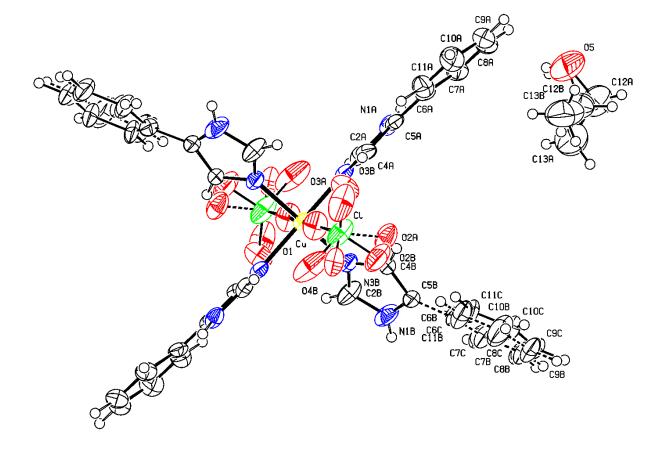
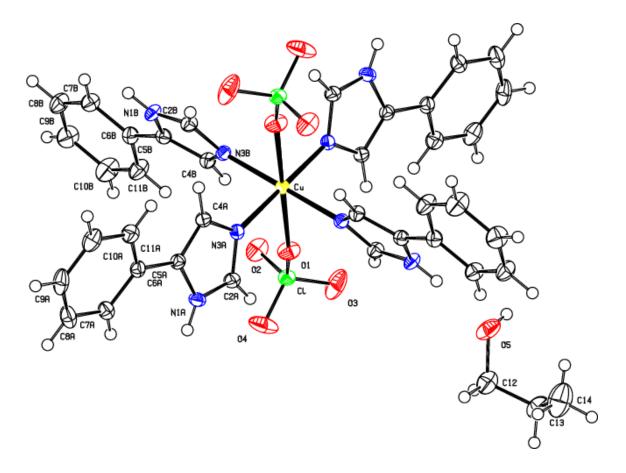
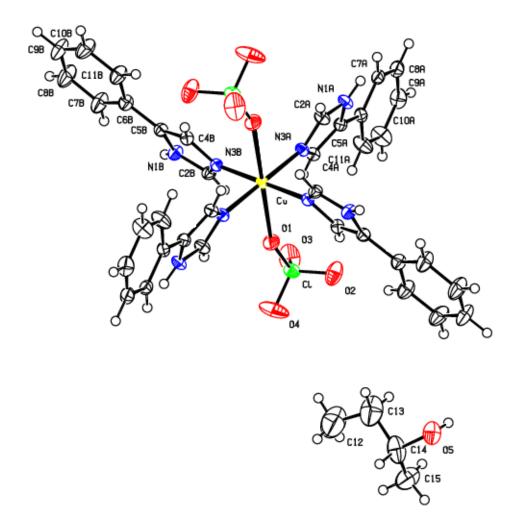


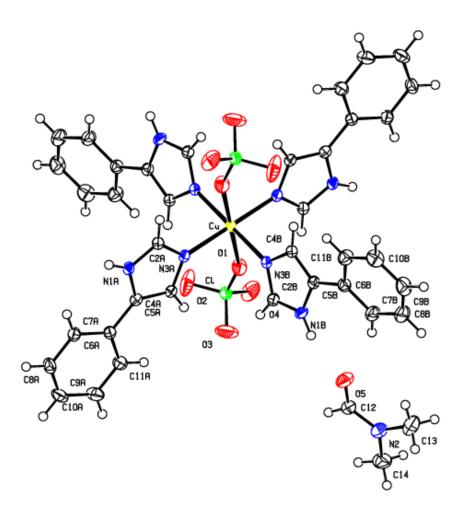
Volume 80 (2024)

