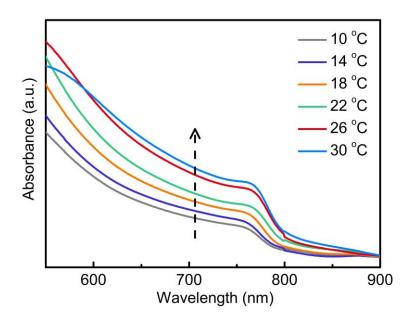
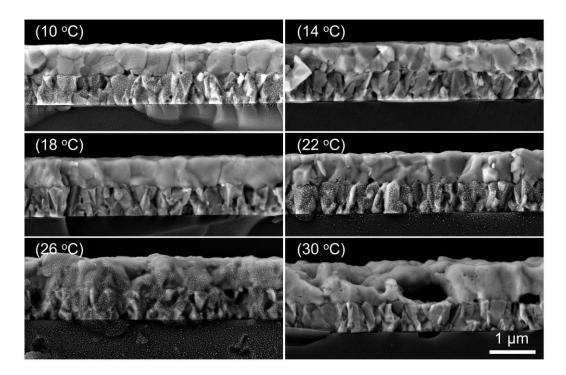
Supplementary Information

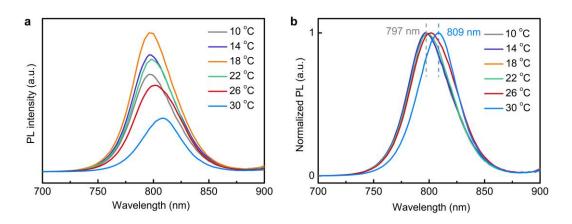

Efficient and stable perovskite mini-module *via* high quality homogeneous perovskite crystallization and improved interconnect

Haitao Zhou^{1,2}, Kai Cai^{1,2}, Shiqi Yu^{1,2}, Zhenhan Wang^{1,2}, Zhuang Xiong^{1,2}, Zema Chu^{1,2}, Xinbo Chu^{1,2}, Qi Jiang^{1,2} & Jingbi You^{1,2}*

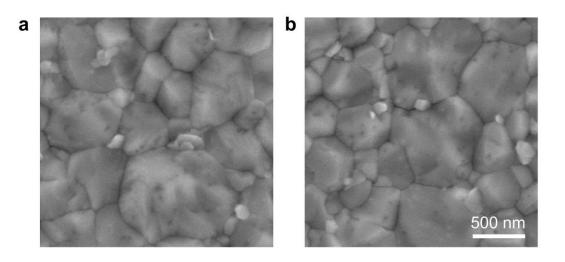

¹Laboratory of Semiconductor Physics, Institute of Semiconductors, Chinese Academy of Sciences, P. R. China, 100083.

²Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, P. R. China, 100049.

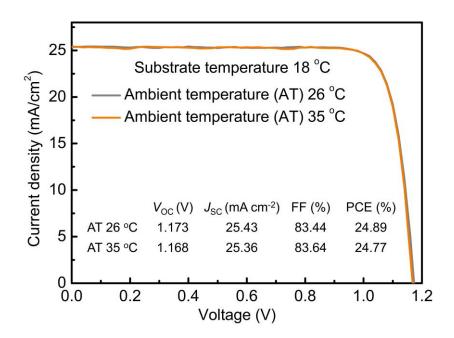
*Corresponding author: jyou@semi.ac.cn



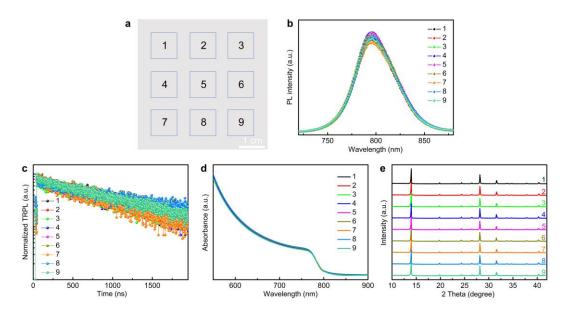
Supplementary Fig. 1 | Absorption of intermediate films grown at different LTSG temperatures.


