1	Supplementary Information
2	
3	"Diagnostic Utility of Genome-wide DNA Methylation Analysis in Genetically Unsolved
4	Developmental and Epileptic Encephalopathies and Refinement of a CHD2 Episignature"
5	by LaFlamme et al.
6	

7 Supplementary Phenotype data

8

9 *Epivariants:*

10 chr13 hypermethylation and X;13 translocation: Individual T25808

Individual T25808 had hypermethylation along the chr13q and a corresponding translocation 46,XX,t(X;13)(q28;q14.2). This girl died at 7 months with the epilepsy syndrome of Epilepsy of Infancy with Migrating Focal seizures. Her development slowed from 6 weeks of age with loss of head and trunk control and decreased interaction. Explosive onset of focal seizures occurred at at 5.5 months, resulting in a 7-week admission until she died. EEG showed multifocal and generalized epileptiform activity; seizure recordings showed ictal migration between hemispheres. MRI was normal at 6 months. T25808 did not have any reports of retinoblastoma.

18 The clinical spectrum of chromosome 13 copy number variation underscores its dosage 19 sensitivity. For instance, individuals with Trisomy 13 typically have multiple congenital anomalies, 20 including heart defects, microphthalmia, polydactyly, cleft lip/palate, hypotonia, and severe 21 intellectual disability¹. Many individuals born with Trisomy 13 die in the first year of life. Individuals 22 with partial monosomy 13 have been reported to have multiple congenital anomalies, craniofacial 23 differences, intellectual disability, and retinoblastoma. While partial monosomy 13 is more like 24 Individual T25808, her chromosome 13 hypermethylation and any subsequent deactivation is 25 dependent on X chromosome inactivation, and, therefore, would not be uniform throughout all 26 cells. Interestingly, another individual with a balanced X;13 translocation of a similar region to our 27 case [46,XX,t(X;13)(q28;q14.1)] had failure to thrive, developmental delay, and unilateral 28 retinoblastoma, without seizures².

29

30 **CSNK1E** hypermethylation/repeat expansion:

31 **Family 1:** Individual T1440

32 Individual T1440 had harbor hypermethylation of the 5'UTR and intron 1 of CSNK1E due to an underlying repeat expansion. T1440 is a male (with an unaffected dizygotic male twin). He 33 34 presented with a brief <1 minute tonic-clonic seizure at 5 years. He had 5-15 second staring spells 35 at 6 years that resolved with valproic acid. He had learning difficulties noted at 4 years, and 36 developmental regression at 5 and 6 years with loss of understanding of his name or instructions, 37 and his speech deteriorated to monosyllabic words. MRI showed a right frontal venous angioma 38 and diffuse bilateral parietal parenchymal loss. EEG showed bilaterally synchronous slow spike-39 wave activity in about 50% of the sleep recording. Individual T1440's mother also has 40 hypermethylation and repeat expansion in CSNK1E; she has no known epilepsy or 41 neurodevelopmental symptoms.

42

43 Family 2: Individual 34167

44 Individual 34167 had hypermethylation of the 5'UTR and intron 1 of CSNK1E and is a female with 45 moderate intellectual disability who had onset of epileptic spasms around 9 months. She had 46 apparently normal development until seizure onset, at which time speech (babble) and motor 47 milestones (sitting, rolling) were lost. Epileptic spasms occurred in clusters associated with sleep. 48 They had flexor semiology, and initially responded well to ACTH. Recurrence of epileptic spasms 49 and onset of tonic seizures occurred at 18 months. At the last evaluation (12 years old), seizure 50 burden had been stable since the age of 3.5 years (4 clusters per month/1 per week). MRI was 51 normal. EEG findings included generalized spike wave, poly spike and slow wave, multi-focal 52 discharges, and abnormal background prior to initiation of ketogenic diet, which resulted in a 53 reported 90% improvement of the EEG.

54

55 **Family 3:** Individual UDN821227

Individual UDN821227 was found to harbor hypermethylation of the 5'UTR and intron 1 of
 CSNK1E due to an underlying repeat expansion. UDN821227 is a male with seizure onset around

3-4 years leading to developmental regression. Epilepsy includes drug-resistant seizures (tonicclonic, myoclonic, atonic, and absence) with continuous spike and slow waves during slow sleep on EEG. He is described as having mild intellectual disability, gastrostomy tube placement at 3years-old, poor speech, failure to thrive, abnormality of the uvula, abnormal epiglottis morphology, asthma, sleep apnea, restless sleep, history of gastroesophageal reflux, and recurrent infections. He has a diagnosis of Lennox-Gastaut syndrome.

Individual UDN821227's mother, who also has hypermethylation and a repeat expansion in *CSNK1E*, has no seizure history but has neurodevelopmental, cognitive, and sleep findings. She has a history of learning difficulties, including dyslexia, requiring placement in a special needs classroom from 4th grade onward. She reports speech difficulties, including slurred words and finding the right words. She also reports significant difficulties with sleep, including falling asleep and nighttime wakefulness that impact quality of life and daily functioning. MRI brain is reported as normal.

71

72 **DIP2B hypermethylation/repeat expansion:** Individual 8245

Individual 8245 had hypermethylation of the promoter region and exon 1 of *DIP2B*. He is a male of normal intellect with short stature (Patient 8245³). He had Epilepsy with myoclonic-altonic seizures (EMATs), preceding febrile seizures, generalized tonic-clonic seizures (GTCS), atonic and absence seizures, with seizures settling at 13 years. Hypermethylation was also present in his unaffected mother.

Individuals with hypermethylation and CGG-repeat expansion in the *DIP2B* gene have widely variable features including, developmental delay, learning disabilities, seizures, craniofacial differences, and recurrent infections⁴. Of note, apparently healthy or unaffected individuals have also been found to have hypermethylation of this region with a population frequency of ~0.1%. Given the relatively high population frequency and inheritance, hypermethylation as a cause for this individual's phenotype is unclear.

