

Fig. S1. Catalpol (CAT) improved triptolide (TP) induced energy metabolism disorder in the liver. (A) The PCA score plots for energy metabolites within the liver tissue of the three distinct groups (Ctrl, TP, and TP + CAT) were derived from UPLC-MS/MS assessments. (B-C) Box plots of some hepatic metabolites and their ratios in three groups (Ctrl, TP and TP + CAT groups). Data are expressed as mean \pm SD (n = 4); $^{\#}P < 0.05$ versus Ctrl, $^{*}P < 0.05$ versus TP.

Fig. S2. The beneficial role of catalpol (CAT) was related to regulating the balance between glycolysis and OXPHOS. (A-D) Results from the quantitative analysis of the cellular glycolysis rates: basal glycolysis, basal proton efflux rate, compensatory glycolysis and post 2-DG acidification. (E-F) Results from the quantitative analysis of the cellular respiration parameters: non-mitochondrial oxygen consumption and coupling efficiency %. Data are expressed as mean \pm SD (n = 3); $^{\#}P < 0.05$ versus Ctrl, *P < 0.05 versus TP.

Fig. S3. Catalpol (CAT) alleviated triptolide (TP) induced glycogen metabolism and gluconeogenesis disorders through the SIRT1/HIF-1*a* pathway. (A) Fasting serum insulin levels. (B) Following a 16-hour fasting period, the mice received an intraperitoneal administration of D-glucose at a dosage of 1 g/kg body weight. Then, blood glucose levels were recorded at specific time intervals. The AUC values for blood glucose were subsequently computed. (C-D) The mRNA expression of SIRT1 and HIF-1 α in mouse livers. (E-F) The expression of glycogenolysis and gluconeogenesis related proteins was quantified. (G) Relative expression of glycogenesis-related genes in mouse livers. (H) Relative expression of glycogenolysis-related genes in mouse livers. Data are expressed as mean \pm SD (n = 6); #P < 0.05 versus Ctrl, *P < 0.05 versus TP.

Fig. S4. SIRT1/HIF-1*a* was the target of catalpol (CAT) and the beneficial effects of CAT were influenced by the overexpression or knockout of SIRT1 *in vitro*. (A) Co-immunoprecipitation was performed using equal protein quantities with either SIRT1 antibody or HIF-1*a* antibody, followed by immunoblotting procedure using antibodies against SIRT1, HIF-1*a* or Acetyl-lysine, illustrating the impact of TP, *SIRT1* overexpression (OE) and *SIRT1* knockout (KO). (B) SIRT1 protein expression of transfected cells was quantified. (C) Glycogen levels in transfected cells. (D-J) The expression of glycogenolysis and gluconeogenesis related proteins in transfected cells was quantified. Data are expressed as mean \pm SD (n = 3); $^{#}P < 0.05$ versus Ctrl, COE or CKO, $^{*}P < 0.05$ versus TP, TP + COE or TP + CKO.

Fig. S5. SIRT1/HIF-1 α was the target of catalpol (CAT) and the beneficial effects of catalpol were influenced by the overexpression or knockout of SIRT1 in vitro. (A-B) Representative DHE fluorescence staining of transfected cells and relative quantification of DHE fluorescence images. Scale bar, 31.7 µm. (C-D) Immunofluorescence staining of transfected cells using antibody against 4-HNE and relative quantification of 4-HNE fluorescence images. Scale bar, 31.7 µm. Data are expressed as mean \pm SD (n = 3); [#]P < 0.05 versus Ctrl, COE or CKO, ^{*}P < 0.05 versus TP, TP + COE or TP + CKO.

Fig. S6. Liver-specific *SIRT1* knockout aggravated triptolide (TP) induced liver injury and weakened the beneficial effects of catalpol (CAT). (A-B) Validation of liver-specific *SIRT1* knockout in mouse. (C) Glycogen levels. (D) Representative DHE fluorescence staining of liver sections for ROS production. Scale bar, 31.7 μ m. (E) Immunofluorescence staining of liver sections using antibodies against p-PYGL(S15). Scale bar, 31.7 μ m. (F) Relative quantification of DHE and p-PYGL(S15) fluorescence image. (G) Relative quantification of SIRT1 and HIF-1 α protein in mouse livers. (H-I) The expression of glycogenolysis and gluconeogenesis related proteins was quantified. Data are expressed as mean \pm SD (n = 3); An "*" indicates significant difference between AAV-Scr and AAV-SIRT1 in either TP or TP + CAT groups (P < 0.05).

