Private Eyes, They See Your Every Move: Workplace Surveillance and Worker Well-Being

TECHNICAL APPENDIX FOR CONFIRMATORY FACTOR ANALYSIS

A confirmatory factor analysis (CFA) can be used to compare the fit of a set of
alternative latent structures to observed data (Ullman 2006), thereby determining which
hypothesized structure best fits the observed data. For each structure, model fit is determined
using the RMSEA, CFI, and SRMR, with values of 0.95 or higher considered acceptable for the
CFI, values of 0.06 or lower for the RMSEA, and values of 0.05 or less for the SRMR (Byrne
2012). The model chi-square can also be used to evaluate model fit, but tends to be significant in
models with this large of a sample size (Bollen et al. 2014); however, the model chi-square can
also be used to compare model fit in nested models, thereby testing whether models that add
parameters have a significantly better fit than simpler models (Byrne 2012). Additionally, the
Bayesian Criterion Index (BIC) is a non-parametric measure of model fit that can be used to
compare whether the improvement in model fit is worth the increase in model complexity (Lin et
al. 2017). We therefore report the BIC when comparing nested models to examine whether
addition of parameters improves model fit over and above the increase in model complexity.

To compare different latent structures, we first estimate a “clean” CFA of the
observations for surveillance, job autonomy, and job pressures. This is a clean CFA because
items are used as reflectors only for their respective factors. Two additional models are
estimated which allow cross-loadings. Cross-loadings are when responses on a question are used
as indicators for two or more different factors at the same time. Specification of cross-loadings is
facilitated by modification indices. Modification indices estimate the improvement in model fit
that will be obtained by changing a model under consideration. In this case, modification indices
are used to determine the likely improvement in model fit that will result if cross-loadings are
added in subsequent models.

Tables S.1 shows the fit indices for each model, and Table S.2 shows the factor loadings
and inter-factor covariances for each model. Again, Model 1 is a clean model, in which items
are allowed to load only on their intended factors. Although the CFl and SRMR indicate
acceptable fit for the clean model, the RMSEA indicates poor model fit. Moreover, inspection of
the modification indices suggested that substantial improvement in model fit could be afforded
by allowing a cross-loading between the latent autonomy factor and the surveillance item
indicating monitoring. Model 2 shows the results of a model that adds this cross-loading.
Comparison of the chi-square statistics for the two models shows that model fit is significantly
improved from Model 1; moreover, the BIC is substantially lower in Model 2, indicating that the
addition of this cross-loading improves model fit, even when taking the increase in model
complexity into account. Although the model fit indices indicated acceptable fit in Model 2, the
modification indices for the model indicated model fit could be further improved with a second
cross-loading between the autonomy latent factor and an additional indicator for surveillance.
Since one of the focal questions of our analyses involves the degree of overlap between
surveillance responses and other measures of work conditions, and the modification indices
suggested marked improvement in model fit, an additional cross-loading was added in Model 3.

All model fit indices show further improvement in model fit in Model 3 from Model 2,
with an RMSEA of 0.30, a CFI of 0.992, and an SRMR of 0.018. The difference in the chi-
square statistics between Models 2 and 3 is also significant, and the BIC is lower for Model 3,



indicating that the addition of the second cross-loading is worth the further increase in model
complexity. Modification indices indicated no further cross-loadings with the surveillance items,
and since Model 3 indicates excellent fit, no additional model modifications were made. The
final model with two cross-loadings is therefore the CFA model presented in the first part of the
results on the main paper, and used as the basis for the structural equation model in the second
part of the results of the main paper.

The specifics of Model 3 are described in the main text, but it should be noted that Table
S.2 shows that the correlation between latent autonomy and latent surveillance in the clean
model (Model 1) is -0.354, but this correlation is reduced to -0.113 with both cross-loadings
(Model 3). The reduction in the correlation between these two factors shows that the appearance
of a higher correlation between surveillance and job autonomy is largely because people
combine surveillance and job autonomy when responding to questions about surveillance.
Taking the mixture of surveillance and job autonomy in these responses into account shows that
surveillance and job autonomy are more distal constructs.

We present the unweighted distributions of the items used in the SEM (Table S.3). Table S.4.
presents an expanded model with additional controls (pay perceptions, advancement
opportunities, salaried work, and remote work). The results from this model are substantively
similar to those presented in the model used in the main paper.



