

4 Overdose anti-PD-1 (aPD-1) therapy in mice inhibits tumor growth but causes myocardial 5 immune cells infiltration and elevation of blood biomarkers.

7 biologically independent experiments.

- 8 (**B**) Survival of tumor-bearing mice received overdose aPD-1 therapy or normal IgG. *n* = 6 biologically
- 9 independent experiments.
- 10 (C) Immunohistochemistry staining of T-cell (CD8⁺ and CD4⁺) and macrophages/monocytes (CD68⁺)
- in myocardium of mice received overdose aPD-1 therapy or normal lgG. n = 14 biologically independent experiments.
- 13 (**D**) Serum levels of cTnT and cTnI in mice received overdose aPD-1 therapy or normal IgG. n = 614 biologically independent experiments.
- (E) Gene expression of *caspase-1, caspase-11, caspase-3, caspase-8* and *caspase-9* in heart of
- mice received overdose aPD-1 therapy or normal IgG. n = 6 biologically independent experiments.
- 17 (F) Gene expression of Tnni3, Tnnt2, Il-18, Il-6, Il-1b, Ifn-γ, Il-17a, Icam1, Vav2 and Sell in heart of
- mice received overdose aPD-1 therapy or normal IgG. n = 8 biologically independent experiments.
- 19 The data were presented as means ± SEM and analyzed by Log-Rank test (survival, **B**) and two-
- sided unpaired Student's t-test (other panels). ***P*<0.01. NS, no significance.

- 22

23 24

Investigation of serum biomarkers for cardiac injury in patients with aPD-1 therapy-induced 25 myocarditis. 26

(A) Serum biomarkers of cardiac damage (cTnT, cTnI, CK-MB and NT-proBNP) in 6 NSCLC patients 27 with myocarditis (IC-OS 2021 criteria). 28

(B) Serum biomarkers of cardiac damage (cTnT, cTnI, CK-MB and NT-proBNP) in 30 NSCLC 29

- patients without myocarditis (IC-OS 2021 criteria). 30
- The data were analyzed by two-sided paired Student's t-test. ***P*<0.01. NS, no significance. 31

2-guide RNA1 3-guide RNA2 4-guide RNA2 (Thermo) SM0311)

Ε

100

250

G

GSDME

Tubulir

WT

Gsdme

Gsdme"

NS

Ċ.

Caspaseo

CREPRER CREPRER

kDa

55

53

S

			16	56 bp deletion		
Rang	e 2: 2	726 to 3	081 Graphi	cs	Vext M	atch
Scor	e		Expect	Identities	Gaps	
647	bits(3	50)	0.0	355/357(99%)	2/357(0%))
Query	464	CCCGAGGGI	GITGCIGGICG	AGCATGGGATTGGGCCCTGTC	CTTCCGCAGGAGTTTAGGA	523
Sbjet	2726	CCCGAGGGI	GTTGCTGGTCG	AGCATGGGATTGGGCCCTGTC	CTTCCGCAGGAGTTTAGGA	278
Query	524	AGAGTCAGO	CCTGCTGCCTTG	GGTATGECTGGACAGGETGAG	GATCACCAGGGAAGACAGT	583
Sbjet	2786	AGAGTCAGO	CCTGCTGCCTTG	GGTATGCCTGGACAGGCTGAC	GATCACCAGGGAAGACAGT	284
Query	584	TCACCCATO	AACTGCAGGTGT	GATGGAGAAGGGATGGTCTG	GAAGTAGTAGCTGAGACA	643
Sbjet	2846	TCACCCATO	AACTGCAGGTGI	GATGGAGAAGGGATGGTCTG	GAAGTAGTAGCTGAGACA	290
Query	644	CGAGGAGC	TGCTAAGGAATA	CATGTCAGGATACAGCCAGG	TAGAATGCATAATCGGCA	703
Sbjet	2906	CGAGGAGC	TGCTAAGGAATA	CATGTCAGGATACAGCCAGG	TAGAATGCATAATCGGCA	296
Query	704	TGTGTGGGG	CTTCCTTTCCAC	CCCCAATACTGCAAAACAGAA	AAGaaaaaaaaaaGAT	763
Sbjet	2966	TGTGTGGGG	CTTCCTTTCCAC	CCCCAATACTGCAAAACAGAA	AAGAAAAAAAAAAAAAAAAAGAT	302
Query	764	ACAGCACCI	GAAACCTCAAGA	GGTACCTTATCACCAAGTCCT	CTTAC-TGCTTGCCC 81	9
Shiet	3026	ACAGCACCT	GAAACCTCAAGA	OGTACCTTATEACCAAGTCCT	CTTACGTGCT-GCCC 30	81

WT mouse Gsdme:

MFAKATRNFLKEVDAGGDLISVSHLNDSDKLQLLSLVTKKKRYWCWQRPKYQILSATLED1VL1 EGHCLSPVVVESDFVKYESKCENHKSGAIGTVVGKVKLNVGGKGVVESHSSFGTLRKQEVD VQQLIQDAVKRTVNMDNLVLQQVLESRNEVLCVLTQKIMTTQKCVISEHVQSEETCGGMV GIQTKTIQVSATEDGTVTTDTNVVLEIPAATTIAYGIMELFVKQDGQFEFCLLQGKHGGFEHER KLDSVYLDPLAYREFAFLDMLDGGQGISSQDGPLRVVKQATLHLERSFHPFAVLPAQQQRAL FCVLQKILFDEELLRALEQVCDDVAGGLWSSQAVLAMEELTDSQQQDLTAFLQLVGYRIQG EHPGPQDEVSNQKLFATAYFLVSALAEMPDNATVFLGTCCKLHVISSLCCLLHALSDDSVCDF HNPTLAPLRDTERFGIVQRLFASADIALERMQFSAKATILKDSCIF481PLILHITLSGLSTLSKEHEEE

MT mouse Gsdme:

1.4

1.2

1.0

0.8

0.6

NS

0

0

Caspase

MFAKATRNFLKEVDAGGDLISVSHLNDSDKLQLLSLVTKKKRYWCWQRPKYQILSATLEDVLTE GHCI SPEQUIWTTWYESRC

Relative mRNA (fold)

Н

В

Genotyping

GTCCCCTTCCAGCCTTCACTTC

Sequence (5'-3')

CAGCTACTACTTCCCAGACCATCC

Gsdme

GCCCCGCTCTTATGGTTCTC

e (5'-3') Seque

D

Prime

P1

P2

P4

F

WT: 634 bp Gsdme--: 424 bp Gsdme+/-: 634 bp + 424 bp

action 1: Product 634bp

Reaction 2: Product 424bp

2.0

33

- Generation of a mouse strain with globally knockout of GSDME. 34
- 35 (A) Schematic diagram showing the knockout strategy in mice by targeting exon 4 of GSDME using

Cashasel

- CRISPR/CAS9 technology. 36
- (B) Design and preparation of gRNAs. 37
- (C) Sequencing confirmation of the deletion of 1656 bp in F0 animal. 38
- (D) Genotyping primers of genotyping in F1 animals. 39

- 40 (E) The representative agarose images in genotyping.
- 41 (F) The mRNA level of GSDME in WT and *Gsdme*^{-/-} mice. The primers were designed to target the
- 42 gene sequence within the exon 4 of GSDME. n = 17 biologically independent experiments.
- 43 (G) Immunoblotting analysis confirmed the successful deletion of GSDME protein in *Gsdme*^{-/-} mice.
- (H) The mRNA expression of *caspase 1, caspase 3, caspase 8, caspase 9* and *caspase 11* in hear tissue of WT and *Gsdme*^{-/-} mice. n = 6 biologically independent experiments.
- (I) The enzymatic activities of Caspase 1, Caspase 3, Caspase 8 and Caspase 9 in heart tissue of
- 47 WT and *Gsdme*^{-/-} mice. n = 6 biologically independent experiments.
- The data were presented as means ± SEM and analyzed by two-sided unpaired Student's t-tests.
- 49 ***P*<0.01. NS, no significance.