Supplementary Fig. 2 | Cross-sectional SEM morphologies of perovskite films fabricated at

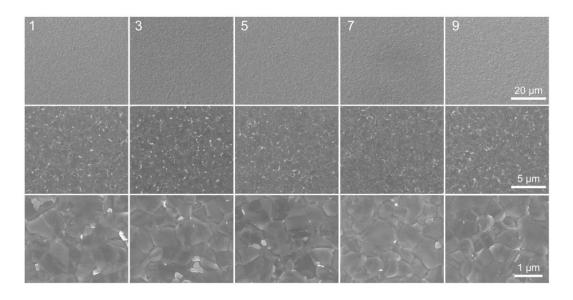
different LTSG temperatures.


Supplementary Fig. 3 | Steady-state PL spectrum of a perovskite films (a) and its normalized

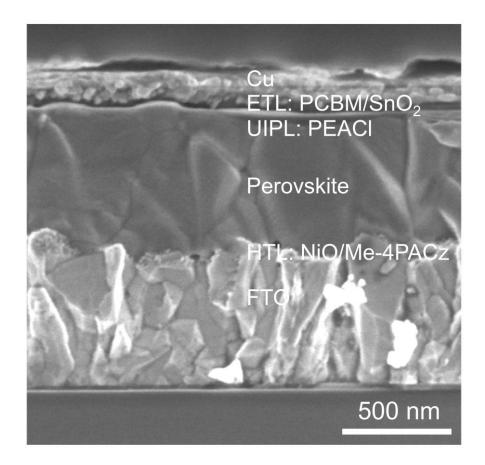
representation (b).

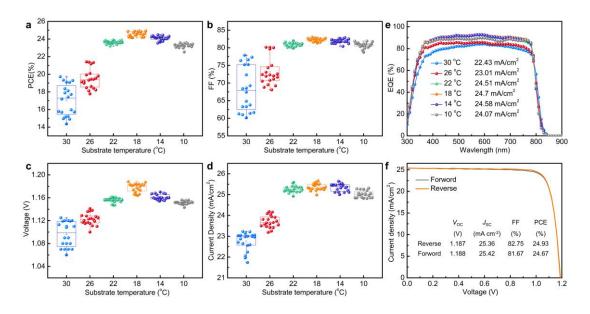

Supplementary Fig. 4 | Surface SEM morphology of perovskite films fabricated at 26 °C (a)

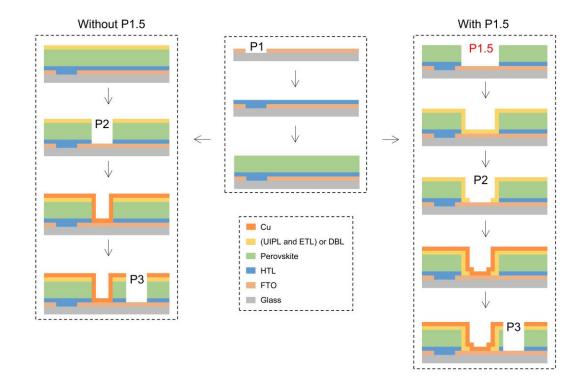
and 35 °C (**b**) ambient temperature, while the LTSG temperatures were both 18 °C.

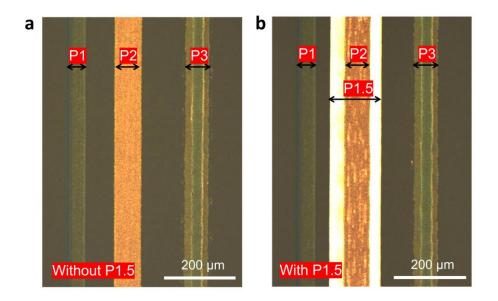


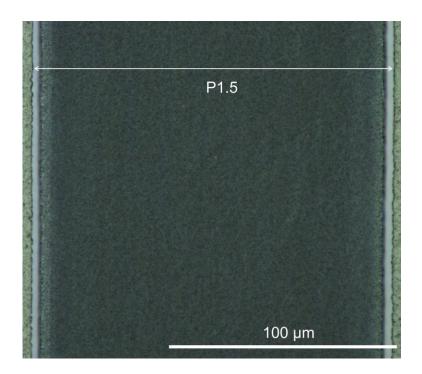
Supplementary Fig. 5 | J-V curves and performance parameters of devices constructed with

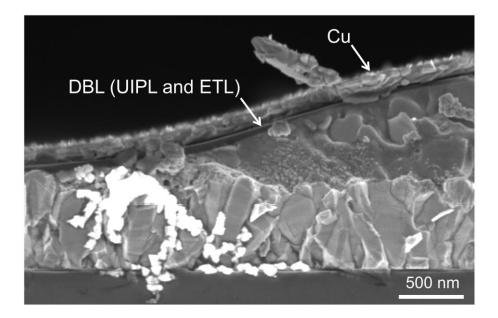

perovskite films prepared at ambient temperatures of 26 °C and 35 °C respectively.