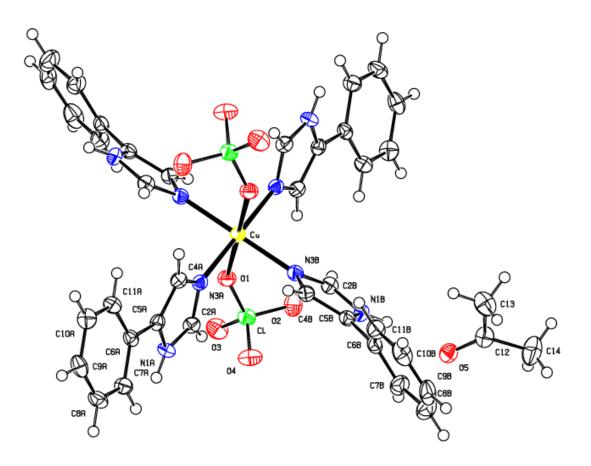

Supporting information for article:

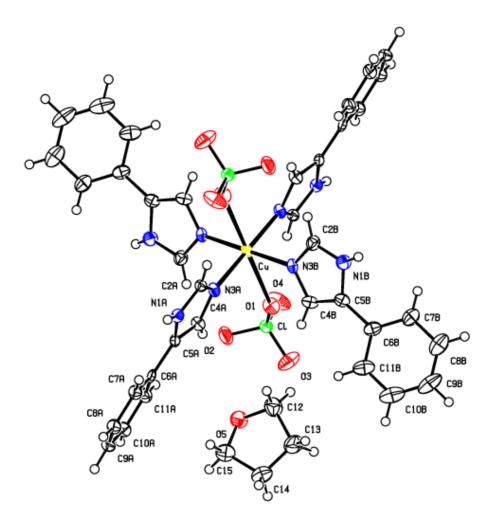
Solvatomorphism in a series of copper(II) complexes with the 5phenylimidazole/perchlorate system as ligands

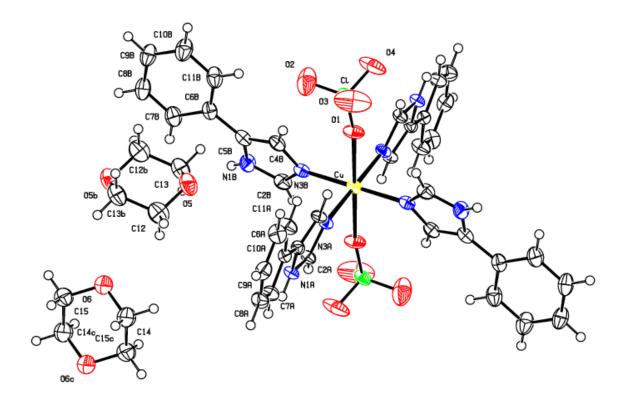

Edward Loukopoulos, Constantina Papatriantafyllopoulou, Eleni Moushi, Alexandros A. Kitos, Anastasios J. Tasiopoulos, Spyros P. Perlepes and Vassilios Nastopoulos

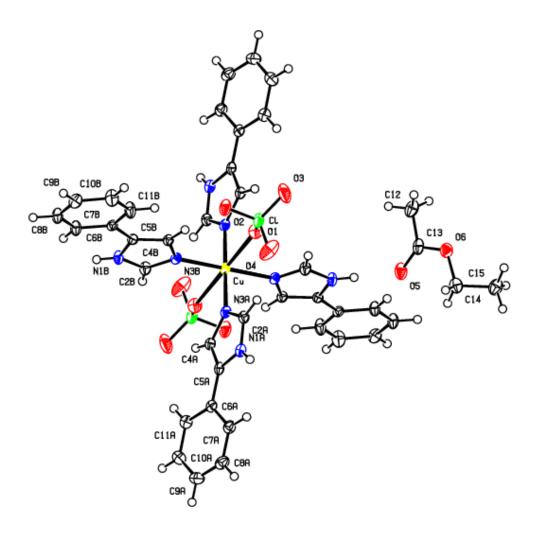

Figure S1 A view of the structure of compound 2.2MeOH with atom labelling and displacement ellipsoids drawn at the 50% probability level. Atoms generated by symmetry through the inversion centre located on the copper ion are not labelled. Both orientations of the disordered phenyl rings, the ClO_4^- ion and the MeOH solvent molecule are shown.