85 **BCLAF3 hypermethylation/repeat expansion:** Individual 33109

86 Individual 33109 was found to harbor hypermethylation in exon 1 of BLCAF3 due to an underlying 87 repeat expansion. Individual 33109 is a male with focal developmental and epileptic 88 encephalopathy, moderate intellectual disability, and autism spectrum disorder. He had normal 89 development until seizure onset with tonic-clonic seizures at 3 years when development slowed. 90 He had developmental regression at 4 years. He had drug-resistant epilepsy, including convulsive 91 status epilepticus (3 years 10 months), focal tonic seizures and focal clonic seizures (4 years 2 92 months), atypical absence seizures (4 years), atonic seizures (5 years 8 months), and focal 93 impaired awareness seizure (7 years). EEG showed a slow background with multifocal 94 discharges.

95 In sequencing analysis, inherited SCN1A variant а previous an 96 (NM 001165963.4:c.4096G>A, NP 001159435.1:p.Val1366lle) was detected in 33109, his 97 affected brother, and his unaffected mother. His 7-year-old brother had drug-responsive tonic-98 clonic seizures between 3 and 5 years of age with a normal EEG and MRI. He has normal 99 cognition with autistic features. As the proband's mother is unaffected, the proband and his 100 brother's phenotype are not consistent with SCN1A, and the variant is present in 5 individuals in 101 gnomAD, it is thought that the SCN1A variant alone is not the cause of 33109's phenotype.

102

103 **STX1B** hypermethylation/deletion: Individual 7067 and family

This family with Genetic Epilepsy with Febrile Seizures plus (GEFS+) had 7 affected individuals, with 5 undergoing molecular testing; there were another 7 more distant individuals with an unconfirmed history of seizures (Pedigree in Figure Supplementary Figure 12A). The proband (7067) is a male with Epilepsy with Myoclonic-Atonic Seizures (EMAtS) that evolved to Lennox-Gastaut syndrome in the setting of moderate intellectual disability, autism spectrum disorder and obstructive sleep apnea. At 14 months, he presented with GTCS and myoclonic seizures.

110 Convulsive status epilepticus occurred once at 18 months. Myoclonic-atonic, absence and tonic 111 seizures began at 2 years and non-convulsive status epilepticus at 12 years. Development was 112 normal prior to seizure onset, when he became more withdrawn. Seizure exacerbation at 4 years 113 was associated with regression in writing his name. At 7 years, his EEG showed generalized 114 polyspike-wave activity associated with myoclonic seizures. At 38 years, video-EEG monitoring 115 captured slow spike-wave increasing in sleep, generalized paroxysmal fast activity, frequent tonic 116 seizures with prominent apnea, atonic and clonic seizures. Neuroimaging (MRI and CT-brain) 117 was normal. Dysmorphic features included lumbar lordosis, clinodactyly, large flat feet with 118 prominent toes, and a large capillary haemangioma over the lumbar spine.

His sister (7068) had EMAtS and mild intellectual disability. She had GTCS with fever at 6 weeks. Later she had afebrile GTCS at 28 months, then developed myoclonic-atonic and absence seizures at 4 years. At 10 years, she developed focal impaired awareness seizures and non-convulsive status epilepticus. Development was always delayed and regression occurred at 8 years old on carbamazepine. An EEG at 12 years showed background slowing and generalized epileptiform activity. CT-brain was normal. She had myasthenia gravis and underwent thymectomy at 14 years.

Their father (7066), who died at >60 years, had epilepsy following a motor vehicle accident at 30 years. He had a possible febrile seizure at 18 months and, at 32 years, three generalized tonic-clonic seizures in sleep. EEG showed right anterior quadrant slowing, without epileptiform activity. MRI showed right frontal focal atrophy following the contusion and a large cisterna magna.

Their mother (7065) had Febrile Seizures Plus (FS+) with 10 febrile seizures from 6 months to 7 years of age, and afebrile GTCS from 11 years to 29 years. EEG showed left temporal slowing and CT brain was normal. The maternal grandmother (7215) had temporal lobe epilepsy (TLE) with focal aware and focal to bilateral tonic-clonic seizures from 15.5 years. EEG showed left temporal slowing and MRI was normal.

The proband (7067), affected sister (7068), affected mother (7065), and affected maternal grandmother (7215) all exhibited outlier hypermethylation of the promoter and TSS of *STX1B* (Figure 3). This hypermethylation was found to be associated with an underlying heterozygous deletion encompassing the *STX1B* promoter, TSS, exon 1, and part of intron 1 [chr16:31,009,063-31,010,847x1 (GRCh38/hg38)], which segregated with the non-acquired epilepsy in the family. This family had three *CACNA1H* variants identified but no variant segregated perfectly through the family (Family A⁵, Family B⁶, Family A⁷).

144

145 *Episignatures*:

146 **ANKRD11 (KBGS_MRD23):** Individuals T23952 and 9714

147 Individual T23952 had a *de novo* pathogenic stop gain variant in *ANKRD11* 148 (NM_001256183.2:c.2512C>T, NP_001243112.1:p.Arg838*). T23952 had developmental 149 regression at 5 months with loss of eye contact. At 7 months, eyelid myoclonias were observed, 150 followed by epileptic spasms, with seizure offset at 9 months. Facial features were characteristic 151 of *ANKRD11* facies, including a triangular face, bulbous nose, thin upper lip, featureless philtrum, 152 broad bushy eyebrows, large prominent ears, and thin upper lip (Figure S16). She was of 153 borderline intellect and had anxiety.

154 Individual 9714 had a *de novo* pathogenic stop gain variant in *ANKRD11* 155 (NM_001256183.2:c.6871G>T, NP_001243112.1:p.Glu2291*). She is a female who had 156 neonatal onset of tonic-clonic seizures, which stopped at 18 years. Functional neurological 157 seizures began at 27 years. She had developmental delay, and at 7 years she was of low average 158 intellect. Individuals with pathogenic *ANKRD11* variants (KBG syndrome) are reported to have
 unique facial dysmorphisms, skeletal anomalies, intellectual disabilities, behavioral issues,
 seizures, and brain malformations⁸.