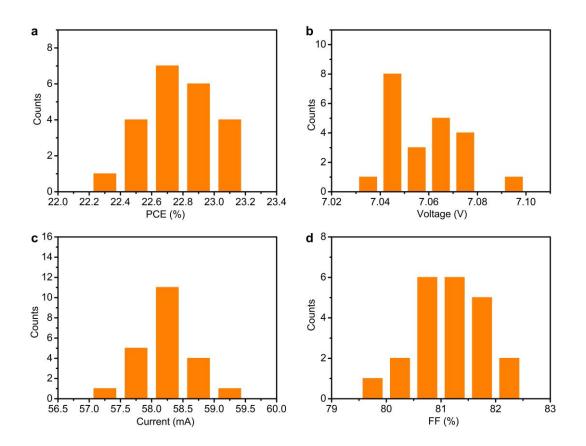

Supplementary Fig. 6 | **a**, Schematic illustration of the fabricated large-area perovskite film cut into 9 pieces. **b**, Photoluminescence spectra, **c**, TRPL patterns, **d**, Absorption spectra and **e**, XRD patterns of 9 areas of a 5 cm \times 5 cm LTSG based perovskite films.

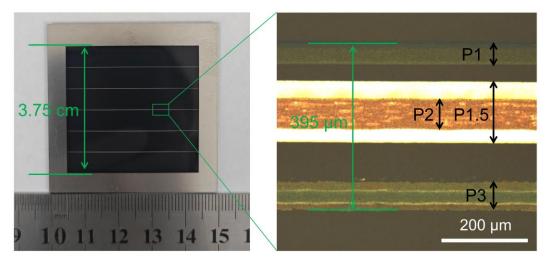

Supplementary Fig. 7 | Surface SEM images of different areas of the large-area films at different magnifications in Supplementary Fig. 6a. Uniform and similar shapes can be seen.

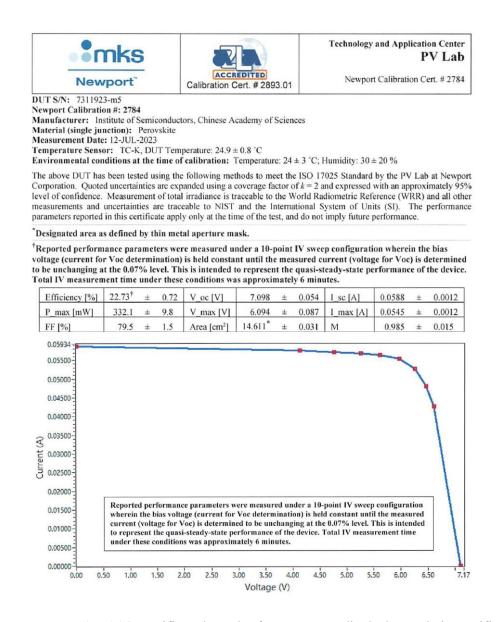

Supplementary Fig. 8 | Cross-sectional SEM image of our inverted perovskite solar cell.

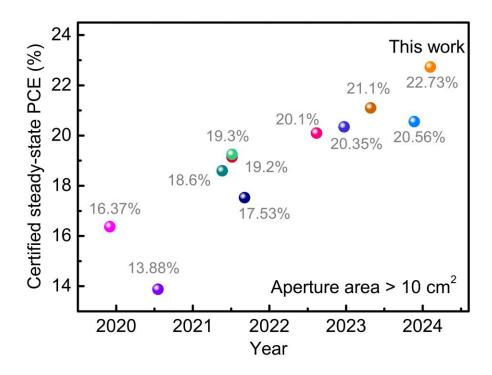

Supplementary Fig. 9 | Statistical distribution of (a) PCE, (b) FF, (c) V_{OC} and (d) J_{SC} obtained from *J-V* curves of small-area (aperture area 0.0737 cm²) cells with different LTSG temperatures. **e**, EQE spectrum and integrated short circuit current density of the devices. **f**, LTSG-18 °C optimizes the forward and reverse *J-V* curves and performance parameters of the device.