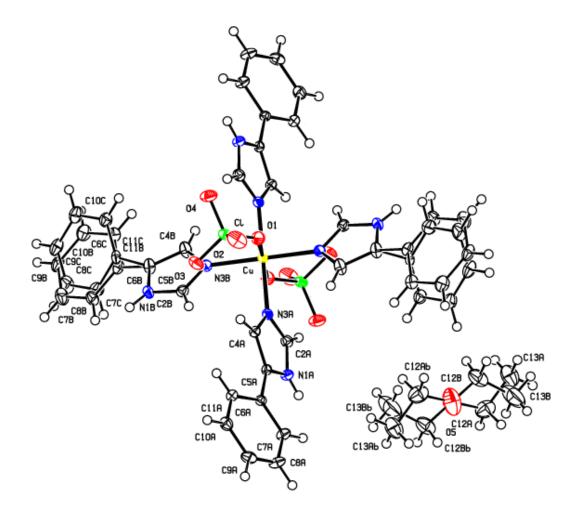

Figure S2 A view of the structure of compound 3·2EtOH with atom labelling and displacement ellipsoids drawn at the 50% probability level. Symmetry-related atoms through the inversion centre located on the copper ion site are not labelled. Both orientations of the disordered phenyl rings, the ClO_4^- ion and the EtOH solvent molecule are shown.

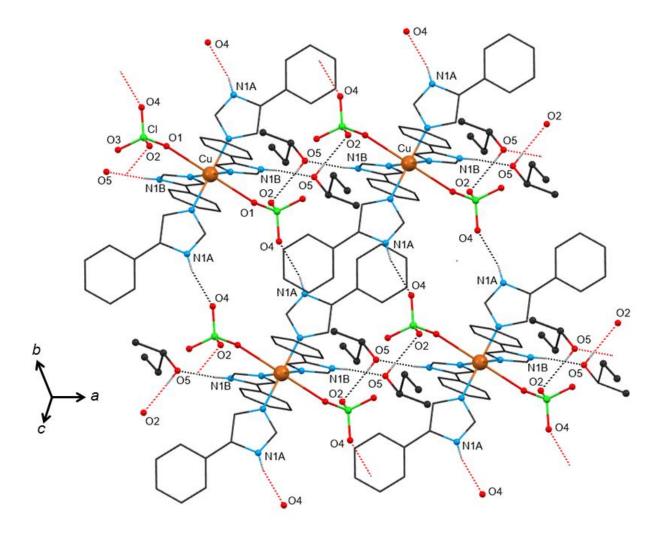

Figure S3 A view of the structure of compound 4.2(1-PrOH) with atom labelling and displacement ellipsoids drawn at the 50% probability level. Symmetry-related atoms through the inversion centre located on the copper ion site are not labelled.

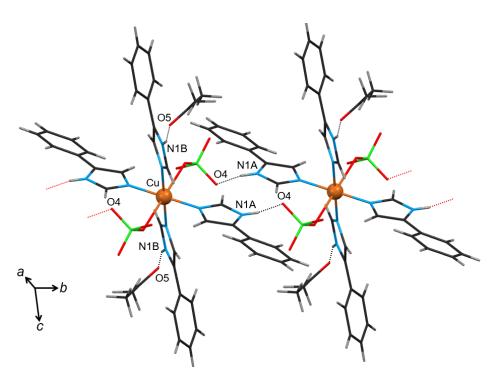

Figure S4 A view of the structure of compound $6 \cdot 2(2$ -BuOH) with atom labelling and displacement ellipsoids drawn at the 50% probability level. Symmetry-related atoms through the inversion centre located on the copper atom site are not labelled.