162

163 SETD1B (IDDSELD): Individual 36369

Individual 36369 was found to harbor a pathogenic stop gain variant in *SETD1B* (NM_001353345.2:c.4360C>T, NP_001340274.1:p.Arg1454*). 36369 is a male with absence with eyelid myoclonia seizure onset around 2 years old. At 10 years, he developed myoclonic seizures. Initially, he presented with hypotonia and developmental delay at 1 year of age. He has a moderate intellectual disability and is obese. EEG has shown generalized spike wave, polyspike and slow wave, and photosensitivity response (absence with eyelid myoclonia seizures triggered by eye closure). His father has temporal lobe epilepsy and was unavailable for genetic testing.

171 Individuals with *SETD1B*-related neurodevelopmental disorders are reported to have
172 developmental delays (mainly affecting speech and language), intellectual disability, seizures
173 (including absence with eyelid myoclonia seizures), autism spectrum disorder and autism-like
174 behaviors, and additional behavioral concerns⁹.

175

176 **TET3 (BEFAHRS):** Individual T22466

177 Individual T22466 was found to harbor a maternally inherited, likely pathogenic small indel in 178 *TET3* (NM_001287491.2:c.5243dup, NP_001274420.1:p.Thr1749Hisfs*5). T22466 is a female 179 with Developmental and Epileptic Encephalopathy and Spike-Wave Activation in Sleep (DEE-180 SWAS) and mild intellectual disability. She had mild gross motor and language delay in the first 181 year of life. At 3 years 4 months she developed occasional focal to bilateral tonic-clonic seizures 182 and focal impaired awareness seizures and her development progressed slowly. At 6 years she 183 developed stuttering and language regression associated with frequent independent high amplitude bi right and left temporal parietal discharges while awake (sleep not captured). She has macrocephaly (>98th centile), and MRI is normal. Her mother also has the *TET3* variant, a large head size (>90th centile), and learning difficulties; her maternal grandmother had epilepsy in childhood.

Individuals with *TET3*-related disorders have been reported to have variable phenotypes
 including global developmental delay, intellectual disability, dysmorphisms, and multiple
 congenital anomalies¹⁰.

191

192 **UBE2A (MRXSN):** Individual 26720

193 Individual 26720 had a maternally inherited, likely pathogenic variant in UBE2A 194 (NM 032590.5:c.376G>A, NP 115979.3:p.Ala126Thr). This adolescent had onset of GTCS at 28 195 months. At 6 years, he developed focal seizures and focal to bilateral tonic-clonic seizures. He 196 had developmental delay without regression, and now has mild intellectual disability and ADHD. 197 He had dysarthria and dysmorphic features including a short, upturned nose with a flattened nasal 198 bridge, short well-defined philtrum with a tented upper everted lip, high arched eyebrows, full 199 cheeks, two anterior left-sided ear tags, short digits, short broad feet and hypoplastic nails. EEG 200 showed bilateral independent centrotemporal discharges. MRI at 2 years showed sub-cortical 201 white matter signal change.

Individuals with UBE2A-related X-linked intellectual disability have been reported to have
 facial dysmorphisms, hirsutism, hypoplastic genitalia, short stature, hypotonia, seizures, severe
 intellectual disability¹¹.

205

206 SMS (MRXSSR): individual 31067

207 Individual 31067 had a maternally inherited, likely pathogenic variant in SMS (NM 004595.5:c.328C>G, NP 004586.2:p.Arg110Gly). 31067 is a male with Developmental and 208 209 Epileptic Encephalopathy and moderate intellectual disability. Absence seizures were diagnosed 210 at 17 months but may have been occurring as early as 6 months. Other seizure types include 211 frequent myoclonic seizures and rare generalized tonic-clonic seizures. EEG showed generalized 212 spike-wave and polyspike-wave activity with background slowing. His development was delayed 213 at 6 months and regression occurred at age 2.5 years. He had speech dyspraxia with nasal 214 speech, hypotonic cerebral palsy, and an ataxic gait. Dysmorphic features included friable hair, 215 moderately high arched palate, thin upper lip, fine eyebrows, low anterior hairline and long, thin 216 fingers and toes. He has osteoporosis with a history of fractures. MRI brain was normal.

Individuals with *SMS*-related X-linked intellectual disability disorders (Snyder-Robinson
Syndrome/Spermine Synthase Deficiency) have been reported to have hypotonia, developmental
delays and moderate to and severe intellectual disability, speech abnormalities (nasal, dysarthric,
coarse, or absent), facial dysmorphisms (prominent lower lip; high, narrow, or cleft palate),
asthenic (long and narrow) build, osteoporosis leading to fractures, kyphoscoliosis, short stature,
variable motor disability and gait abnormalities, and seizures¹².

223

224 *KDM2B* (KDM2B): Individual 33769

225 Individual 33769 was found to harbor a paternally inherited variant in KDM2B 226 (NM 032590.5:c.1046G>C, NP 115979.3:p.Arg349Pro). Individual 33769 displays 227 consistent macrocephaly and focal epilepsy, with their diagnosis of PTEN 228 (NM 000314.8:c.253+5G>A, de novo). The individual's father (33770) is unaffected, and, 229 therefore, the paternally inherited KDM2B variant is unlikely to contribute to the individual's 230 phenotype.

232 Episignature Negative with CHD2 VUS: Individual ILGC_1081

233 Individual ILGC 1081 had normal development until 10 years of age. Seizure onset was at 6 234 years of age with focal semiology from the left temporal lobe. She was found to harbor a VUS in 235 CHD2 (NM 001271.4:c.5002C>T, NP_001262.3:p.His1668Tyr) that was not maternally inherited, 236 but her father was unavailable for testing. Because ILGC_1081 was found to be negative for the 237 CHD2 episignature in conjunction with a lack of clinical evidence for CHD2-encephalopathy (i.e. 238 absence of myoclonic or photosensitive seizures), the CHD2 variant was determined to be likely 239 benign. А maternally inherited pathogenic CACNA1A variant 240 (NM_001127221.1:c.5559_5560delCA, NP_001120693.1:p.Tyr1853*) was also found. Her 241 maternal side of the family has other affected members (half-sibling with febrile seizures, maternal 242 aunt, and maternal grandmother with epilepsy, not genetically tested). Finally, her MRI was 243 remarkable for mild vermian hypoplasia, which can be seen in calcium channel diagnoses. Thus, 244 the pathogenic variant in CACNA1A was determined to be more consistent with her clinical 245 phenotype. Her seizures have been intractable to multiple medications and placement of a 246 responsive neurostimulation device.