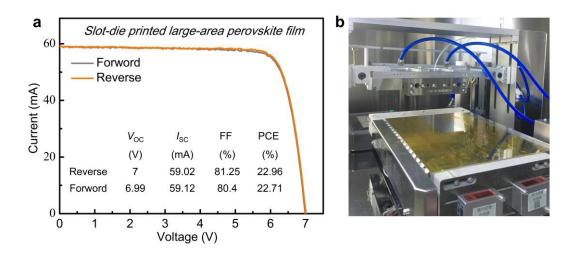

Supplementary Fig. 10 | Manufacturing process of the perovskite solar modules with and without P1.5 (DBL).

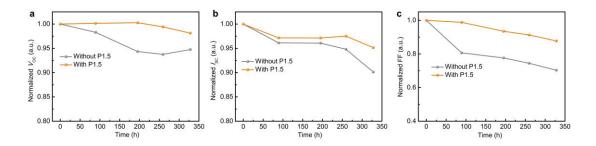

Supplementary Fig. 11 | Optical microscope images of interconnected regions with and without P1.5.


Supplementary Fig. 12 | Optical microscope image of P1.5.

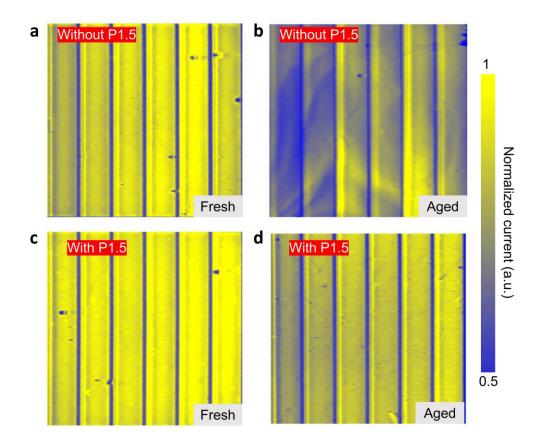

Supplementary Fig. 13 | Cross-sectional SEM image of the interconnected region of the module with P1.5 (DBL).


Supplementary Fig. 14 | Statistical distribution of (**a**) PCE, (**b**) V_{OC} , (**c**) I_{SC} and (**d**) FF obtained from *I-V* curves of large-area (aperture area 14.625 cm²) modules based on LTSG and P1.5. The average aperture area PCE of these modules is 22.79% and the highest is 23.2%.

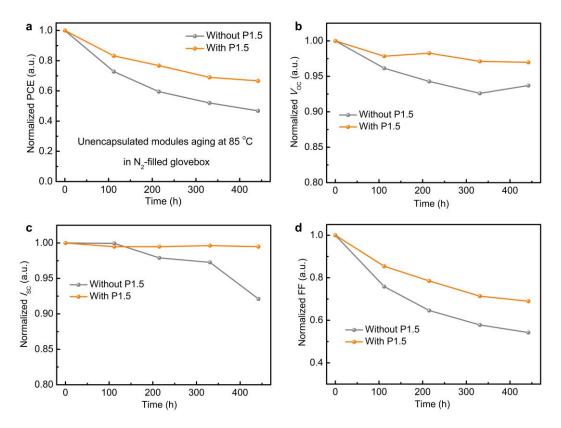

Supplementary Fig. 15 | Photo of module with metal masks. The geometric fill factor (GFF) calculation result is $GFF = (3.75 \ cm - 5 \times 0.0395 \ cm) \div 3.75 \ cm = 94.7\%$.


Supplementary Fig. 16 | Certificated results from an accredited photovoltaic certification laboratory (Newport, USA). The certificated efficiency is 22.73%. A mask with an aperture area was 14.611 cm² was used for the test. The V_{OC} is 7.098 V, I_{SC} is 58.8 mA, FF is 79.5%. The current-voltage performance parameters were measured under a 10-point IV sweep configuration wherein the bias voltage (current for V_{OC} determination) is held constant until the measured current (voltage for V_{OC}) is determined to be unchanging at the 0.07% level. This is intended to represent the quasi-steady-state performance of the device. Total *I-V* measurement time under these conditions was approximately 6 min.