⁵²

Deletion of GSDME in mice attenuates aPD-1 therapy-induced myocardial damage and 53 mitochondrial dysfunction. 54

- (A) The body weight change induced by aPD-1 therapy in WT and Gsdme^{-/-} mice. Normal IgG was 55
- used as a control. n = 7 biologically independent experiments. 56
- (B) Heart weight to body weight ratio (HW/BW) and heart weight to tibia length ratio (HW/TL). n = 657 biologically independent experiments. 58
- (C) Cytosolic mtDNA (*mt-Nd1* and *D-loop*) contents in heart of WT and *Gsdme^{-/-}* mice received aPD-59
- 1 therapy or control IgG. n = 6 biologically independent experiments. 60
- (D) Mitochondrial ROS levels were determined using flow cytometry with mitoSOX probe in single 61
- cells extracted from heart tissues of WT and $Gsdme^{-/-}$ mice after treatment of aPD-1 or normal IgG. 62
- n = 6 biologically independent experiments. 63
- (E) Quantitative analysis of mitochondrial complex I and IV activities in heart of WT and Gsdme-/-64
- mice received aPD-1 therapy or control IgG. n = 6 biologically independent experiments. n = 665 66 biologically independent experiments.
- (F) Mitochondrial contents of ATP, NAD⁺ and GSH in mitochondrial fractions extracted from heart 67

- tissues of WT and $Gsdme^{-/-}$ mice after treatment of aPD-1 or normal IgG. n = 6 biologically
- 69 independent experiments.
- 70 The data were presented as means ± SEM and analyzed by two-sided unpaired Student's t-tests.
- ⁷¹ **P*<0.05, ***P*<0.01. NS, no significance.

Gating strategy of flow cytometry. The gating strategy of flow cytometry in cells isolated from
 hearts of mice received aPD-1 therapy was presented.

82 Deletion of GSDME in mice weakens aPD-1 therapy-induced T-cells activation in spleen

(A) Morphology and spleen weight of WT and $Gsdme^{-/-}$ mice received aPD-1 therapy or normal IgG.

- (B) Representative immunohistochemistry staining and quantitative analysis of CD8⁺ T-cells in
 spleen of WT and *Gsdme^{-/-}* mice received aPD-1 therapy or control IgG.
- 86 (C) Representative immunohistochemistry staining and quantitative analysis of CD4⁺ T-cells in
- spleen of WT and $Gsdme^{-/-}$ mice received aPD-1 therapy or control IgG.
- (**D**) Proportions of Th1 (IFN- γ^+), Th2 (IL-4⁺) and Th17 (IL-17A⁺) cells within CD4⁺ cells in spleens of WT and *Gsdme*^{-/-} mice were determined using flow cytometry analysis.
- 90 The data were presented as means ± SEM and analyzed by two-sided unpaired Student's t-tests.
- *P<0.05, **P<0.01. NS, no significance. n = 6 biologically independent experiments.
- 92
- 93

97 Deletion of GSDME alleviates aPD-1 therapy-induced myocardial inflammation

- 98 (A) Representative flow cytometry plots of MPO and CXCR2 in heart of WT and *Gsdme^{-/-}* mice
 99 received aPD-1 therapy or normal IgG. MPO, myeloperoxidase; CXCR2, C-X-C motif chemokine
 100 receptor 2.
- 101 (B) Quantitative PCR analyses of mRNA levels of *Elane* and *Padi4* in heart of WT and *Gsdme*^{-/-}
- 102 mice received aPD-1 therapy or normal IgG. *Elane,* neutrophil elastase; *Padi4,* peptidyl arginine 103 deiminase, type IV.
- 104 (C) Quantitative PCR analyses of mRNA levels of *IL-1β*, *IL-6*, *IL-18* and *IL-2* in heart of WT and
- 105 $Gsdme^{-/-}$ mice received aPD-1 therapy or normal IgG. *IL-1* β , interleukin-1 β ; *IL-6*, interleukin-6; *IL*-
- 106 *18*, interleukin-18; *IL-2*, interleukin-2.
- 107 The data were presented as means ± SEM and analyzed by two-sided unpaired Student's t-tests.
- 108 *P<0.05, **P<0.01. n = 6 biologically independent experiments.
- 109

110

113 (A) The mRNA expression of $Tnf\alpha$, *II-1* β , *II-6*, *II-18* and *II-17* in PBMCs isolated from WT mice 114 receiving IgG or anti-PD1. n = 6 biologically independent experiments.

(B) The mRNA expression of $Tnf\alpha$, *II-1* β , *II-6*, *II-18* and *II-17* in PBMCs isolated from *Pdcd1*^{-/-} mice

116 receiving IgG or anti-Ctla4. n = 6 biologically independent experiments.

117 (C) Histological analysis showing the structure of diaphragm and skeletal muscle (quadriceps 118 femoris muscle) of WT mice receiving IgG or anti-PD1, as well as $Pdcd1^{-/-}$ mice receiving IgG or 119 anti-Ctla4. Blue arrows indicate mild immune cell infiltration. n = 6 biologically independent 120 experiments.

121 (**D**) Quantitative analysis by qPCR on the *II-6* and *II-1* β in diaphragm (*n* = 6 biologically independent 122 experiments.) and skeletal muscle (*n* = 4 biologically independent experiments.) of WT mice 123 receiving IgG or anti-PD1, as well as *Pdcd1*^{-/-} mice receiving IgG or anti-Ctla4.

- 124 (E) Histological analysis showing the structure of lung, liver and intestine of WT mice receiving IgG
- or anti-PD1, as well as $Pdcd1^{-/-}$ mice receiving IgG or anti-Ctla4. n = 6 biologically independent experiments.
- 127 The data were presented as means \pm SEM and analyzed by two-sided unpaired Student's t-tests. 128 **P*<0.05, ***P*<0.01. NS, no significance.

131

132

133 Characterization of pyroptosis-related molecules in CD45⁺ and CD45⁻ cells isolated from 134 hearts of WT and Gsdme^{-/-} mice received aPD-1 therapy.

135 (**A**) Determination of signature genes *Myh6* (encoding cardiac α-myosin heavy chain) and *Ptprc* 136 (encoding CD45) expression in CD45⁺ and CD45⁻ cells isolated from hearts of WT and *Gsdme*^{-/-}

137 mice received aPD-1 therapy. CD45⁺ and CD45⁻ cells were isolated using sorting flow cytometry.

(B) Comparison of pyroptosis-related molecules *II-18* and *II-1* β expression in isolated CD45⁻ and

139 CD45⁺ cells respectively between hearts of WT and *Gsdme*^{-/-} mice received aPD-1 therapy.

(C) Comparison of *II-18* and *Ccr2* mRNA expression in isolated CD45⁻ and CD45⁺ cells respectively
 between hearts of WT and *Gsdme^{-/-}* mice received aPD-1 therapy.

- 142 The data were presented as means ± SEM and analyzed by two-sided unpaired Student's t-tests.
- 143 **P<0.01. NS, no significance. n = 6 biologically independent experiments.

146

147 148

Public single-cell RNA sequencing (scRNA-seq) analysis of Gsdme transcription level in normal mouse heart and peripheral blood mononuclear cells (PBMCs) of patients with ICI-

151 *myocarditis.*

- (A) UMAP analysis of cells clusters in mouse heart from a public scRNA-seq dataset (GEO AccessNumbers: GSE162959).
- (B) Transcription levels of *Gsdme* and *Gsdmd* in different clusters of cardiac cells. The colors in the
- expression-level heatmaps (right panel) represent the median intensity values for *Gsdme* or *Gsdmd* gene.
- 157 (C) UMAP analysis of cells clusters in mouse heart from a public scRNA-seq dataset (GEO Access
- 158 Numbers: GSE232466).