247 Supplementary Methods

248

249 **Cohort Subjects and Controls**

250 Unaffected, presumably healthy controls without DEEs include 111 healthy controls obtained 251 through the Parkinson's Progression Markers Initiative (PPMI)¹³, institutionally available data for 252 335 community control individuals without cancer from the St. Jude Life (SJLIFE) study¹⁴, and 29 253 unaffected parents or siblings of participants in our study cohort (Supplementary Data 1). 254 Analytical controls include six individuals with known rare DMRs for validation of the 255 computational outlier approach. These include two probands with Baratela-Scott syndrome (BSS) 256 harboring XYLT1 heterozygous hypermethylation on one allele and pathogenic variants on the 257 other allele, one heterozygous XYLT1 hypermethylation carrier mother of child with BSS, and 258 three individuals with Fragile X syndrome harboring FMR1 hypermethylation (two males, one 259 female) obtained from the Coriell Institute for Medical Research (Table S1). Further analytical 260 controls include 26 individuals with DEEs caused by pathogenic variants in genes with known 261 episignatures to validate the episignature screening, including n=17 CHD2, n=1 CHD2 VUS, n=1 262 KDM5C, n=1 SETD1B, n=1 KMT2A, n=1 SMARCA2, n=2 SMC1A, and n=2 CNVs (Table S4). 263 Finally, we included 116 analytical controls comprised of individuals with DEEs who had 264 previously identified pathogenic variants in genes without known episignatures. These 116 265 individuals better age match our unsolved DEE cohort and were used as further controls for 266 comparison of rare DMRs and episignatures.

A short application for access to the PPMI dataset is required. This may be found by navigating to https://www.ppmi-info.org/ and choosing to "apply for data access." Once granted, details about the sample collection and methylation array data acquisition are given as "genetic data" under "methylation profiling" in a PDF called <Project 140: Comprehensive Methylation Profiling Methods.pdf>. Sample distribution and other qualitative metadata for the cohort may be found in "study data" under "subject characteristics."

274	Reproducibility of DNA Methylation Array Replicates for Outlier Analysis				
275	For individuals with replicate array data (n=29 individuals, n=61 total samples), we checked fo				
276	the reproducibility of autosomal DMRs across different batches for the same individual. Of the 2				
277	individuals, 17 of the individuals had perfect concordance across replicates for the DMRs that				
278	were called by the algorithm; six individuals had DMRs called for one replicate that could be				
279	confirmed through manual inspection. The remaining 6 individuals had at least 1 DMR that was				
280	not reproducible across replicates. Of the total number of DMRs for the 61 replicate samples,				
281	80% were reproduced across the replicates.				
282					
283	Targeted Enzymatic Methyl-Sequencing Library Preparation, Target Enrichment, and				
284	Sequencing				
285	This approach uses two sets of enzymatic reactions to convert unmodified cytosines to uracil,				
286	allowing for the detection of methylated vs.unmethylated cytosines without the need for bisulfite				
287	conversion ¹⁵ .				
288	Approximately 200-300ng of peripheral blood-derived genomic DNA input for 9 samples				
289	(three positive controls (XYLT1 and FMR1 hypermethylation) and three DEE probands with				
290	DMRs-of-interest) were diluted to 52μ L with 0.1X TE pH 8.0 in a 96 microTUBE-50 AFA fiber plate				
291	(PN 520168) and fragmented on the Covaris LE 220 with SonoLab 7.3 software (Covaris Inc.). A				
292	120-second program with peak incident power (W) of 453.0, duty factor (%) of 15.2, and cycles				
293	per burst (cpb) of 1000 resulted in an average fragment size of 285 bp. Then, $50 \mu L$ of each sample				
294	was transferred to a fresh plate to begin library construction. End repair, A-tailing, and the ligation				
295	of the 0.4µM EM-Seq adaptor				
296	(A5mCA5mCT5mCTTT5mC5mC%mCTA5mCA5mCGA5mCG5mCT5mCTT5mC5mCGAT5mC*				
297	T and [Phos]GAT5mCGGAAGAG5mCA5mCA5mCGT5mCTGAA5mCT5mC5mCAGT5mCA)				
298	were performed with NEBNext DNA Ultra II reagents according to the manufacturer's instructions				

299 (PN 101977). Products were then purified by 1.18x bead clean up, using Twist Total Purification 300 Beads (PN 101979) and eluted in 30µL water. About 28µL of each eluate was used as input for 301 the 50µL oxidation reaction by TET2, proteinase K stop digestion, 1.8x bead clean-up, formamide 302 denaturation, APOBEC deamination, and 1.0x bead purification described previously¹⁵. Then, 303 20µL of each deaminated library was used as input in an amplification reaction with 25µL of 304 NEBNext Q5U Master Mix (#M0597) and 1µM (5µL) of primer from NEBs 96 Unique Dual Index 305 Primer Pairs Plate (#E7166A) as follows: 30 sec at 98°C; cycling 10 times, 10 sec at 98°C, 30 306 sec at 62°C, and 60 sec at 65°C; with a final extension for 5 minutes and hold at 4°C.

