinal Processing 

The majority of morphometric studies are based on cross-sectional data in which one image is 
acquired for each subject. Nevertheless, the mapping of structural changes over time requires 
specific longitudinal designs that consider additional time points (and thus images) for each 
subject. In theory, all images could be processed using the standard cross-sectional processing 
workflow. In practice, however, longitudinal data strongly benefit from workflows specifically 
tailored towards longitudinal analyses, where MR-based noise and inhomogeneities are further 
reduced and where spatial correspondences are ensured, the latter not only across subjects but 
also across time points within subjects [11–13]. As a consequence, analyses become more 
sensitive, as shown in Supplemental Figure 3. 

 

 
Supplemental Figure 3: Comparison between CAT12’s cross-sectional and longitudinal pipelines. Here we 
compared the longitudinal gray matter images of 25 patients with Alzheimer's disease and 25 matched controls. 
Voxel-based morphometry (VBM) results are shown on the left and surface-based morphometry (SBM) results on 
the right. For both VBM and SBM the longitudinal preprocessing leads to an increased sensitivity compared to cross-
sectional processing, which is evident as larger clusters and lower p-values (panels a and b) as well as larger effect 
sizes (panels c and d). The effect sizes are captured as Cohen’s d on the x-axis with the frequency of its occurrence 
normalized to a total sum of one (to ease comparisons between histograms) on the y-axis.  

 
CAT12 offers three optimized processing pipelines for longitudinal studies: One for 
neuroplasticity, one for aging, and one for neurodevelopmental studies. Studies in the 
framework of neuroplasticity are confined to short time-frames of weeks to months, and even 
days [14,15]. In contrast, studies in the framework of aging and neurodevelopment cover longer 
time frames of years and, sometimes, even decades. For such extended study durations, it is 
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particularly important to model systematic changes of the brain over time to maintain a voxel- 
or point-wise comparability across time points. Studies in the framework of neurodevelopment 
require additional considerations of increasing brain and head sizes. A detailed description of all 
three longitudinal processing workflows is provided in Supplemental Figure 4. 
 

 

Supplemental Figure 4: CAT12’s longitudinal processing workflows to examine (a) neuroplasticity, (b) aging, and (c) 
neurodevelopment. The first step in all three workflows is the creation of a high-quality average image over all time 
points. For this purpose, CAT12 realigns the images from all time points for each participant using inverse-consistent 
(or symmetric) rigid-body registrations and intra-subject bias field correction. While this is sufficient to create the 
required average image for the neuroplasticity and aging workflows, the neurodevelopmental workflow requires 
non-linear registrations in addition. In either case, the resulting average image is segmented using CAT12’s regular 
processing workflow to create a subject-specific tissue probability map (TPM). This TPM is used to enhance the time 
point-specific processing to create the final segmentations. The final tissue segments are then registered to MNI 
space to obtain a voxel-comparability across time points and subjects, which differs between all three workflows. In 
the neuroplasticity workflow, an average of the time point-specific registrations is created to transform the tissue 
segments of all time points to MNI space. The aging workflow does the same in principle but adds additional (very 
smooth) deformations between the individual images across time points to account for inevitable age-related 
changes over time (e.g., enlargements of the ventricles). In contrast, the neurodevelopmental workflow needs to 
account for major changes, such as overall head and brain growth, which requires independent non-linear 
registrations to MNI space of all images across time points (which are obtained using the default cross-sectional 
registration model).  
 
Supplemental Note 4. Quality Control  

Processing of MRI data strongly depends on the quality of the input data. Multi-center studies 
and data sharing projects, in particular, need to take into account varying image properties due 
to different scanners, sequences and protocols. However, even scans acquired on a single 
scanner and using the same scanning protocol may vary due to motion or other miscellaneous 
artifacts. CAT12 provides options to perform quality checks, both on the subject level and on the 
group level. More specifically, on the subject level, CAT12 introduces a novel retrospective 
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quality control framework for the quantification of quality differences between different scans 
obtained on a single scanner or across different scanners. The quality control allows for the 
evaluation of essential image parameters (i.e., noise, intensity inhomogeneities, and image 
resolution) and is automatically performed for each brain when running CAT12’s image 
processing workflow (see Supplemental Figure 5). On the group-level, CAT12 provides options 
to check and visualize the homogeneity of the entire study sample, thus allowing the user to 
identify any outliers (see Supplemental Figure 6). 
 