- (D) Transcription levels of Gsdme and Gsdmd in different clusters of cardiac cells. The colors in the 159
- expression-level heatmaps (right panel) represent the median intensity values for Gsdme or Gsdmd 160
- gene. 161
- (E) UMAP analysis of cells clusters in PBMCs of patients with ICI-myocarditis from a public scRNA-162 seq dataset (GEO Access Numbers: GSE180045). 163
- (F) Transcription levels of Gsdme in different clusters of immune cells within PBMCs. The colors in 164
- the expression-level heatmaps (right panel) represent the median intensity values for Gsdme gene. 165
- (G) Violin plot showing the transcription levels of *Gsdme* in MOs/MPs, T cells and NK cells. 166

172 Generation of mouse stains with conditional rescue of GSDME in cardiomyocytes and 173 myeloid cells respectively

- (A) Schematic diagram showing the gene targeting strategy for generation a mouse strain carrying
 a transcriptional *Stop* element flanked by *loxP* recombination sites (*loxP-Stop-loxP*, LSL) upstream
 of the ATG start codon of *Gsdme* gene. The gRNA1 and gRNA2 to mouse *Gsdme* gene, the donor
 vector containing "part of 5'UTR-loxP-3*SV40-Poly A -loxP-part of E2" cassette, and *Cas9* mRNA
- 178 were co-injected into fertilized mouse eggs to generate targeted conditional knockin offspring
- 179 (*Gsdme*^{Stop/Stop}). The sequences of gRNA1 and gRNA2 were also shown. The *Stop* element before
- 180 ATG start codon was expected to terminate the transcription of *Gsdme* gene.
- (B) The PCR primers and array to identify the positive F1 *Gsdme*^{Stop/Stop} mice. Four positive F1
 Gsdme^{Stop/Stop} mice were identified.
- 183 (C) One of the positive F1 mice was sequenced to confirm the knockin targeting.
- 184 (**D**) Southern blot analysis further confirmed the successful knockin targeting.
- 185 (E) Genotyping of *Gsdme*^{Stop/Stop} mice.
- 186 (F) The Gsdme^{Stop/Stop} mouse strain was crossed with Myh6-Cre or Lysm-Cre mouse to produce
- 187 *Gsdme*^{Stop/Stop};*Myh6*-Cre mouse (cardiomyocyte rescue of GSDME, referred as *Gsdme*^{CR}) or
- 188 *Gsdme*^{Stop/Stop};*Lysm*-Cre mouse (myeloid cell rescue of GSDME, referred as *Gsdme*^{MR}). The Cre 189 expression in cardiomyocyte or myeloid cell can delete the *Stop* element in specific tissue to allow
- 190 GSDME re-expression.
- 191 (G) Quantitative PCR analysis showing *Gsdme* mRNA level in heart tissue and bone-marrow derived
- macrophages (BMDMs) from WT, $Gsdme^{-/-}$, $Gsdme^{Stop/Stop}$, $Gsdme^{CR}$ and $Gsdme^{MR}$ mice. n = 10
- biologically independent experiments. The data were presented as means \pm SEM and analyzed by two-sided unpaired Student's t-tests. ***P*<0.01. NS, no significance.
- (H) Immunoblotting analysis of GSDME protein level in heart tissue and bone marrow from WT,
- 196 Gsdme^{-/-}, Gsdme^{Stop/Stop}, Gsdme^{CR} and Gsdme^{MR} mice. GSDME protein was rescued in heart of
- 197 *Gsdme*^{CR} mice and bone marrow of *Gsdme*^{MR} mice. n = 6 biologically independent experiments.

199

200

201 **Comparison of cardiac function of WT, Gsdme**^{Stop/Stop}, **Gsdme**^{CR} and **Gsdme**^{MR} mice under 202 **normal condition**

203 (A) Morphology of hearts of WT, *Gsdme*^{Stop/Stop}, *Gsdme*^{CR} and *Gsdme*^{MR} mice received control IgG.

- n = 6 biologically independent experiments.
- 205 (B) Representative echocardiograms in WT, *Gsdme*^{Stop/Stop}, *Gsdme*^{CR} and *Gsdme*^{MR} mice received
- 206 control IgG. n = 6 biologically independent experiments.
- 207 (C) HE staining of hearts of WT, *Gsdme*^{Stop/Stop}, *Gsdme*^{CR} and *Gsdme*^{MR} mice received control IgG.
- n = 6 biologically independent experiments.
- 209 The data were presented as means ± SEM and analyzed by two-sided unpaired Student's t-tests.
- NS, no significance.
- 211

- 214
- 215
- **Rescue of GSDME in cardiomyocyte alleviates aPD-1 therapy-associated inflammation.**
- 217 **(A)** Comparison of mRNA levels of *lfn-\gamma, Tnf-\alpha, ll-17a, ll-22, ll-10* and *ll-4* in heart of WT, 218 *Gsdme*^{Stop/Stop}, *Gsdme*^{CR} and *Gsdme*^{MR} mice received aPD-1 therapy. *n* = 6 biologically independent 219 experiments.
- 220 (**B**) Representative flow cytometry plots and quantitative analysis of CD11b⁺CD68⁺ 221 monocytes/macrophages (MOs/MPs) in heart of WT, $Gsdme^{Stop/Stop}$, $Gsdme^{CR}$ and $Gsdme^{MR}$ mice 222 received aPD-1 therapy. n = 6 biologically independent experiments.
- 223 (C) ELISA analyses showing the protein levels of pro-inflammatory factors including IL-1 β , IL-18 and
- IL-6 in heart of WT, $Gsdme^{Stop/Stop}$, $Gsdme^{CR}$ and $Gsdme^{MR}$ mice received aPD-1 therapy. n = 6

- biologically independent experiments.
- (D) Quantitative PCR analysis showing the mRNA levels of Ccr5 and Ccl5 in heart of WT,
- 227 $Gsdme^{Stop/Stop}$, $Gsdme^{CR}$ and $Gsdme^{MR}$ mice received aPD-1 therapy. n = 6 biologically independent
- 228 experiments.
- The data were presented as means ± SEM and analyzed by two-sided unpaired Student's t-tests.
- 230 **P*<0.05, ***P*<0.01. NS, no significance.

233

Tandem Mass Tagging (TMT)-based multiplexed quantitative proteomics showing the

changed protein signatures in immune cells and fibroblasts between WT and Gsdme^{-/-} mice

- 236 upon aPD-1 therapy
- (A) Macrophage-related protein signature between heart of WT and *Gsdme^{-/-}* mice upon aPD-1
 therapy.
- (B) Monocyte-related protein signature between heart of WT and *Gsdme^{-/-}* mice upon aPD-1
 therapy.
- (C) Lymphocyte-related protein signature between heart of WT and *Gsdme^{-/-}* mice upon aPD-1
 therapy.
- (D) Neutrophil-related protein signature between heart of WT and *Gsdme^{-/-}* mice upon aPD-1
 therapy.
- (E) Dendritic cell-related protein signature between heart of WT and *Gsdme^{-/-}* mice upon aPD-1
 therapy.
- 247 (F) NK cell-related protein signature between heart of WT and *Gsdme*^{-/-} mice upon aPD-1 therapy.
- (G) Fibroblast-related protein signature between heart of WT and *Gsdme^{-/-}* mice upon aPD-1
 therapy.
- 250

255 Effects of dimethyl fumarate (DMF) on tumor growth in the presence or absence of aPD-1

therapy. The Tumor size in tumor-bearing mice received overdose aPD-1 therapy or normal IgG or
 DMF or aPD-1+DMF. *n* = 6 biologically independent experiments.

Supplemental Table 1

Case	Gender	Tumor	Age	cTnT	cTnT	cTnl	cTnl	Major	Minor Criterion		IC-OS		
No.		type		baseline	elevation	baseline	elevation	Criterion					2021
				(pg/ml)	(>200	(pg/ml)	(>200	Diagnostic	Suggestive	Clinical	Decline	Ventricular	criteria
					pg/ml)		pg/ml)	CMR	CMR	syndrome	in	arrhythmia	
											cardiac		
											function		
1	М	NSCLC	64	<10	+	<10	+	+	/	+	+	+	Y
2	F	NSCLC	68	<10	+	<10	+	+	/	+	+	+	Y
3	М	Gastric	56	<10	+	<10	+	_	-	+	+	_	Y
		cancer											
4	М	Gastric	59	<10	+	<10	+	-	+	+	-	+	Y
		cancer											
5	F	Melanoma	47	<10	+	<10	+	_	_	+	+	_	Y
6	М	Esophageal	56	<10	+	<10	+	-	-	+	-	+	Y
		cancer											

Characteristics of 6 tumor patients with myocarditis after first-course therapy of aPD-1

IC-OS 2021 criteria: troponin elevation + 1 major criterion or troponin elevation + with 2 minor criteria after exclusion of acute coronary syndrome or acute infectious myocarditis based on clinical suspicion. NSCLC, non-small cell lung cancer.