307 A 0.9x bead purification was performed on each amplified library, and 20 µL of each eluate 308 was used as input for target enrichment with the Twist Biosciences Fixed Human Methylome 309 Panel. The 8-plex hybridization captures were created with 200ng of each sample combined to 310 create a 1.6ug pool. Then, 4µL of Twist's Fixed Methylome Panel (PN 105521), 8µL of Universal 311 Blockers, 5µL of Blocker Solution (#100767), and 2µL of Methylation Enhancer (#103558) were 312 added to each pool and then dried down using an Eppendorf Vacufuge Plus with V-AQ setting @ 313 45°C for approximately 1 hour to create a pre-hybridization solution. Twist's Fast Hybridization 314 mix (PN 104182) was heated at 65°C for at least 10 minutes until all precipitates dissolved, and 315 20µL was added directly to each of the dried pools without allowing the reagent to cool. Then, 316 30µL of Hybridization Enhancer was added to the top of each pool, and these pools were 317 transferred to a thermal cycler set to a 95°C hold. Once the lid was sealed, a 95°C hold for 5 318 minutes was initiated, and samples were subsequently held overnight at 60°C for a minimum of 319 16 hours. Then, 100µL of Streptavidin Binding Beads (#100984) were washed with 200µL RT 320 Fast Binding Buffer, placed on a magnet for 1 minute, supernatant removed, for a total of 3 321 washes, a final 200µL FBB was added, and the beads were resuspended by vortexing. Each 322 hybridization pool (8-plex) was added directly from the 60°C thermocycler to a tube of washed, 323 resuspended Streptavidin Binding Beads and mixed at RT on a rotisserie axel for 30 minutes. 324 Pools were then pulse spun and placed on a magnet for 1 minute. The supernatants were

325 removed and discarded. Tubes were removed from their magnets, and 200µL of preheated (62°C) 326 Fast Wash Buffer 1 was added to each pool and pipette mixed. Pools were then incubated at 327 62°C for 5 minutes, pelleted on magnets for 1 minute, and the supernatant removed and 328 discarded. Then, 200µL FWB1 addition and incubation were repeated, tubes were spun down, 329 and bead-sample mixtures were transferred to fresh 1.5mL tubes before placing them on 330 magnets. The remainder of the washes and final elution of enriched 8-plex libraries were 331 performed according to the manufacturer's instructions (Twist Biosciences). Then, 30µL of each 332 final enriched library was transferred to a clean tube for Illumina short-read sequencing.

333 All inputs and libraries were evaluated and guantified using D1000HS tape for TapeStation 334 (Agilent) and Qubit[™] 1X dsDNA HS (Invitrogen) assay kits. The average final library size was 335 370 bp. Sequencing was performed on the NovaSeg 6000 platform in paired-end mode with 150 336 bp per read. Paired-end reads (151 bp) for EM-Seq were collected from NovaSeq 6000 runsand 337 then analyzed using bcl2fastq. The hg38 noAltHla UCSC.fa reference file supplied through FTP by Twist Biosciences was used to create a reference genome in FASTA format. Samtools¹⁶ and 338 339 picard were used to create an index and ref sequence dictionary. The raw FASTQ data underwent 340 guality control, processing and downstream analysis using the nf-core/methyseg bioinformatics pipeline. To extract the methylation calls using MethylDackel¹⁷, we invoked the '-aligner 341 342 bwameth' flag in the nf-core/methyseg pipeline. EM-Seg samples were trimmed using Trim 343 Galore! (Krueger, Felix, 2015, v. 0.6.6) and cutadapt, and subsequently aligned using bwameth 344 (default parameters), sambamba, and samtools. Duplicate reads were marked (picard) with an 345 optical pixel distance of 2500 for a patterned S4 flow cell (Illumina). The 346 covered targets Twist Methylome hg38 annotated collapsed.bed file with TARGET and 347 BAITS was converted to an interval list, and performance metrics were generated (fold-80 base 348 penalty, HS library size, % duplicates, % off bait). MethylDackel was used to generate a 349 methylation bias plot, likely variant sites were excluded (--maxVariantFrac 0.25), minimum depth 350 of 10X (--minDepth 10) was set, and CpG calls were generated. Additional filters were added to

351 generate global methylation cytosine reports, including CHH and CHG sites. Mapping efficiency,

352 mapped reads (samtools), and the global average CpG % methylation and non-CpG conversion

353 ratio (%) for each sample were generated from the cytosine report (methyldackel).

354

355 Exome and Genome Sequencing

Variants for individual samples were called from ES and GS following the GATK best practices workflow (including VQSR)¹⁸. Minimum genotype quality (\geq 20), minimum coverage depth (\geq 7), and minimum variant allele frequency (\geq 20%) thresholds were applied with Bcftools¹⁶. Variants were annotated with population frequency data (gnomAD¹⁹, ExAC²⁰, ESP6500²¹, and 1000 Genomes²²), in silico scores (dbNSFP²³), and potential clinical relevance (ClinVar²⁴ and InterVar²⁵) via ANNOVAR²⁴ and InterVar²⁵) via ANNOVAR²⁶. Additional in silico scores (LOFTEE²⁷, CADD²⁸, and SpliceAl²⁷) were applied using VEP²⁸.

363

364 **RNA-Sequencing and Gene Expression Analysis**

365 RNA was extracted from flash-frozen cell pellets obtained from cultured fibroblasts using the 366 Quick-RNA Miniprep Kit (Zymo Research). RNA was guantified using the Quant-iT RiboGreen 367 RNA assay (ThermoFisher), and quality was checked by the 2100 Bioanalyzer RNA 6000 Nano 368 assay (Agilent) or 4200 TapeStation High Sensitivity RNA ScreenTape assay (Agilent) before 369 library generation. Libraries were prepared from total RNA with the TruSeg Stranded mRNA 370 Library Prep Kit according to the manufacturer's instructions (Illumina PN 20020595). Libraries 371 were analyzed for insert size distribution using the 2100 BioAnalyzer High Sensitivity kit (Agilent), 372 4200 TapeStation D1000 ScreenTape assay (Agilent), or 5300 Fragment Analyzer NGS fragment 373 kit (Agilent). Libraries were quantified using the Quant-iT PicoGreen ds DNA assay 374 (ThermoFisher) or by low-pass sequencing with a MiSeq nano kit (Illumina). Paired-end 100-cycle 375 sequencing was performed on a NovaSeg 6000 (Illumina). The raw FASTQ data underwent 376 processing and analysis utilizing the nf-core/maseg bioinformatics pipeline²⁹.