 
Supplemental Figure 5: Subject-specific quality control. Individual quality ratings for each scan are helpful for 
determining potential problems and issues for the use of single scans. The ‘Image Quality Ratings’ (top) employ 
measures of noise, bias, and image resolution to generate a summary grade for each image [16]. A ‘CAT Processing 
Report’ (left) is automatically saved for each image after the processing workflow is completed; it provides 
information on image quality measures and the overall grade, in addition to visualizations which allow for an easy 
assessment of the quality of the skull stripping, tissue segmentation, and surface mapping. Moreover, a ‘Longitudinal 
Report’ (right) is automatically saved when any of the longitudinal pipelines have been used (see Supplemental Note 
3). This longitudinal report – considering all images of one brain across all time points – provides the same 
information as the standard cross-sectional report but focuses on the assessment of differences between the 
individual time points.  
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Supplemental Figure 6: Group-specific quality control. In addition to the subject-specific quality control, larger 
studies in particular might benefit from scrutinizing those images that are either low in their individual quality ratings 
and/or different from the other images, suggesting anatomic anomalies, imperfect processing, or other issues that 
might hamper the subsequent statistical analysis. The ‘Group Boxplot’ (left) allows one to compare any image based 
on their similarity to the mean and reflects the homogeneity of the sample, by calculating the average Z-score of all 
spatially registered images (or surface parameter files). Lower average Z-score values indicate that the data points 
are more similar to the mean. Outliers (i.e., images with high Z-score values) indicate either a potential problem 
(with the image per se or with the outcomes of the image processing), or simply a variation in the neuroanatomy 
(e.g., enlarged ventricles). Such outliers should be checked carefully. An additional ‘IQR x Mean Z-Score Window’ 
(right) compares the average Z-scores with the weighted image quality rating (IQR) for each subject and allows a 
combined view of sample homogeneity and overall image quality. 
 
Supplemental Note 5. Mapping onto the Cortical Surface 

Surface-based analyses offer some advantages over voxel-based approaches, such as better 
inter-subject registration and surface-based smoothing, which may result in a larger statistical 
power and improved accuracy [17,18]. CAT12 provides a range of options to map voxel-based 
values (e.g., functional, quantitative or diffusion parameters) to individual brain surfaces for a 
subsequent surface-based analysis. For this purpose, voxel-based values are extracted at multiple 
positions along the surface normal at each node of the surface (see Supplemental Figure 7). The 
exact positions along the surface normal are determined by an equi-volume model [19], which 
reflects the normal shift of cytoarchitectonic layers caused by the local folding. In addition to 
default settings, users can specify both the number and location of those positions along the 
surface normal. The extracted values along the surface normal are then summarized as one value 
per node. The default here is to summarize values by using the absolute maximum value. 
However, other options than using the absolute maximum exist, such as using the minimum, 
mean, or weighted mean value. Alternatively, users may choose to map voxel values at a 
specified distance (in mm) from the surface or even at multiple positions along the surface 
normal. The latter is useful, for example, when conducting a layer-specific analysis of ultra-high 
resolution functional MRI data [20,21]. 
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Supplemental Figure 7: Volume mapping. CAT12 offers multiple ways to map voxel values onto the surface. The 
default mapping extracts voxel values at multiple positions along a surface normal between the white matter surface 
and the pial surface. The exact location of these positions along the normal is determined by an equi-volumetric 
model [19], which reflects the shift of cortical layers caused by local folding. However, voxel values can also be 
extracted at a specific user-defined displacement (in mm) from any given surface location.  
 