Supplemental Table 2.

Differentially expressed proteins between WT mice (n = 4) and $Gsdme^{-/-}$ mice

upon aPD-1 therapy in isobaric Tandem Mass Tag multiplexed quantitative proteomics

Protei	Dratal		Cov			Uniq	NA/T			NA/T					Gsdme-/-	
n	Protei	MW	era	Pepti	DOM	ue		wт	wт		Gsdme ^{-/-}	Gsdme ^{-/-}	Gsdme ^{-/-}	Gsdme ^{-/-}	+aPD-1 to	Durahus
acces	n	[kDa]	ge	des	PSMS	pepti	+aPD-	+aPD-1	+aPD-1	+aPD	+aPD-1	+aPD-1	+aPD-1	+aPD-1	WT+aPD-1	P value
sion	name		[%]			des	1			-1					ratio	
Q61941	Nnt	113.84	34.8	37	117	37	1.677	1.645	1.637	1.617	0.253	0.272	0.221	0.247	0.151	1.726E-10
Q80TD3	Fnip2	122.52	0.7	1	1	1	2.247	2.299	0.880	1.043	0.286	0.288	0.369	0.370	0.203	1.479E-02
Q64282	lfit1	53.74	19.7	7	10	7	1.554	1.701	1.368	1.451	0.488	0.529	0.401	0.371	0.295	1.126E-05
Q60766	lrgm1	46.55	21.0	9	13	9	1.649	1.681	1.166	1.085	0.625	0.589	0.536	0.614	0.424	2.243E-03
Q9QZ85	ligp1	47.57	34.4	11	13	11	1.724	1.776	0.965	0.984	0.567	0.623	0.619	0.638	0.449	1.561E-02
Q64112	lfit2	55.02	3.0	1	1	1	1.460	1.405	1.393	1.201	0.627	0.574	0.636	0.663	0.458	1.653E-05
Q9R233	Tapbp	49.74	7.1	3	3	3	1.566	1.590	1.150	1.131	0.572	0.568	0.692	0.663	0.459	1.327E-03
Q61646	Нр	38.75	34.6	12	16	12	1.618	1.721	0.951	1.047	0.630	0.596	0.701	0.666	0.486	1.310E-02
P42225	Stat1	87.20	20.7	13	20	13	1.517	1.410	1.105	1.158	0.627	0.671	0.670	0.696	0.513	7.332E-04
Q8BGV8	Mief1	51.18	5.8	2	2	2	1.296	1.321	1.369	1.243	0.621	0.617	0.781	0.751	0.530	1.820E-05
Q64345	lfit3	47.22	7.2	3	3	3	1.282	1.351	1.236	1.154	0.722	0.720	0.707	0.792	0.586	2.705E-05
P01887	B2m	13.78	8.4	1	3	1	1.368	1.371	1.082	1.098	0.717	0.751	0.815	0.755	0.618	1.323E-03
Q9ER80	Rtp4	28.39	3.6	1	1	1	1.263	1.581	0.921	1.030	0.871	0.616	0.791	0.861	0.655	3.912E-02
Q07797	Lgals3bp	64.49	9.9	4	5	4	1.261	1.216	1.079	1.211	0.757	0.817	0.741	0.830	0.660	1.037E-04
P01901	H2-K1	41.30	26.0	8	11	5	1.382	1.367	0.987	1.038	0.744	0.770	0.852	0.824	0.668	1.046E-02
P97371	Psme1	28.67	57.4	13	25	13	1.338	1.250	1.043	1.121	0.807	0.797	0.804	0.804	0.676	1.098E-03
Q03734	Serpina3	47.06	16.0	6	14	2	1.220	1.185	1.163	1.214	0.726	0.683	0.903	0.929	0.678	8.960E-04
O35955	Psmb10	29.06	10.6	3	3	3	1.275	1.496	0.968	1.032	0.794	0.731	0.850	0.883	0.683	2.344E-02

P01899	H2-D1	40.84	20.4	7	12	3	1.220	1.195	1.153	1.156	0.805	0.783	0.832	0.843	0.691	2.353E-06
Q9QZU9	Ube2l6	17.84	9.8	1	1	1	1.215	1.209	1.047	1.172	0.864	0.997	0.746	0.663	0.704	5.945E-03
P36371	Tap2	77.44	8.0	5	5	5	1.323	1.267	1.081	1.072	0.733	0.782	0.858	0.972	0.705	5.490E-03
Q8CAS9	Parp9	96.66	2.4	2	3	2	1.187	1.248	0.965	1.238	0.821	0.803	0.757	0.939	0.716	5.116E-03
Q99L88	Sntb1	58.08	4.1	2	2	2	0.998	1.122	1.264	1.238	0.827	0.839	0.845	0.869	0.731	2.344E-03
Q01149	Col1a2	129.56	10.1	12	15	12	1.189	1.129	1.132	1.155	0.835	0.757	0.914	0.903	0.740	2.502E-04
P21958	Tap1	78.86	1.9	2	2	2	1.380	1.273	0.914	0.992	0.831	0.833	0.937	0.806	0.747	4.611E-02
Q8BZ20	Parp12	79.92	2.0	1	1	1	1.139	1.150	1.255	1.022	0.853	0.926	0.671	0.971	0.749	1.260E-02
Q80SU7	Gvin1	280.81	5.9	14	14	14	1.168	1.235	1.137	1.117	0.768	0.813	0.964	0.947	0.750	1.848E-03
P28063	Psmb8	30.26	8.0	2	2	2	1.244	1.277	0.958	1.062	0.842	0.820	0.876	0.893	0.756	1.159E-02
Q8VCK3	Tubg2	51.12	4.4	2	2	2	1.018	1.128	1.177	1.199	0.934	0.951	0.765	0.784	0.759	5.105E-03
P97372	Psme2	27.06	28.9	6	9	6	1.168	1.201	1.047	1.090	0.824	0.824	0.886	0.933	0.769	1.063E-03
Q60710	Samhd1	75.89	13.8	8	11	8	1.189	1.167	1.070	1.094	0.843	0.848	0.887	0.908	0.771	2.105E-04
P63078	Gng8	7.84	17.1	1	1	1	1.144	1.202	1.081	1.098	0.867	0.698	0.970	0.963	0.773	9.775E-03
Q9CYZ8	Ssbp2	37.85	3.6	1	1	1	1.135	0.997	1.076	1.273	0.858	0.946	0.799	0.897	0.781	9.907E-03
Q60590	Orm1	23.90	7.7	2	2	2	1.257	1.211	0.947	1.075	0.791	0.774	0.992	0.965	0.784	3.657E-02
Q9ER38	Tor3a	43.81	3.1	1	1	1	1.075	1.110	1.196	1.110	0.877	0.828	0.981	0.840	0.785	1.414E-03
Q9Z0E6	Gbp2	66.74	15.4	7	8	7	1.210	1.161	1.012	1.048	0.821	0.818	0.855	1.000	0.789	1.014E-02
O70228	Atp9a	118.61	1.1	1	1	1	1.084	1.121	1.123	1.150	0.864	0.827	0.983	0.858	0.789	6.791E-04
Q99388	Csprs	24.06	4.8	1	1	1	1.109	1.073	1.150	1.138	0.921	0.843	0.781	0.986	0.790	2.721E-03
Q61555	Fbn2	313.82	1.3	4	5	1	1.236	1.061	1.113	1.094	0.769	0.731	1.108	0.952	0.790	4.791E-02
Q3UYH7	Adrbk2	79.66	1.7	1	1	1	1.047	1.167	1.173	1.067	0.890	0.903	0.894	0.849	0.794	6.033E-04
P17918	Pcna	28.79	17.2	3	3	3	1.026	1.306	1.011	1.082	0.878	0.894	0.823	0.942	0.799	2.227E-02
Q8BVK9	Sp110	50.14	2.0	1	1	1	1.226	0.874	1.254	1.102	0.918	0.875	0.909	0.876	0.803	4.557E-02
Q3U5Q7	Cmpk2	50.04	27.1	9	14	9	1.072	1.123	1.092	1.061	0.876	0.879	0.839	0.904	0.805	3.137E-05