Supplementary Fig. 17 | Summary of reported perovskite solar mini-modules.

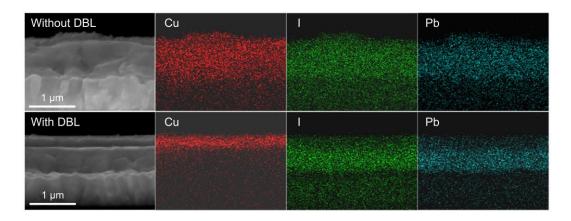


Supplementary Fig. 18 | **a**, *I-V* curves and performance parameters of large-area module (aperture area 14.625 cm²) fabricated by slot-die printed perovskite precursor wet films, combined with our LTSG and P1.5 solutions. **b**, Slot-die system (purchased from Datamaker).

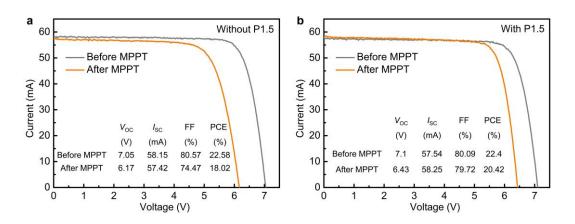


Supplementary Fig. 19 | Performances of perovskite modules in air aging experiments at 25

°C and 30-40% relative humidity.



Supplementary Fig. 20 | Light (532 nm) beam induced current (LBIC) mapping images of perovskite solar modules with and without P1.5 (DBL) before and after air ambient aging.



Supplementary Fig. 21 | Thermal stability tracking of the modules heated on an 85 °C hotplate

in a N₂ glove box.

Supplementary Fig. 22 | SEM-EDX elemental distributions of glass/FTO/perovskite/Cu and glass/FTO/perovskite/PEACl/PCBM/SnO₂/Cu (similar to intercalation and non-intercalation of DBL at the interface of perovskite and Cu) after thermal aging at 85 °C.

Supplementary Fig. 23 | I-V curves and performance parameters of perovskite modules before

and after (a) 600 hours maximum power point tracking (MPPT), and (b) 1000 hours MPPT.

	$V_{ m OC}({ m V})$	$I_{\rm SC}({ m mA})$	FF (%)	PCE (%)
Without P1.5 (Forword)	7.068	58.32	80.56	22.71
Without P1.5 (Reverse)	7.096	58.06	82.12	23.13
With P1.5 (Forword)	7.076	58.39	81.04	22.89
With P1.5 (Reverse)	7.092	58.28	81.83	23.13

Supplementary Table 1 | Parameters of forward and reverse scan *I-V* curves of modules with

and without P1.5 (DBL).

Supplementary Table 2 | Structure, aperture area, and PCE of reported small-area and largearea devices.