Supplemental Note 6. Threshold-free Cluster Enhancement (TFCE)  

SPM’s standard correction for multiple comparisons is based either on the magnitude of the T or 
F statistic (correction on voxel-level) or on the extent of clusters in a thresholded statistical map 
(correction on cluster level). The principle of TFCE – as implemented in CAT12’s TFCE toolbox – is 
to combine both approaches, which has several theoretical and practical advantages, as detailed 
elsewhere [9]. Briefly, it retains the sensitivity of cluster-based inferences, while avoiding their 
main downsides, such as arbitrary cluster-forming thresholds or susceptibility to non-stationarity 
that may compromise the statistical validity [22–24]. As a special feature in CAT, the TFCE toolbox 
automatically recognizes exchangeability blocks and potential nuisance parameters [25], which 
would otherwise need to be specified by the user.  
 
Supplemental Note 7. Customized Methods for Clinical Data  

Stroke Lesion Correction (SLC) 
To mitigate improper deformations during spatial registration in brains with stroke lesions, the 
CAT12 toolbox offers a Stroke Lesion Correction (SLC) method. This feature suppresses strong 
(high-frequency) deformations during the Shooting registration step, which can occur due to the 
presence of lesions. To utilize this method, the lesions must be set to zero. This can be achieved 
by employing the Manual Image Masking batch, where a lesion mask can be created. 
Subsequently, the SLC flag should be enabled in the expert mode of CAT12. This ensures that the 
regions containing lesions are excluded from the spatial registration, preventing large 
deformations that might otherwise arise when aligning the lesioned brain with a template brain. 
By implementing this correction, CAT12 facilitates more accurate spatial alignment, particularly 
for clinical data involving stroke patients. This approach is essential for neuroimaging studies, 
where a precise alignment of brain structures is crucial for the subsequent analysis. 
 
White Matter Hyperintensity Correction (WMHC) 
The accurate detection of white matter hyperintensities (WMHs) is crucial to prevent registration 
errors, such as the inappropriate mapping of WMHs to typical gray matter locations. Additionally, 
WMHs in close proximity to the cortex can lead to surface reconstruction errors by being 
misinterpreted as gray matter. 
To address this issue, CAT12 initially employs a low-resolution shooting registration technique 
[6] on the preliminary SPM segments to align the tissue probability map and the CAT12 atlas with 
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the individual image space. Subsequently, local tissue and region corrections are conducted using 
region-growing and bottleneck algorithms [26]. 
Within the individual segmentation map, isolated GM islands within the WM and voxels adjacent 
to the lateral ventricles that have high WM probability but GM-like intensity are classified as 
WMHs. These areas with GM-like intensity but a WMH label are either temporarily aligned with 
WM or treated as a separate tissue class, depending on the WMH correction (WMHC) processing 
parameters. 
  

Supplemental Tables 

Supplemental Table 1: Voxel-based ROI atlases available in CAT12 (as of October 2023) 

Atlas Reference 

Neuromorphometrics [27] [27] 

LPBA40 [28,29] 

Cobra 
 

[30–35] 
(built from 5 atlases provided by the Computational Brain Anatomy Laboratory at the 
Douglas Institute) 

Mori  [36,37] 

IBSR [38] [38] 

Hammers [39,40] 

JuBrain Anatomy [41,42] 

Julich-Brain Cytoarchitectonic 
Atlas 

[43,44] 

AAL3 [45–47] 

Thalamus [48,49] 

Thalamic Nuclei [50,51] 

Melbourne Subcortical Atlas [52,53] 

SUIT Atlas of the human 
cerebellum 

[54,55] 

 
 

Supplemental Table 2: Surface-based ROI atlases available in CAT (as of October 2023) 

Atlas Reference 

DK40 (Desikan-Killiany) [56,57] 

Destrieux [58,59] 

Human Connectome Project 
(HCP) Multi-Modal 
Parcellation 

[60,61] 

Local-Global Intrinsic 
Functional Connectivity 
Parcellation 

[62,63] 
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