P83882	Rpl36a	12.44	17.0	2	2	2	1.050	1.134	1.210	1.031	0.824	1.034	0.737	0.966	0.805	3.379E-02
Q61581	lgfbp7	28.97	8.5	2	2	2	1.175	0.936	1.144	1.158	0.996	0.975	0.838	0.751	0.807	3.851E-02
Q61704	ltih3	99.36	2.1	2	2	2	1.255	1.078	1.049	1.045	0.900	0.864	0.894	0.914	0.807	5.773E-03
Q9CPQ8	Atp5mg	11.42	19.4	2	10	2	1.061	1.007	1.211	1.212	0.891	0.883	0.929	0.929	0.809	7.200E-03
Q61233	Lcp1	70.15	27.3	14	18	12	1.130	1.159	1.054	1.056	0.906	0.879	0.886	0.894	0.810	2.543E-04
Q8K3K8	Optn	67.02	3.4	2	6	2	1.128	1.030	1.194	1.079	0.901	0.850	0.915	0.928	0.811	1.712E-03
Q9CY57	Chtop	26.59	5.2	1	2	1	1.044	1.113	1.186	1.080	0.840	0.894	0.918	0.943	0.813	1.464E-03
Q62351	Tfrc	85.73	15.9	12	18	12	1.127	1.085	1.117	1.090	0.910	0.903	0.875	0.913	0.815	5.003E-06
P11087	Col1a1	138.03	9.2	12	18	12	1.133	1.162	1.062	1.034	0.798	0.768	1.030	0.984	0.815	3.069E-02
Q8CD91	Smoc2	49.89	2.5	1	1	1	1.064	0.973	1.218	1.163	0.867	0.908	0.858	0.974	0.816	1.517E-02
Q9QZZ6	Dpt	24.00	23.9	5	6	5	1.139	1.111	1.087	1.061	0.853	0.887	0.914	0.958	0.821	3.969E-04
P32921	Wars	54.36	21.4	8	13	8	1.123	1.137	1.066	1.097	0.851	0.834	1.009	0.945	0.823	4.300E-03
Q9EQH2	Erap1	106.60	13.8	13	17	13	1.081	1.105	1.049	1.091	0.917	0.918	0.850	0.884	0.825	8.060E-05
O88307	Sorl1	247.08	1.0	2	2	2	1.113	1.122	1.190	0.951	0.893	0.970	0.898	0.861	0.828	1.473E-02
P55821	Stmn2	20.83	10.6	2	2	1	1.089	1.181	1.064	1.027	1.029	0.829	0.864	0.894	0.829	1.438E-02
Q9D6N5	Drap1	22.28	3.9	1	1	1	1.011	0.875	0.834	0.902	1.100	1.160	1.057	1.077	1.213	4.599E-03
Q02013	Aqp1	28.79	14.5	3	7	3	0.915	0.882	0.911	0.902	1.120	1.126	1.089	1.047	1.214	6.185E-05
Q8CBE3	Wdr37	55.05	10.9	5	6	5	1.030	0.913	0.787	0.868	1.123	0.990	1.199	1.058	1.215	2.898E-02
B1AUE5	Pex10	37.16	6.8	2	2	2	0.882	0.853	0.934	0.965	1.178	0.986	1.108	1.146	1.216	7.114E-03
O88456	Capns1	28.46	8.9	3	3	3	0.882	0.956	0.914	0.872	1.068	1.104	1.178	1.067	1.219	8.411E-04
Q99M07	Coa5	8.36	20.3	1	1	1	0.984	0.727	0.888	1.010	1.205	1.157	0.997	1.044	1.220	4.817E-02
Q8C0Z1	Fam234a	60.58	3.4	2	2	2	0.907	0.904	0.890	0.914	1.228	1.011	1.126	1.049	1.221	6.030E-03
P50543	S100a11	11.08	20.4	2	3	2	0.923	0.942	0.843	0.888	1.177	1.187	0.984	1.043	1.221	1.089E-02
P09528	Fth1	21.07	45.6	6	18	6	0.977	0.858	0.873	0.902	1.079	1.024	1.149	1.165	1.224	2.991E-03
Q9CQF4	Mtres1	27.85	12.1	3	5	3	0.873	0.926	0.915	0.923	1.025	1.172	1.100	1.165	1.227	1.298E-03

P15864	H1-2	21.27	33.0	8	14	2	0.852	0.811	0.972	0.956	1.205	1.206	0.973	1.028	1.229	2.903E-02
Q9EPX2	Papin	138.90	6.8	8	8	8	0.904	0.925	0.912	0.834	1.230	1.152	1.060	0.963	1.232	1.467E-02
Q91WJ7	Spats2l	61.67	1.8	1	1	1	0.910	0.901	0.928	0.855	1.078	1.149	1.132	1.086	1.237	9.641E-05
Q80ZM8	Crls1	32.50	6.6	1	1	1	0.843	0.950	0.942	0.878	0.930	1.063	1.307	1.180	1.240	4.278E-02
P02798	Mt2	6.12	32.8	2	3	1	0.808	0.865	1.007	0.922	1.039	1.051	1.170	1.222	1.244	1.194E-02
O08759	Ube3a	99.82	11.4	9	11	9	0.859	0.865	0.873	0.982	1.198	1.093	0.980	1.183	1.244	9.320E-03
Q9D0R4	Ddx56	61.21	3.5	2	2	2	0.903	0.886	0.859	0.920	1.063	1.172	1.009	1.219	1.251	4.226E-03
D3Z1D3	CEFIP	154.48	1.7	3	3	3	0.850	0.997	0.968	0.748	1.104	1.188	1.066	1.105	1.253	1.156E-02
P53351	Plk2	77.81	1.6	1	1	1	0.878	0.960	0.926	0.804	1.111	1.069	1.180	1.124	1.257	1.372E-03
Q9Z319	Corin	123.00	1.3	2	2	2	0.822	0.810	1.047	0.875	1.064	1.239	1.131	1.063	1.265	1.387E-02
Q8K212	Pacs1	104.83	8.7	6	8	6	0.845	0.838	0.888	0.917	1.253	1.007	1.066	1.099	1.269	5.649E-03
Q923Z3	Mto1	74.33	7.3	4	4	4	0.849	0.926	0.785	0.968	1.201	1.090	1.296	0.898	1.271	4.485E-02
P50172	Hsd11b1	32.36	8.2	3	3	3	0.912	0.986	0.838	0.799	0.976	1.172	1.216	1.153	1.278	1.055E-02
Q923D3	Parm1	30.67	3.0	1	1	1	0.958	0.899	0.831	0.815	1.228	1.205	1.143	0.915	1.282	2.015E-02
Q8BI72	Cdkn2aip	59.74	4.1	2	2	2	1.131	0.814	0.847	0.743	1.110	1.026	1.172	1.238	1.286	3.956E-02
Q9QZ49	Ubxn8	31.56	2.9	1	2	1	0.978	0.988	0.793	0.723	1.160	1.325	1.022	0.981	1.289	4.927E-02
Q61235	Sntb2	56.38	5.8	3	3	3	0.774	0.877	0.985	0.886	1.110	1.095	1.157	1.184	1.291	1.733E-03
Q8CBC4	Cnst	76.87	3.0	2	2	2	0.907	0.847	0.927	0.809	1.178	1.175	1.096	1.095	1.302	3.238E-04
Q61585	G0s2	11.12	7.8	1	2	1	0.867	0.891	0.820	0.916	1.079	1.144	1.148	1.180	1.303	1.068E-04
Q3V3A7	Rnf207	70.76	4.9	3	3	3	0.826	0.927	0.945	0.792	1.057	1.208	1.205	1.089	1.306	2.620E-03
Q8JZL7	Rasgef1b	55.27	2.1	1	1	1	0.910	0.974	0.833	0.773	1.122	1.014	1.366	1.077	1.312	2.192E-02
P58308	Hcrtr2	52.46	3.5	1	2	1	0.956	0.860	0.784	0.840	1.275	1.273	0.999	0.984	1.317	2.221E-02
Q9D938	Tmem160	19.59	6.9	1	1	1	0.955	0.923	0.747	0.847	1.121	1.062	1.269	1.126	1.319	4.916E-03
Q91ZP3	Lpin1	102.00	6.8	4	4	4	0.737	0.982	0.878	0.864	1.083	1.054	1.347	1.101	1.325	1.567E-02
Q8VE37	Rcc1	44.93	4.5	2	2	2	0.755	0.935	0.872	0.901	1.127	0.921	1.189	1.398	1.338	3.232E-02