TABLE S.1
CFA Model Fit Indices

Scaling
r DF  Correction
Factor p BIC RMSEA CFl  SRMR
Model 1 371.513 24 1208 *** 79706.042  0.064 0.959 0.042
Model 2 165.271 23 1.220 *** 79466.953  0.042 0.983 0.028
Model 3 93.335 22 1230 *** 79388.224  0.030 0.992 0.018
*p< .05, *¥*p <.01. ***p <.001.
N=3,508.

Difference in model fit between each model significant at p<.001.



TABLE S.2
CFA Factor Loadings and Inter-Factor Correlations

Model 1 Model 2 Model 3
Metric
Standardize Loadin Standardize Standardize
Metric ~ SE p d g SE p d Metric ~ SE p d
Factor Loadings
Surveillance
Tracking  1.000 -- -- 0.707 1.000 -- -- 0.857 1.000 - - 0.654
Evaluation 0.695 0.027 *** 0.481 0.634 0.034 *** 0.532 0.995 0.061 *** 0.638
Monitoring  1.079 0.060 *** 0.748 0.497 0.043 *** 0.418 0.653 0.042 *** 0.419
Autonomy
Freedom  1.000 -- -- 0.827 1.000 -- -- 0.820 1.000 - - 0.816
Decision 0.856 0.026 *** 0.732 0.871 0.026 *** 0.738 0.876 0.026 *** 0.739
Lotof Say 0.856 0.025 *** 0.693 0.866 0.025 *** 0.694 0.874 0.025 *** 0.697
Monitoring -- -- -- -- -0.458 0.034 -0.365 -0.589 0.031 -0.467
Tracking -- -- -- -- -- -- -- - -0.345 0.031 -0.278
Presssures
Overwhelme
d 1.000 -- -- 0.856 1.000 -- -- 0.856 1.000 - - 0.856
Tasks 0.997 0.019 *** 0.841 0.997 0.019 *** 0.840 0.997 0.019 *** 0.841
Demands 1.029 0.019 *** 0.835 1.029 0.019 *** 0.835 1.029 0.019 *** 0.835
Factor Covariances
-0.354 0.015 *** -0.637 -0.312 0.018 *** -0.466 -0.113 0.020 *** -0.223

Surveillance,
Autonomy




TABLE S2. CONTINUED
CFA Factor Loadings and Inter-Factor Correlations

Continued on next page

Model 1 Model 2 Model 3
Metric Metric
Standardize Loadin Standardize Loadin Standardize
Metric  SE p d g SE p d g SE p d
Surveillance, 0.143 0.018 =*** 0.203 0.157 0.020 =*** 0.184 0.127 0.017 *** 0.196
Pressures
Autonomy, -0.075 0.019 *** -0.092 -0.078 0.018 *** -0.096 -0.074 0.018 *** -0.092
Pressures
*p<.05. **p <.01. ***p<.001. N=3,508.




TABLE S3. Unweighted Percentage Distributions for Indicator Items of Latent Constructs

A little Some of
Psychological distress items None of the time of the time the time Most of the time All of the time
Anxious 12.64% 28.99% 33.67% 19.29% 5.42%
Nervous 20.37% 34.00% 30.83% 11.37% 3.43%
Restless 22.30% 30.14% 32.03% 12.56% 2.98%
Sad 21.06% 33.40% 31.06% 11.17% 3.31%
Hopeless 43.49% 26.17% 20.85% 7.09% 2.40%
Somewhat Somewhat

Workplace surveillance items Disagree Disagree Agree Agree

Work activities are tracked 26.55% 32.70% 28.81% 11.94%

Performance is frequently evaluated 25.25% 27.61% 33.96% 13.17%

Rarely monitored at job 30.21% 35.42% 21.96% 12.41%

Somewhat Somewhat

Job autonomy items Disagree Disagree Agree Agree

Freedom to decide actions on job 16.37% 24.35% 40.71% 18.57%

Responsibility to decide how job is done 9.16% 15.04% 40.39% 35.41%

Have a lot of say what happens on job 16.26% 24.53% 37.69% 21.51%

Job pressures items Never Rarely Sometimes Often Very Often
Feeling overwhelmed by work 11.06% 24.46% 34.15% 16.19% 14.14%
Working on too many tasks at once 9.75% 22.52% 32.35% 19.44% 15.94%
Job demands exceed time available 13.40% 26.08% 28.91% 16.33% 15.28%

Note: The percentages listed in this appendix represent the unweighted distribution of responses for each item used as indicators. These percentages should not
be interpreted as direct measures of distress or other constructs but are used to estimate latent constructs, which are continuous variables inferred from these

observed indicators.
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