378 Whole-Genome Bisulfite Sequencing

379 The EZ-96 DNA Methylation-Gold MagPrep (Zymo Research) was used for bisulfite conversion. 380 Libraries were prepared from converted DNA using the xGen Methylation-Sequencing DNA 381 Library Preparation Kit (Integrated DNA Technologies). Libraries were analyzed for insert size 382 distribution using the 2100 BioAnalyzer High Sensitivity kit (Agilent), 4200 TapeStation D1000 383 ScreenTape assay (Agilent), or 5300 Fragment Analyzer NGS fragment kit (Agilent). Libraries 384 were quantified using the Quant-iT PicoGreen ds DNA assay (ThermoFisher) or by low-pass 385 sequencing with a MiSeq nano kit (Illumina). Paired-end 150-cycle sequencing was performed 386 on a NovaSeg 6000 (Illumina).

387

388 Functional Annotation and Enrichment Analysis of CHD2 Episignature Probes and DMRs 389 An in-house Perl script 390 (https://github.com/MeffordLab/2024 GenomeWideMethylationPaper/blob/main/generate rando 391 m_genomic_ranges.pl) was used to systematically generate random genomic ranges (simulated 392 genomic regions) for comparison in the enrichment analysis simulating background. The script, 393 featuring a function named generate genomic ranges, allows for user-defined parameters such 394 as the number of genomic ranges, minimum and maximum lengths, and a specified set of 395 chromosomes. Chromosome information was extracted from a locally stored file containing the 396 lengths of each chromosome. The script then randomly assigned start and end positions within 397 the specified length constraints for each genomic range, associating them with randomly selected 398 chromosomes. Subsequently, the resulting genomic ranges were sorted based on chromosome 399 names and start positions. Finally, the sorted genomic ranges were exported to a BED file in tab-400 delimited format, facilitating downstream annotation for comprehensive analysis. To ensure 401 robustness, we generated three distinct sets of simulated genomic regions (Replicate-1,

402 Replicate-2, and Replicate-3, Table S9), each comprising the same total number of regions as
403 CHD2-Probes/DMRs (n=4767, Table S8) and of varying, comparable length (50bp-3,100bp),
404 enabling meaningful comparisons in subsequent analyses.

405 For annotation purposes, we utilized the GREEN-DB³⁰ collection, encompassing various 406 regulatory elements (bivalent regions, enhancers, and promoters sourced from ENCODE, 407 FANTOM5, DiseaseEnhancers, BENGI, DECRES, etc.), transcription factor binding site (TFBS) 408 from UCSC genome browser tracks), and DNase peaks (from UCSC genome browser tracks). 409 Direct links to these databases provided are now in 410 https://github.com/MeffordLab/2024 GenomeWideMethylationPaper/blob/main/selected Green 411 VarDB links.sh. These annotations were applied to both the CHD2 Episignature Probes with 412 Array and WGBS DMRs (Table S8) and the simulated replicate genomic regions (Table S9) using 413 bedtools '-intersect' option with at least 90% overlap.

414 To assess the enrichment of features (Various regulatory elements, TFBS, and DNase 415 sites) in the CHD2-Probes/DMRs, we computed the enrichment ratio (Table S10) with respect to 416 the simulated genomic regions. This ratio was defined as the proportion of features in real 417 regions divided by the total number of real regions, normalized by the proportion of features in 418 simulated regions divided by the total number of simulated regions. Importantly, this method 419 accounts for comparability in size and other relevant characteristics of genomic regions in both 420 datasets. To validate the observed enrichment, two-sided Fisher's Exact tests (Table S10) were 421 performed using the R statistical environment, ensuring the statistical robustness of the 422 comparative analyses.

Sample_Plate / Batch

. mefford_sjcrh_dee_methylation_10~23 • mefford_uwcmg_dee_methylation_2~2 mefford_sjcrh_dee_methylation_11~24 mefford_uwcmg_dee_methylation_2~3 mefford_sjcrh_dee_methylation_4~8 mefford_uwcmg_dee_methylation_2~4 mefford_sjcrh_dee_methylation_5~9 mefford_uwcmg_dee_methylation_2~5 • mefford_sjcrh_dee_methylation_6~10 mefford_uwcmg_dee_methylation_2~6 . mefford_sjcrh_dee_methylation_7~11 mefford_uwcmg_dee_methylation_3~7 mefford_sjcrh_dee_methylation_7~12 mefford_uwcmg_dee_methylation_3~r mefford_sjcrh_dee_methylation_8~14 Plate 26_06-10-19 mefford_sjcrh_dee_methylation_9~15 Plate 27_06-11-19 SJNORM mefford_sjcrh_dee_methylation_9~17 Plate 28_06-11-19 Plate 29_06-20-19 mefford_sjcrh_dee_methylation_9~19 . mefford_uwcmg_dee_methylation_1~1 • PPMI

Sample_Plate / Batch

mefford_sjcrh_dee_methylation_10~23	•	mefford_uwcmg_dee_methylation_2~2
mefford_sjcrh_dee_methylation_11~24	•	mefford_uwcmg_dee_methylation_2~3
mefford_sjcrh_dee_methylation_4~8	•	mefford_uwcmg_dee_methylation_2~4
mefford_sjcrh_dee_methylation_5~9	•	mefford_uwcmg_dee_methylation_2~5
mefford_sjcrh_dee_methylation_6~10	•	mefford_uwcmg_dee_methylation_2~6
mefford_sjcrh_dee_methylation_7~11		mefford_uwcmg_dee_methylation_3~7
mefford_sjcrh_dee_methylation_7~12		mefford_uwcmg_dee_methylation_3~r
mefford_sjcrh_dee_methylation_8~14	•	Plate 26_06-10-19
mefford_sjcrh_dee_methylation_9~15	•	Plate 27_06-11-19
mefford_sjcrh_dee_methylation_9~17	•	Plate 28_06-11-19
mefford_sjcrh_dee_methylation_9~19	•	Plate 29_06-20-19
mefford_uwcmg_dee_methylation_1~1		PPMI