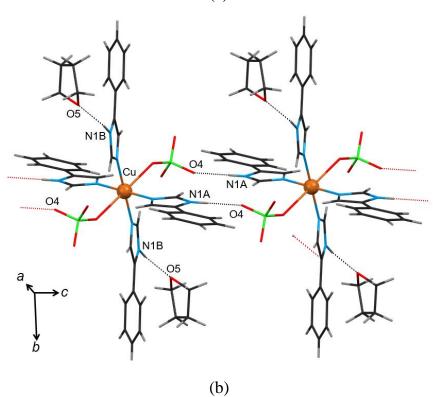

Figure S5 A view of the structure of compound 7.2DMF with atom labelling and displacement ellipsoids drawn at the 50% probability level. Symmetry-related atoms through the inversion centre located on the copper ion site are not labelled.

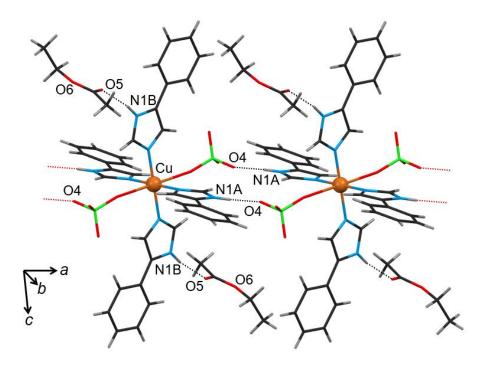

Figure S6 A view of the structure of compound 8.2Me₂CO with atom labelling and displacement ellipsoids drawn at the 50% probability level. Symmetry-related atoms through the inversion centre located on the copper ion site are not labelled.


Figure S7 A view of the structure of compound 9.2THF with atom labelling and displacement ellipsoids drawn at the 50% probability level. Symmetry-related atoms through the inversion centre located on the copper ion site are not labelled.


Figure S8 A view of the structure of compound 10.2(1,4.4) with atom labelling and displacement ellipsoids drawn at the 50% probability level. Symmetry-related atoms through the inversion centre located on the copper ion site are not labelled.


Figure S9 A view of the structure of compound 11·2EtOAc with atom labelling and displacement ellipsoids drawn at the 50% probability level. Symmetry-related atoms through the inversion centre located on the copper ion site are not labelled.


Figure S10 A view of the structure of compound $12 \cdot \text{Et}_2\text{O}$ with atom labelling and displacement ellipsoids drawn at the 50% probability level. Symmetry-related atoms through the inversion centre located on the copper ion site are not labelled. Both orientations of the disordered phenyl rings and the Et₂O solvent molecule are shown.


Figure S11 View of a 2D layer of the crystal structure of solvatomorph 6.2(2-BuOH) organized by hydrogen-bonding motifs (see Table 3). The atoms of the 2-BuOH solvent are drawn in ball-and-stick style (oxygen atom: O5). Only the H-atoms involved in strong intermolecular interactions are shown.

(a)

Figure S12 1D tapes in the crystal structure of (a) solvatomorph $8 \cdot 2Me_2CO$ and (b) $9 \cdot 2THF$ formed by the [Cu(ClO₄)₂(LH)₄] molecules *via* N1A–H1A····O4_{perchlorate} synthons (see Table 3). The Me₂CO and THF solvents (bearing the O5 atoms) are only terminally hydrogen-bonded to the host complexes.

Figure S13 1D tapes in the crystal structure of solvatomorph 11·2EtOAc formed by the $[Cu(ClO_4)_2(LH)_4]$ molecules *via* N1A–H1A···O4_{perchlorate} synthons (see Table 3). The EtOAc solvent (bearing O5 and O6 atoms) is only terminally hydrogen-bonded to the host complexes.