	Aperture area	Aperture area	D f	
Device structure	(cm ²)	PCE (%)	Ref.	
	0.06	25	Nature 620, 323-327 (2023)	
ITO/SnO ₂ /perovskite/spiro-OMeTAD/Ag or Au	27.83	21.4		
ITO/SnO ₂ /perovskite/Organic HTL/Ag or Au	1	23.5	Science 379, 288-294 (2023)	
110/Sil0 ₂ /perovskile/Organic H1L/Ag of Au	17.1	21.4	<i>Science</i> 579, 288-294 (2025)	
	0.07	23.8		
ITO/PTAA/perovskite/C ₆₀ /BCP/Cu	17.9	20.1	Science 373, 902-907 (2021)	
	50.1	19.7		
ETO/TEO /Spo /spanyalita/anina MaOTAD/Au	0.085	25.09	Nat. Sustainability 6, 1465-	
FTO/TiO2/SnO2/perovskite/spiro-MeOTAD/Au	12.25	20.75	1473 (2023)	
ETO/Spo / approvalite/amine OMeTAD/Au	0.16	24.02	Nat Engano 7, 529, 526 (2022)	
FTO/SnO ₂ /perovskite/spiro-OMeTAD/Au	22.4	20.5	Nat. Energy 7, 528-536 (2022)	
ITO/PTAA/perovskite/C ₆₀ /BCP/Cu	0.08	24.6	Sateman 280, 822, 820 (2022)	
110/FTAA/pelovskite/C ₆₀ /BCF/Cu	26.9	21.8	Science 380, 823-829 (2023)	
	0.09	23.21	Adv. Mater. 36, 2309310	
ITO/PTAA/Al ₂ O ₃ /perovskite/C ₆₀ /SnO ₂ /Ag	12.84	20.88	(2024)	
ITO/SnO2/perovskite/spiro-OMeTAD/Au	0.09	21.8	Nat. Energy 5, 596-604 (2020)	
110/3102/perovskite/spiro-OmerAD/Au	22.4	16.6	Nul. Energy 5, 590-004 (2020)	
ITO/NiO _x /PTAA/perovskite/PCBM/BCP/Ag	0.05979	24.7	Energy Environ. Sci. 16, 557-	
110/MO _x /FIAA/pelovskie/FCBM/BCF/Ag	19.3	21.6	564 (2023)	
ITO/PTAA/perovskite/C ₆₀ /BCP/metal	0.08	21.3	<i>Sci. Adv.</i> 5, eaax7537 (2019)	
110/F1AA/pelovskite/C ₆₀ /BCF/illetai	63.7	16.9		
	0.0803	25.7		
ETO/TiO /SpO /parauskita/spira MaOTAD/Au	1	23.3	Saianaa 275, 202, 206 (2022)	
FTO/TiO ₂ /SnO ₂ /perovskite/spiro-MeOTAD/Au	20.92	20.75	Science 375, 302-306 (2022)	
	66.95	19.7		
FTO/NiO _x /Me-4PACz/perovskite/PCBM/SnO ₂ /Cu	0.0737	24.93	This work	
110/140 ₃ /Me-41 AC2/pelovskite/FCDW/500 ₂ /Cu	14.625	23.2		

iciency of small and large area champion efficiency devices.							
	$V_{\rm oc}$ (V)	$J_{\rm SC}$ (mA cm ⁻²)	FF (%)	PCE (%)			
Small area device	1.187	25.36	82.75	24.93			
Large area device	7.073/6 = 1.179	(58.47/14.625)*6 = 23.99	82.03	23.2			

Supplementary Table 3 | Open circuit voltage, short circuit current density, fill factor and

efficiency of small and large area champion efficiency devices.

Device structure	Aperture area (cm²)	Certified steady- state PCE (%)	Ref.	
ITO/PTAA/perovskite/C ₆₀ /BCP/metal	63.7	16.37	Sci. Adv. 5, eaax7537 (2019)	
ITO/SnO ₂ /perovskite/spiro-OMeTAD/Au	22.26	13.88	Nat. Energy 5, 596-604 (2020)	
ITO/PTAA/perovskite/C ₆₀ /BCP/Cu	30	18.6	Nat. Energy 6, 633-641 (2021)	
	18.1	19.3	Science 373, 902-907 (2021)	
ITO/PTAA/perovskite/C ₆₀ /BCP/Cu	50	19.2		
FTO/TiO ₂ /perovskite/Spiro/Au	31	17.53	Joule 5, 2420-2436 (2021)	
	12.84	20.1	Adv. Energy Mater. 12,	
ITO/PTAA/Al ₂ O ₃ /perovskite/C ₆₀ /SnO ₂ /Ag			2202287 (2022)	
ITO/NiO/DTAA/generalite/DCDM/DCD/Ag	18.52	20.35	Energy Environ. Sci. 16, 557-	
ITO/NiO _x /PTAA/perovskite/PCBM/BCP/Ag	18.52	20.35	564 (2023)	
ITO/PTAA/perovskite/C ₆₀ /BCP/Cu	26.9	21.1	Science 380, 823-829 (2023)	
	12.84	20.56	Adv. Mater. 36, 2309310	
ITO/PTAA/Al ₂ O ₃ /perovskite/C ₆₀ /SnO ₂ /Ag			(2024)	
FTO/NiO _x /Me-4PACz/perovskite/PCBM/SnO ₂ /Cu	14.61	22.73	This work	

Supplementary Table 4 | Structure, certified steady-state PCE, and aperture area of the

reported mini-modules.