426 **Supplementary Figure 1**. Correction of DNA methylation array batch effects detected through 427 PCA analysis. **A**. principal component analysis (PCA) plot using β values for probes located on 428 chromosome (chr) 1 for all samples (n=1238 methylation array samples) after filtering out n=21 429 PCA outlier samples. Sample plate/batch (also listed in Supplementary Data 1B and 1C) labeled 430 as "mefford" denote methylation arrays were performed at the UW or SJCRH for individuals with 431 DEEs and controls as described. SJNORM plates indicate methylation arrays run for presumably 432 healthy controls at SJCRH as a part of the SJLIFE study. A clear batch effect on PC1 is evident 433 between the SJNORM samples and the rest of the samples included in this study. Although 434 controls used from the PPMI study were run at a different institution, there is no batch effect with 435 the PPMI cohort and our other samples. **B**. PCA plot after performing ComBat analysis, as 436 detailed in the methods, where it is evident that the batch effect is eliminated. As a validation, 437 DMR outlier analysis was performed (1) with batch correction of SJNORM as displayed and (2) 438 with batch correction accounting for every batch as shown in the figure legend. Method (1) was 439 chosen as the best approach, since method (2) resulted in the overcorrection and the loss of a 440 significant disease-causing DMR with a robustly underlying DNA defect.

441

Supplementary Figure 2. DMR plots from rare outlier analysis of known hypermethylation events. **A.** DMR plot of the *XYLT1* 5'UTR and exon 1 showing two individuals with Baratela-Scott syndrome (BSS) with hemizygous hypermethylation (red) around β =~1 compared to controls (black). Each inflection point corresponds to an individual CpG probe from the array. These individuals with BSS harbor hypermethylation of *XYLT1* on one allele and a deletion

encompassing this region on the other, represented in the schematic to the right. One unaffected mother and two other carriers (red) carry heterozygous hypermethylation around β =0.5. **B.** DMR plots of the *FMR1* 5'UTR and exon 1 with individuals split by males (left) and females (right) for targeted sex chromosome outlier DMR analysis. Fragile X males and females are clearly hypermethylated (β =~1) compared to their counterpart controls.

- 454
- 455

Supplementary Figure 3. Distribution of outlier DMRs across samples. Distribution plots
showing sample density (left) and sample counts (right). A. DMRs called on autosomes
(n=2,185) are in purple for the cohort (n=1,221 array samples analyzed after positive control
samples n=3 LCL and n=2 saliva removed from final analysis), B. DMRs called on chrX (n=49)
for male samples (n= 652 array samples analyzed) are in green, and C. DMRs called on chrX

- 462 (n=27) for female samples (n= 569 array samples analyzed) are in blue. In all cases, the
- 463 majority of samples carry only 1 DMR, indicating that the outlier criteria were successful in
- 464 identifying rare DMRs.
- 465

Supplementary Figure 4. Validation of known outlier DMRs using targeted EM-seq. A. IGV view
of targeted EM-seq reads at the *XYLT1* 5'UTR and exon 1 that are hypermethylated in an
individual with BSS (upper) compared to methylation-negative controls (middle and lower). B. IGV
screenshot of targeted EM-seq reads at the *FMR1* 5'UTR and exon 1 hypermethylated in Fragile
X male and female individuals (middle and lower) compared to methylation-negative control
(upper).

Supplementary Figure 5. Validation of rare outlier DMRs called from methylation array in individuals with unsolved DEEs using targeted EM-seq. A. IGV view of *CSNK1E* 5'UTR and intron 1 validating heterozygous hypermethylation in two individuals with unsolved DEEs (upper and middle) compared to methylation-negative control (lower). B. IGV view of *BCLAF3* 5'UTR validating hemizygous hypermethylation called from methylation array in a male individual with unsolved DEEs (lower) compared to methylation-negative controls (upper and middle).

482 Supplementary Figure 6. Validation of rare outlier DMRs on chr13 in a single individual using 483 targeted EM-seq. Representative images depict IGV views for 3/26 DMRs on chr13 for an 484 individual with unsolved DEE (upper panel of each box) compared to a control (lower panel of 485 each box).

Supplementary Figure 7. Individual with unsolved DEE displaying multiple hypermethylated
DMRs across chr13. DMR plots depicting DNA methylation array data are shown for all n=26
outlier DMRs called for an individual with unsolved DEE (red) compared to controls (black).

Supplementary Figure 8. Family pedigrees for a cohort of individuals with unsolved DEEs displaying hypermethylation of the 5'UTR and exon 1 of *CSNK1E*. Pedigrees show the inheritance patterns of *CSNK1E* hypermethylation and affected vs. unaffected status across the families. The lower table shows the data types analyzed from each family and a summary of any associated results. The schematics shown on the left panel were created with BioRender.com and released under a Creative Commons Attribution-Non-Commercial-Noderivs 4.0 International License (CC-BY-NC-ND).

503 **Supplementary Figure 9.** Dropout Analysis of RNA-seq data for *CSNK1E* from human-derived 504 fibroblasts by family. OUTRIDER predicted expression plot is shown on the left and Q-Q plot on 505 the right. **A**. Proband 2 "drops out" for *CSNK1E* expression (*padj*=0.00112276, *z*Score=-5.63, 506 log₂FC=-0.55) compared to Mother 2 and control fibroblast cohort of 139 publicly available

- samples³¹. B. Proband 3 "drops out" for *CSNK1E* expression compared to Father 3 and the control
 fibroblast cohort (*padj*=0.00228623, zScore=-5.54, log₂FC=-0.53). C. Mother 3 "drops out" for *CSNK1E* expression compared to Father 3 and the control fibroblast cohort (*padj*=0.021391407,
 zScore=-5.02, log₂FC=-0.47).