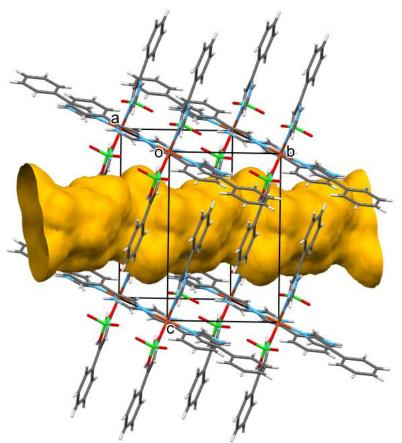


Figure S14 View of the 3D structure of solvatomorph 10.2(1,4-dioxane). The dioxane solvent molecules have been removed and the channels containing them along the *b*-axis of the unit cell are drawn in yellow.

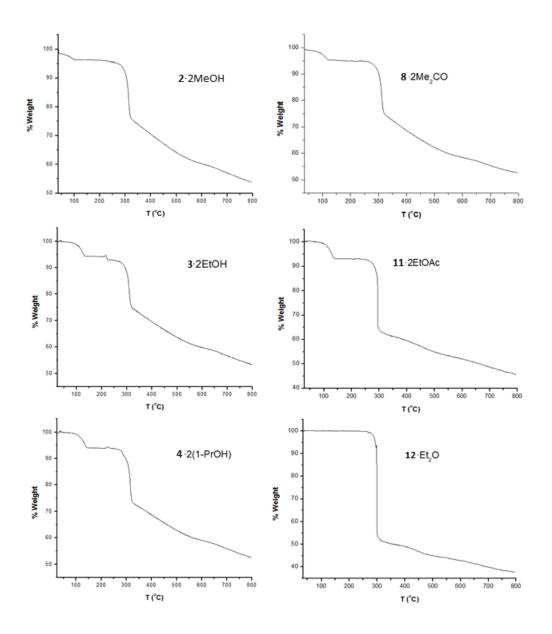


Figure S15 TGA plots for selected complexes of this work.

Structure	Rings	Distance between	Perpendicular distance	Centroid	Dihedral angle between ring mean-planes	
	involved ^a	ring centroids	between ring planes	offset		
1	B2–B2 ⁱ	3.883(3)	3.505(2)	1.671	0.0	
	A1-A2 ⁱⁱ	3.862(2)	3.158(2)	1.190	17.5(2)	
2	A1-A2 ⁱⁱⁱ	3.745(2)	3.186(2)	1.194	13.8(2)	
	B2–C2 ^{iv}	3.821(2)	3.620(6)	0.963	6.3(6)	
3	C2–C2 ^v	3.578(5)	3.392(4)	1.137	0.0	
	A1–B2 ^v	3.788(6)	3.635(4)	0.877	7.1(5)	
4	B2–B2 ^{vi}	4.059(2)	3.636(1)	1.805	0.0	
6	A1-A2vii	3.938(2)	2.946(2)	1.599	18.0(2)	
	B2–B2 ^{vi}	3.993(2)	3.595(2)	1.739	0.0	
7	A1-A2viii	3.666(2)	3.331(8)	1.594	2.7(1)	
	B2–B2 ^{ix}	4.033(2)	3.634(1)	1.750	0.0	
8	A2–A1 ^x	3.760(2)	3.244(2)	0.856	18.4(2)	
	A1–B2 ^{xi}	3.889(2)	3.500(2)	1.694	0.02(2)	
9	A2–A1 ^{ix}	3.685(3)	3.090(2)	1.329	11.9(3)	
10	A1-A2xii	3.866(2)	3.032(2)	1.749	11.5(2)	
11	A2–A1 ^{ix}	3.597(2)	3.191(1)	1.064	10.4(2)	
	B2–B1 ^{xiii}	3.881(2)	3.478(2)	1.534	6.5(2)	
12	A2–A1 ^v	3.953(2)	3.266(2)	1.318	16.3(1)	

Table S1 $\pi \cdots \pi$ stacking distances (Å) and angles (°) in complexes 1–4 and 6–12.

^a Ring A1: N1A to C5A; Ring A2: C6A to C11A; Ring B1: N1B to C5B; Ring B2: C6B to C11B; Ring C2: C6C to C11C.