Q9DBG7	Srpra	69.62	7.2	4	4	4	0.828	0.958	0.754	0.896	0.923	1.042	1.377	1.328	1.359	4.041E-02
Q3THF9	Coq10b	27.27	4.2	1	1	1	0.852	0.826	1.019	0.715	1.154	1.221	1.273	1.000	1.362	1.165E-02
Q91VS7	Mgst1	17.55	8.4	1	3	1	0.870	0.979	0.776	0.779	1.130	1.094	1.194	1.229	1.365	1.557E-03
P61014	Pin	6.09	23.1	2	6	2	0.920	0.944	0.775	0.742	1.106	1.064	1.233	1.229	1.370	3.327E-03
A6BLY7	Krt28	50.35	5.2	3	3	1	0.914	0.843	0.789	0.794	0.986	0.891	1.331	1.370	1.371	4.704E-02
Q91WD2	Trpv6	87.39	1.6	1	1	1	0.824	0.813	0.873	0.911	0.990	1.073	1.321	1.310	1.372	1.048E-02
Q3U276	Sdhaf1	13.14	6.8	1	1	1	0.960	0.877	0.763	0.793	1.212	1.068	1.077	1.299	1.372	4.421E-03
Q9CQ86	Mien1	12.30	7.8	1	1	1	0.897	0.851	0.812	0.819	1.220	1.183	1.209	1.036	1.376	5.096E-04
Q91V09	Wdr13	53.66	4.7	2	2	2	0.931	0.897	0.725	0.819	1.205	1.177	1.120	1.143	1.378	6.664E-04
Q8R4S0	Ppp1r14c	17.75	22.6	2	3	2	0.869	0.786	0.829	0.894	1.117	1.492	1.141	0.904	1.378	4.224E-02
P35505	Fah	46.18	16.0	6	8	6	0.885	0.898	0.783	0.841	1.120	1.128	1.232	1.216	1.378	1.698E-04
Q9Z2A9	Ggt5	61.67	5.4	4	5	4	0.802	0.771	0.864	0.936	1.381	1.050	1.078	1.150	1.381	8.449E-03
Q8VC19	Alas1	71.02	6.4	4	4	4	0.791	0.949	0.760	0.848	1.144	1.331	1.091	1.077	1.387	4.063E-03
P35969	Fit1	149.87	0.8	1	1	1	0.955	0.958	0.754	0.687	1.149	1.248	1.222	1.047	1.391	7.437E-03
Q9JIF9	Myot	55.32	31.7	14	19	14	0.809	0.843	0.862	0.829	1.226	1.237	1.103	1.096	1.395	1.675E-04
Q6P5D8	Smchd1	225.65	1.5	3	3	3	0.804	0.989	0.783	0.761	1.316	1.136	1.086	1.128	1.398	3.908E-03
P59672	Anks1a	125.24	3.7	3	4	3	0.685	0.776	0.875	1.001	1.316	1.168	1.120	1.081	1.404	7.445E-03
Q9QYI5	Dnajb2	35.59	15.7	5	7	4	0.900	0.765	0.722	0.944	1.372	0.957	1.254	1.137	1.417	1.511E-02
Q3UV17	Krt76	62.84	4.2	3	2	1	0.750	0.662	0.813	0.807	1.099	1.106	1.478	1.447	1.692	3.080E-03

Supplemental Table 3. Key Reagents

REAGENT	SOURCE	IDENTIFIER				
	Antibodie	es				
Anti-mouse PD-1	BioXcell	Cat#BE0273, RRID:AB_2687796				
Anti-mouse Ctla4	BioXcell	Cat #BE0164, RRID:AB_10949609				
Anti-normal IgG	BioXcell	Cat#BE0083, RRID:AB_110778				
Anti-GSDME	Abcam	Cat#ab215191, RRID:AB_2737000				
Anti-GSDME-N terminal	Abcam	Cat#ab222407, RRID:AB_2923216				
Anti-GSDMD	Abcam	Cat#ab209845, RRID:AB_2783550				
Anti-Caspase-1	Abcam	Cat#ab179515, RRID:AB_2884954				
Anti-Caspase-3	Santa Cruz Biotechnolog	Cat#sc-373730, RRID:AB_10918110				
Anti-Caspase-8	Cell signaling technology	Cat#4927, RRID: AB_2068301				
Anti-Caspase-9	Abcam	Cat#ab202068, RRID: AB_2889070				
Anti-Caspase-11	Abcam	Cat#ab180673, RRID:AB_2923217				
Anti-Nos2	Cell signaling technology	Cat #13120, RRID:AB_2687529				
Anti-IL-1β	Santa Cruz Biotechnology	Cat#sc-52012, RRID:AB_629741				
Anti-cGAS	Cell signaling technology	Cat#31659, RRID:AB_2799008				
Anti-STING	Cell signaling technology	Cat#13647, RRID:AB_2732796				
Anti-IRF3	Cell signaling technology	Cat#4302, RRID:AB_1904036				
Anti-p-IRF3	Cell signaling technology	Cat#29047, RRID:AB_2773013				
Anti-TBK1	Cell signaling technology	Cat#38066, RRID:AB_2827657				
Anti-p-TBK1	Cell signaling technology	Cat#5483, RRID:AB_10693472				
Anti-β-Tubulin	Cell signaling technology	Cat#2128, RRID:AB_823664				
Anti-CD3	Abcam	Cat#ab16669, RRID:AB_443425				
Anti-CD4	Abcam	Cat#ab183685, RRID:AB_2686917				
Anti-CD8	Abcam	Cat#ab217344, RRID:AB_2890649				
Anti-CD68	Cell signaling technology	Cat#97778, RRID:AB_2928056				
Anti-IFN-γ	Thermo Fisher Scientific	Cat#14-7311-81, RRID:AB_468467				
Anti-Myh6	Thermo Fisher Scientific	Cat# MA5-27819, RRID:AB_2735280				
Anti-IFN-γ-FITC	BioLegend	Cat#505806, RRID:AB_315400				

Anti-STING	Novus	Cat#NBP2-24683, RRID: AB_2868483
	Thermo Fisher	Cat#11 1200 12 DDID: AD 10506901
Anti-MPO-FITC	Scientific	Cal#11-1299-42, RRID:AB_10596801
Anti-CXCR2-APC	BioLegend	Cat#149312, RRID:AB_2728185
Anti-CD68-APC	BioLegend	Cat#137008, RRID:AB_10575300
Anti-CD45-	Piel egend	Cot#102122 PPID:AP 902240
PerCP/Cyanine5.5	ыосеуени	Cal#103152, RRID.AB_093540
Anti-CD3-FITC	BioLegend	Cat#100204, RRID:AB_312661
Anti-CD4-AF700	BioLegend	Cat#116022, RRID:AB_2715958
Anti-IFN-γ-BV650	BioLegend	Cat#505832, RRID:AB_2734492
Anti-IL-4-BV421	BioLegend	Cat#504119, RRID:AB_10896945
Anti-IL-17A-BV605	BD Biosciences	Cat#564169, RRID:AB_2738640
Anti-CD11b-APC/Fire750	BioLegend	Cat#101261, RRID:AB_2572121
Anti-CD8a-APC/Cyanine7	BioLegend	Cat#100714, RRID:AB_312753
Anti-CD62L-PE/Cyanine7	BioLegend	Cat#104418, RRID:AB_313103
Anti-CD44-PE/Dazzle™	Diel e wend	
594	BioLegend	Cat#103056, RRID:AB_2564044
Anti-TCR γ/δ- PE	BioLegend	Cat#118108, RRID:AB_313832
Anti-CD45-BV605	BioLegend	Cat#103139, RRID:AB 2562341
Anti-CD3-APC	BioLegend	
Anti-CD11B-BB515	BD Biosciences	Cat#564454, RRID:AB 2665392
Anti-LY6G-BV421	BD Biosciences	Cat#562737, RRID:AB 2737756
Anti-F4/80-APC-R700	BD Biosciences	Cat#565787, RRID:AB 2869711
Anti-CCR2-BV650	BioLegend	Cat#150613, RRID:AB 2721553
Anti-MHC-II-APC/Fire750	BioLegend	
Anti-Ly6C-PE	BioLegend	 Cat#128007, RRID:AB_1186133
Anti-CD64- PE/Cyanine7	BioLegend	Cat#139314, RRID: AB 2563904
IRDye 800CW Goat		
anti-Mouse IgG antibody	LI-COR	Cat#926-32210, RRID:AB_621842
IRDye 800CW Goat anti-	11.000	
Rabbit IgG antibody	LI-COR	Cat#925-32211, RRID:AB_2651127
Alexa Fluor 488-		
conjugated goat anti-rabbit	I nermo Fisher	Cat#A-11034, RRID:AB_2576217
lgG	Scientific	
Alexa Fluor 568-	Thomas Fisher	
conjugated goat anti-	I nermo Fisher	Cat#A-21134, RRID:AB_2535773
mouse IgG	Scientific	
	Biological Sa	nples
	Shanghai	
Serum samples cancer	Changzheng	Approval number: 2017SL016
patients treated with ICI	Hospital	
Serum samples cancer	Shanghai Tenth	
patients treated with ICI	People's Hospital	Approval number: 2019-K-032
	· ·	
Chemica	als, Peptides, and Re	combinant Proteins