Antibody	Dilution	Supplier	Catalogue	RRID
	ratio		Number	
SirT1	1/1000	Cell Signaling Technology	8469	AB_10999470
HIF-1a	1/1000	Cell Signaling Technology	36169	AB_2799095
4-Hydroxynonenal	1/500	R and D Systems	MAB3249	AB_664165
p-AMPKa	1/1000	Cell Signaling Technology	2535	AB_331250
(Thr172)				
AMPKa1	1/1000	Cell Signaling Technology	2795	AB_560856
p-PKA(T197)	1/1000	ABclonal	AP0557	AB_2771456
PKA	1/5000	ABclonal	A18603	AB_2862360
РНКВ	1/1000	Proteintech	13400-1-	AB_2237183
			AP	
p-PYGL (Ser15)	1/1000	Affinity Biosciences	AF3863	AB_2847177
PYGL	1/1000	Affinity Biosciences	DF12134	AB_2844939
p-FoxO1 (S256)	1/1000	ABclonal	AP0172	AB_2771120
FOXO1	1/1000	ABclonal	A13862	AB_2760713
PEPCK/PCK2	1/1000	ABclonal	A4466	AB_2863279
G6PC	1/1000	Proteintech	66860-1-Ig	AB_2882199
Acetyllysine	1/300	PTM BIO	PTM-101	AB_2940830
beta Actin	1/1000	Affinity Biosciences	AF7018	AB_2839420
Tubulin beta	1/1000	Affinity Biosciences	AF7011	AB_2827688
Goat anti-mouse	1/10000	Proteintech	SA00001-1	AB_2722565
IgG				
Goat anti-rabbit	1/10000	Proteintech	SA00001-2	AB_2722564
IgG				
CoraLite594				
conjugated Goat	1/500	Proteintech	SA00013-3	AB_2797133
Anti-Mouse IgG				
CoraLite488				
conjugated Goat	1/500	Proteintech	SA00013-2	AB_2797132
Anti-Rabbit IgG				

Table S1: Antibodies used in the study

Gene Description	Primers for $qPCR(5' > 3')$	
	F CCGAGATGCTATCAAGAGGAGAGG	
Gck	R CTCACATTGGCGGTCTTCATAGTAG	
	F GCATCAAGCAGTCAGCCTCAG	
Pfkl	R CAGTAGCCAGGTAGCCACAGTAG	
	F GCCAAGTCCGTTGTCCTTATGAG	
Pgk1	R GCCCAGCAGAGATTTGAGTTCAG	
	FTGTGGTGGCAGTCCGAGATG	
Pklr	RACTTCTTCACGCCTTCATGGTTC	
	F CTGTCACGGCTGGGTCCTG	
Ldha	R TCCTTCCACTGCTCCTTGTCTG	
	FACTCATCCTGCCTCGTCCTTG	
Cs	R GCTCCTTAGGTATCAGATTGCTCAG	
	FACGGAAGGAGAATACAGTGGAATTG	
Idh3a	R TTGCTTGCTTCTTCGGTGATGAG	
	F TGGCTCACTGCTGAAGGAAGG	
Ogdh	R TGGTGGCGATGGCTGAAGG	
	F TCTACCGCTGCCACACCATC	
Sdhb	R GCCAATGCTCGCTTCTCCTTG	
	F GTTACCGTTGGAGGCAGCAATG	
Fh	R CTGTGAAGGACACTGAAGCATCTC	
	FAGGTTCTGCCACTCTGTCCATG	
Mdh2	R ACACTCAACGACTCCTTCCTTCC	
	F TGATTGGCACCGATCCTCG	
Sirt1	R CCACAGCGTCATATCATCCAG	
	F TCTCGGCGAAGCAAAGAGTC	
Hif-1a	R AGCCATCTAGGGCTTTCAGATAA	
	F TCAGTACCACCTTCTCCGTCAG	
Gys2	R CTCATCCTCATCTTCTTCGTCTTCC	
	F GGATTGGTCGCCTGGTTATTGG	
Pgm1	R TCCTGGATTATGGCTGGCTGTC	
	F AAGACAGTGGTGAGTGGAGAGTG	
Pgm2	R TGGAGGAAACAGTGCTGGACAG	
D 1	F CAGACCGCCTTCGTAGTCATTG	
Pgm3	R AACAGTCACGCCATCTATCACAG	
	F TGAACAACAAGACGCTGGAGAAC	
Ugp	R CACGGGCAAGAAACGGGAAC	
	FAGCACCAGGCGGCATTCC	
Gyg2	R GCAAAGTGTGTGACCAGGAGAC	
	F GAACATAAGATGGTGGTTGGAGGAG	
Gbel	R TCCGTGGTGATGATAGAGCATAGAG	
Dere I	F GCTTGCTGCCTGCTTCCTG	
rygi	R TCTGCCTCTTCTACCTGCCATC	

Table S2: Sequences of primer pairs used for amplification of mRNA by real-time PCR

	F AGAAGACCATATCTACGCCTCTACC
Phka2	R CAATGCTGATGTCCTGTCCACTG
	F CACAACCGCAACAGGCAGAC
Phkb	R CCAAGGCAAACGCAGGGTAAC
	F TCTGTGGTCCGCCGTTGTG
Phkg2	R TGTGTGTCTCTCGCCGTGTG
	FACTGTTGGCTGGCTCTCACTG
Pck1	R GGGATGGGCACTGTGTCTCTC
	FAGGTCGTGGCTGGAGTCTTG
G6pt	R CGGAGGCTGGCATTGTAGATG
	F AGTGCGTGTTGCTCGACAA
Субь	R GCGGTGTGCAGTGCTATCAT
	F GATGGTGGGAATGGGTCAGAAGG
β-Actin	R TTGTAGAAGGTGTGGTGCCAGATC