Symmetry codes: (i) -x-1, -y, -z-1; (ii) -x+1, -y+1, -z; (iii) -x+1, -y-1, -z; (iv) -x, -y, -z+1; (v) -x, -y, -z; (vi) -x-1, -y-1, -z-1; (vii) -x-1, -y-1, -z; (viii) -x+2, -y+2, -z+1; (ix) -x+1, -y+1, -z+1; (x) -x, -y, -y+1, -z+1; (xi) -x, -y, -y+1, -z; (xii) -x-1, -y+1, -z; (xiii) -x+2, -y+1, -z+3.

Structure	$D - H \cdots A^a$	$H{\cdots}Cg^b$	H…(ring plane) ^c	γ^{d}	C····Cg	X–H···Cg
1	C8A–H8A····Cg1 ⁱ	2.82	2.75	13.2	3.66	148
	C8B–H8B····Cg2 ⁱⁱ	2.97	2.87	14.9	3.77	143
2	C8A–H8A····Cg1 ⁱⁱⁱ	2.64	2.61	7.9	3.49	151
	C9A–H9A···Cg3 ^{iv}	2.83	2.63	21.5	3.68	150
3	$C8A\!-\!H8A\cdots Cg1^i$	2.67	2.65	7.0	3.54	153
	C9C–H9C···Cg3 ^v	2.77	2.66	16.5	3.66	155
	C13A–H13A····Cg4 ^v	2.89	2.81	13.4	3.48	120
4	$C8A\!-\!H8A\cdots Cg1^{vi}$	2.67	2.63	10.3	3.58	161
	C8B–H8B····Cg2 ^{vii}	2.73	2.70	8.3	3.57	148
6	$C8A\!-\!H8A\cdots Cg1^i$	2.69	2.65	10.3	3.62	148
	C8B−H8B…Cg2 ⁱⁱ	2.89	2.75	17.9	3.69	143
7	C8A–H8A…Cg1 ^{viii}	2.67	2.65	7.7	3.60	164
	C14–H14B…Cg4 ^{ix}	2.97	2.86	16.1	3.83	146
8	C8A–H8A····Cg1 ^x	2.75	2.74	3.2	3.54	142
9	C8A–H8A…Cg1 ^{xi}	2.66	2.63	8.6	3.56	160
	C14–H14B⋯Cg4 ^{xii}	2.99	2.84	18.3	3.78	138
	C15–H15B····Cg2	2.99	2.87	15.9	3.72	132
10	C8A–H8A····Cg1 ^x	2.74	2.70	9.3	3.66	164
	C14–H14A····Cg4 ^{ix}	2.80	2.74	12.1	3.75	161
11	C8A–H8A…Cg1 ^{xiii}	2.81	2.66	18.8	3.67	151
	C8B–H8B····Cg3 ^{iv}	2.94	2.88	11.5	3.72	141
12	C8A–H8A…Cg1 ^{xiv}	2.85	2.77	13.7	3.65	143
	C8A–H8A…Cg2 ^{vii}	2.92	2.80	16.4	3.72	143

Table S2 C-H··· π interaction parameters (Å, °) in compounds 1–4 and 6–12.

^a Ring 1: N1B to C5B; Ring 2: C6A to C11A; Ring 3: N1A to C5A; Ring 4: C6B to C11B.

^bCg is the centroid (centre of gravity) of the ring.

^c perpendicular distance of H to ring plane.

 $d\gamma$ is the angle defined by the H···Cg line and the perpendicular H···(ring plane) line.

Symmetry codes: (i) 1+x, 1+y, z; (ii) -x, -y, -z-1; (iii) -x+1, -y-1, -z; (iv) x, y, z+1; (v) -x, -y, -z; (vi) -x-1, y-1, -z; (vii) x, y, z-1; (viii) -x+2, -y+2, -z+1; (ix) 1+x, y, z; (x) x-1, y+1, z; (xi) x-1, y, z-1; (xii) x-1, y, z; (xiii) -x+1, -y+2, -z+2; (xiv) -x, -y, -z.