	Thermo Fisher				
I RIZOI	Scientific	15596026			
	Thermo Fisher	N/14004			
WGA	Scientific	VV11261			
DADI	Thermo Fisher	D1206			
DAFI	Scientific	D 1300			
PI	Sigma	25535-16-4			
MitoSOX	Thermo Fisher	M36008			
MILOSOX	Scientific	M30008			
Normal Coat Serum	Thermo Fisher	31872			
Normal Goat Serum	Scientific	51072			
Sirius Red	Sigma-Aldrich	365548			
Prestained Protein Marker	GeneTex	GTX50875			
Collagenase II	Worthington	LS004176			
RBC lysis buffer	eBiosciences	00-4333-57			
DNase I	Sigma	10104159001			
DMF	Sigma	242926			
Protease and	Sigmo	PBC1010			
phosphatase inhibitors	Sigilia	FFC1010			
DL1000 DNA ladder	Takara Bio	3591A			
DL2000 DNA ladder	Takara Bio	3427A			
PrimeScript™ RT Master	Takara Bio	BB036A			
Mix					
TB Green® Premix Ex	Takara Bio	BB820Q			
Taq™ II					
TransScript ® First-Strand	TransGen Biotech	AT301-02			
cDNA Synthesis SuperMix					
	Critical Commerci	al Assays			
Human/Mouse	Adipogen Life	AG-45B-0024-KI01			
GSDME ELISA Kit	Sciences				
Mouse IL-1β ELISA kit	R&D systems	MLB00C			
Mouse IL-18 ELISA Kit	R&D systems	7625			
Mouse IL-6 ELISA Kit	R&D systems	M6000B			
Mouse cTnT ELISA Kit	Sangon Biotech	D721161-0096			
Mouse cTnI ELISA Kit	Sangon Biotech	D721149-0096			
Mouse CK-MB ELISA Kit	Sangon Biotech	D721065-0096			

Mouse IL-6 ELISA Kit	R&D systems	M6000B
Mouse cTnT ELISA Kit	Sangon Biotech	D721161-0096
Mouse cTnI ELISA Kit	Sangon Biotech	D721149-0096
Mouse CK-MB ELISA Kit	Sangon Biotech	D721065-0096
Mouse Caspase1 ELISA	Beyotime	C1102
Kit	Biotechnology	01102
Mouse Caspase3 ELISA	Beyotime	C1116
Kit	Biotechnology	CIIIO
Mouse Caspase8 ELISA	Beyotime	C1152
Kit	Biotechnology	01132
Mouse Caspase9 ELISA	Beyotime	C1158
Kit	Biotechnology	01158
Mitochondria isolation Kit	Sigma-Aldrich	MITOISO1

In situ Cell Death	Merck	11684795910
Mitochondrial complex I	Abcam	ab287847
ELISA kit	Abcalli	ab207047
NAD ⁺ Assay Kit	Abcam	ab65348
Mitochondrial complex IV ELISA kit	Solarbio	BC0945
ATP assay kit	Solarbio	BC0300
GSH assay kit	Solarbio	BC1175
BCA protein assay kit	Beyotime Biotechnology	P0011
Tandem Mass Tag Multiplexed Labelling System	Thermo Fisher Scientific	N/A
Quant-iT PicoGreen dsDNA Kits	Thermo Fisher Scientific	P11495
	Deposited D	Data
Tandem Mass Tag Multiplexed quantitative proteomics	iProx database	IPX0004084000
Expe	erimental Models: Or	ganisms/Strains
Mouse: <i>Lysm</i> -Cre: B6.129P2- <i>Lyz2^{tm1(cre)lfo/}</i> J	The Jackson Laboratory	JAX stock 004781
Mouse: <i>Myh6-Cre</i> : B6.FVB- Tg ^{Myh6-(cre)2182Mds/} J	The Jackson Laboratory	JAX stock 011038
Mouse: S <i>ting^{gt/gt}:</i> C57BL/6J- <i>Sting1^{gt/}</i> J	The Jackson Laboratory	JAX stock 017537
Mouse: <i>Gsdme</i> ^{stop/stop}	This study	N/A
Mouse: <i>Gsdme</i> -/-	This study	N/A
	Experimental Models	s: Cell Lines

Cell: MC38 mouse colon adenocarcinoma cells	Kerafast	N/A		
Oligonucleotides				
Primers for mouse Caspase-1 Forward	This study	AGGCACGGGACCTATGTGAT		
Primers for mouse Caspase-1 Reverse	This study	AGGGCAAAACTTGAGGGTCC		
Primers for mouse Caspase-3 Forward	This study	GAGCTTGGAACGGTACGCTA		
Primers for mouse Caspase-3 Reverse	This study	CCGTACCAGAGCGAGATGAC		
Primers for mouse Caspase-8 Forward	This study	TTCGGAGGCATTTCTGTCCC		
Primers for mouse Caspase-8 Reverse	This study	CGGCTCACAGAGGTTTGCTA		
Primers for mouse Caspase-9 Forward	This study	ACCTTCCCAGGTTGCCAATG		
Primers for mouse Caspase-9 Reverse	This study	GCTGCTAGGAGCATGTTTGC		
Primers for mouse Caspase-11 Forward	This study	GGCTACGATGTGGTGGTGAA		
Primers for mouse <i>Caspase-11</i> Reverse	This study	AGGCCTGCACAATGATGACT		
Primers for mouse <i>Gsdma</i> Forward	This study	GCACCCACTAAGCCCATCTC		
Primers for mouse <i>Gsdma</i> Reverse	This study	CACACATGGGAAGGATCAGACT		
Primers for mouse <i>Gsdmc</i> Forward	This study	TCGGACCTGCTAAAAGGAAGG		
Primers for mouse <i>Gsdmc</i> Reverse	This study	AGCCAACCGGGAAGAAGTTT		
Primers for mouse <i>Gsdmd</i> Forward	This study	GATCAAGGAGGTAAGCGGCA		
Primers for mouse <i>Gsdmd</i> Reverse	This study	CACTCCGGTTCTGGTTCTGG		
Primers for mouse <i>Gsdme</i> Forward	This study	GGTGGGATACAGGATACAAGGA		
Primers for mouse <i>Gsdme</i> Reverse	This study	GCAGCACAGCGAAGAAATAAC		
Primers for mouse <i>Tnnt2</i> Forward	This study	GTGTGCAGTCCCTGTTCAGA		
Primers for mouse <i>Tnnt2</i> Reverse	This study	GCTTGGGTTTGGTGTCCTCT		
Primers for mouse <i>Tnni</i> 3 Forward	This study	TGTCCTCGCCCCTTATCTCA		

Primers for mouse <i>Tnni</i> 3 Reverse	This study	GGTTCCCCAGCCGCATC
Primers for mouse <i>lcam1</i> Forward	This study	TTCTCATGCCGCACAGAACT
Primers for mouse <i>lcam1</i> Reverse	This study	TCCTGGCCTCGGAGACATTA
Primers for mouse <i>Vav2</i> Forward	This study	ACAGAGCAAAGGGATCAGGC
Primers for mouse <i>Vav2</i> Reverse	This study	CCCATTTTCATGGGCTGCTG
Primers for mouse Sell Forward	This study	GACATGGGTGGGAACCAACA
Primers for mouse <i>Sell</i> Reverse	This study	CACTGGACCACTGTGTAGCA
Primers for mouse <i>Myh6</i> Forward	This study	ATAAAGGGGCTGGAGCACTG
Primers for mouse <i>Myh6</i> Reverse	This study	GCCTCTAGGCGTTCCTTCTC
Primers for mouse <i>Ptprc</i> Forward	This study	GGCGCATCAGAAGGGGATAA
Primers for mouse <i>Ptprc</i> Reverse	This study	GCTGTTGCAAATGTGCTGCT
Primers for mouse <i>Cxcl1</i> Forward	This study	ACTCAAGAATGGTCGCGAGG
Primers for mouse <i>Cxcl1</i> Reverse	This study	GTGCCATCAGAGCAGTCTGT
Primers for mouse <i>Ccr2</i> Forward	This study	GCCATCATAAAGGAGCCATACC
Primers for mouse <i>Ccr2</i> Reverse	This study	ATGCCGTGGATGAACTGAGG
Primers for mouse <i>Cxcr</i> 2 Forward	This study	CTCTGCTCACAAACAGCGTC
Primers for mouse <i>Cxcr</i> 2 Reverse	This study	TCTCTGAGTGGCATGGGACA
Primers for mouse <i>α-SMA</i> Forward	This study	GTACCCAGGCATTGCTGACA
Primers for mouse α -SMA Reverse	This study	GCTGGAAGGTAGACAGCGAA
Primers for mouse <i>mt-Nd1</i> Forward	This study	CACCCAAGAACAGGGTTTGT
Primers for mouse <i>mt-Nd1</i> Reverse	This study	TGGCCATGGGTATGTTGTTAA
Primers for mouse <i>D-loop</i> Forward	This study	CTATCACCCTATTAACCACTCA
Primers for mouse <i>D-loop</i> Reverse	This study	ТТССССТСТААТАТТСААССТА

Primers for mouse 18S	This study	CTACCACATCCAAGGAAGC
Primers for mouse 18S	This study	TTTTCGTCACTACCTCCCCG
Reverse	,	
Forward	This study	TTCTCCTGGCAAAGACGGAC
Primers for mouse Col1a1	This study	
Reverse		
Primers for mouse	This study	GAGGAATGGGTGGCTATCCG
Col3a1 Forward		
Primers for mouse	This study	TCGTCCAGGTCTTCCTGACT
Col3a1 Reverse	····· ·	
Primers for mouse Axl	This study	TTCAACTGTGCTACGTCCCC
Forward	,	
Primers for mouse AxI	This study	GGGTCCCTCTAGGTAAGCCA
Reverse	·····,	
Primers for mouse	This study	AACAGGGAGAAAGCGCAAAAC
Nos2 Forward		
Primers for mouse	This study	TCCACTGCCCCAGTTTTTGA
Nos2 Reverse		
Primers for mouse H2-DMa	This study	AGGGGGTATATGGAGCACTCT
Forward	The olday	
Primers for mouse H2-DMa	This study	CGCAGCAGGTCTCTCGTTT
Reverse	The study	
Primers for mouse <i>GzmB</i>	This study	GAAGCCAGGAGATGTGTGCT
Forward		
Primers for mouse <i>GzmB</i>	This study	GCACGTTTGGTCTTTGGGTC
Reverse	The study	
Primers for mouse Prf1	This study	TCTTGGTGGGACTTCAGCTT
Forward	This study	
Primers for mouse Prf1	This study	TECTTECATTETEACCEAET
Reverse	This study	
Primers for mouse <i>IFN-γ</i>	This study	CGGCACAGTCATTGAAAGCC
Forward	This study	
Primers for mouse <i>IFN-γ</i>	This study	TGCATCCTTTTTCGCCTTGC
Reverse	This study	
Primers for mouse <i>IL-2</i>	This study	GCCCCAAGGGCTCAAAAATG
Forward	This study	
Primers for mouse <i>IL-2</i>	This study	GCGCTTACTTTGTGCTGTCC
Reverse	This Study	00001120111010010100
Primers for mouse IL-17A	This study	GCTGACCCCTAAGAAACCCC
Forward	This Study	001070000177077700
Primers for mouse IL-17A	This study	GAAGCAGTTTGGGACCCCTT
Reverse	This Study	07400401110004000011
Primers for mouse IL-6	This study	ATGAAGTTCCTCTCTCCAAGAGAC
Forward		
Primers for mouse IL-6	This study	
Reverse	The study	

Primers for mouse <i>IL-18</i> Forward	This study	GTAAGAGGACTGGCTGTGACCC	
Primers for mouse <i>IL-18</i> Reverse	This study	CTTTTGGCAAGCAAGAAAGTGT	
Primers for mouse <i>IL-1</i> β Forward	This study	TGCCACCTTTTGACAGTGATG	
Primers for mouse <i>IL-1</i> β Reverse	This study	AAGGTCCACGGGAAAGACAC	
Primers for mouse <i>Elane</i> Forward	This study	CTTCATCCGAGGAGGCTGTG	
Primers for mouse <i>Elane</i> Reverse	This study	GAGGTCTCTGGTAGAGGGGG	
Primers for mouse <i>Padi4</i> Forward	This study	CCTACAGGTGAAAGCAGCCA	
Primers for mouse <i>Padi4</i> Reverse	This study	TCAAAGTCCATTCCGGAGGC	
Primers for mouse <i>IL-4</i> Forward	This study	CCATATCCACGGATGCGACA	
Primers for mouse <i>IL-4</i> Reverse	This study	AAGCCCGAAAGAGTCTCTGC	
Primers for mouse <i>IL-10</i> Forward	This study	GCTCCAAGACCAAGGTGTCT	
Primers for mouse <i>IL-10</i> Reverse	This study	CGGAGAGAGGTACAAACGAGG	
Primers for mouse <i>Ccr5</i> Forward	This study	GCAGTTTCGGAGCAGTGTTG	
Primers for mouse <i>Ccr5</i> Reverse	This study	ACATGTGCACAGAAATCCCAG	
Primers for mouse <i>II22</i> Forward	This study	TGCGATCTCTGATGGCTGTC	
Primers for mouse <i>II22</i> Reverse	This study	CCTCGGAACAGTTTCTCCCC	
Primers for mouse <i>Tnfa</i> Forward	This study	AGGCACTCCCCCAAAAGATG	
Primers for mouse <i>Tnfa</i> Reverse	This study	CCACTTGGTGGTTTGTGAGTG	
Primers for mouse <i>Ccl5</i> Forward	This study	TGCTCCAATCTTGCAGTCGT	
Primers for mouse <i>Ccl5</i> Reverse	This study	GCAAGCAATGACAGGGAAGC	
Primers for mouse <i>Gapdh</i> Forward	This study	CCCATCACCATCTTCCAGGAG	
Primers for mouse <i>Gapdh</i> Reverse	This study	TTCACCACCTTCTTCTTGATGTCAT	
Software and Algorithms			

GraphPad Prism version 8	GraphPad software	https://www.graphpad.com/,
		RRID:SCR_002798
FlowJo v.10	FlowJo, LLC	https://www.flowjo.com/solutions/flowjo
		, RRID:SCR_008520
Image J	National Institutes	https://imagej.nih.gov/ij/,
	of Health	RRID:SCR_003070
Vevo 2100 v3.1.1	VisualSonics	https://www.visualsonics.com/product/i
		maging-systems/vevo-2100