В

D

+ BCLAF3^{skewed} (CGG)¹⁰⁰⁰ BCLAF3^{syper} (CGG)³⁰⁰⁰

514 Supplementary Figure 10. Outlier hypermethylation of regions underlying known and novel 515 repeat expansions. A. DMR plot for outlier hypermethylated DMR at the DIP2B promoter and 516 exon 1 in a proband with unsolved DEE (repeated twice on the methylation array) and his mother 517 (both in red). **B**. Pedigree showing inheritance pattern of the *DIP2B* DMR. **C**. DMR plot of targeted 518 X chromosome analysis in males depicting outlier hypermethylated DMR at an intergenic region 519 (by GRCh37/hg19 annotation) and exon 1 of an uncharacterized gene BCLAF3 (by GRCh38/hg38 520 annotation) in a male proband with unsolved DEE. D. Pedigree shows CGG BCLAF3 repeat 521 expansion is inherited from the mother and expanded in the proband. Data for the repeat 522 expansion are shown in Figure S11.

Supplementary Figure 11. Long-read sequencing identifies a novel repeat expansion at the 5'UTR of *BCLAF3*. ONT long-read sequencing reads in IGV phased for 5mC for the proband validating *BCLAF3* hypermethylation (top panel). Long-read sequencing further indicates a novel ~2,500-3,000bp CG-rich repeat expansion (arrows). Haplotype resolved ONT long-read sequencing reads in IGV for the proband's mother (bottom panel) displaying smaller ~700-1,000bp CG-rich repeat expansion (arrows). Haplotype resolution also indicates that the mother's

- 531 X-chromosome inactivation is skewed against the repeat allele, not a random 50/50
- 532 hypermethylation across both X chromosomes.

Supplementary Figure 12: Hypermethylation of the *STX1B* TSS and promoter validated by
targeted EM-seq in a family with GEFs+ phenotypes. A. Extended pedigree for the family of
proband 7067 displaying related phenotypes throughout the maternal side and extended family.
B. Coverage traces from targeted EM-seq data depict the proportion of methylated (red) and
unmethylated (blue) CpGs in the *STX1B* DMR. Hypermethylation is validated, and boundaries of
DNA methylation are extended in proband, affected sister, affected mother, and affected maternal
grandmother. The unaffected brother and father are unmethylated.


```
543
```

Supplementary Figure 13: A deletion encompassing intron 1, exon 1, the TSS, and the promoter of *STX1B* in a family with GEFs+ phenotypes. **A**. Schema of PCR validation strategy, including the wild-type (WT) and deletion (del) alleles. **B**. Control PCR showing the breakpoint regions on the WT allele (orange and green) where a PCR product is obtained for the unaffected brother and father. This contrasts with the PCR shown in Figure 3C, where no PCR product is obtained for the unaffected brother and father for the primer pair that spans the breakpoints, indicating that they each do not carry the deletion.

Supplementary Figure 14. Outlier "DMRs" at chr2 represent copy number deletion. A. DMR plots showing 10 representative "hypomethylated DMRs" across 2q37.3 for an individual with unsolved DEE (run in triplicate, red) and one control (red). B. CNV calling from the array with the R package "conumee" detects copy number deletion overlapping with chr2 DMR locus in individual with unsolved DEE. C. GS of trio identifies inherited homozygous copy number deletion in proband.

Supplementary Figure 15. Outlier "DMR" at *LINGO1* intron represents copy number deletion. Annotation track showing the location of DMR in different *LINGO1* transcripts (upper). DMR plot showing hypomethylated DMR detected in several DMR carriers, including a proband with two replicates and a mother. GS detects inherited copy number deletion in the proband (lower).

Supplementary Figure 16. Outlier hypermethylated DMR at *CFAP36* due to a tandem duplication. A. DMR plot showing hypermethylation at *CFAP36* in a proband with unsolved DEE and mother. B. Pedigree depicting inheritance pattern of DMR. C. IGV screenshot of targeted ONT long reads phased for 5mC at DMR region validating hypermethylation called from the array.
D. IGV screenshot showing the location of the breakpoints of the tandem duplication and associated "dip" in coverage. Some but not all the reads showing the breakpoint are colored. The

- 571 upstream breakpoint (left) was not included in the adaptive sampling target region and therefore
- 572 has lower coverage compared to the target region.

Supplementary Figure 17. Inconclusive episignature results. An example of inconclusive results for Potocki-Lupski syndrome (PTLS) episignature. Individual T930B (red) was reported as inconclusive for PTLS due to a low MVP score of 0.053 and inconsistent MDS clustering between cases (purple) and unaffected controls (green). Inconclusive episignature results are reported with the caveat that further follow up or investigation may be warranted if there is a clinical phenotype consistent with the inconclusive episignature in question.

581

Supplementary Figure 18. Diagnosis of *ANKRD11* enabled by episignature screening. **A.** Photos of affected individual displaying dysmorphic features, including triangular face, bulbous nose, thin upper lip, featureless philtrum, broad bushy eyebrows, large prominent ears, thin upper lip. **B.** Multidimensional scaling (MDS) plot showing how proband (red) clusters with KBGS_MRD23 episignature (purple). **C.** IGV screenshot of a pathogenic variant in *ANKRD11* detected by exome sequencing. **D**. PCR validation and segregation of the variant. **E.** Pedigree indicating that the variant occurs *de novo*.

591

Supplementary Figure 19. Diagnosis of *ANKRD11* enabled by episignature screening. **A**. MDS plot showing proband (red) clustering with KBGS_MRD23 affected controls (purple, left) and further clustering with the secondary KBGS signature (purple, right). **B**. Sanger sequencing validation and segregation of pathogenic variant recovered from **C**. Two low coverage GS runs showing the presence of the pathogenic variant. **D**. Familial pedigree illustrating multiple

597 generations and manifestations of epilepsy. "Array" in red indicates that DNA methylation array 598 on proband and additional affected family members (n=8). The red (+) indicates the individual 599 was episignature positive, and (-) indicates episignature negative. Since the variant is *de novo* 600 and not present in any of the tested affected family members, *ANRKRD11* variation is not the 601 cause of the familial epilepsy but explains the more severe phenotype of 9714.

604 **Supplementary Figure 20.** Diagnosis of *SETD1B* enabled by episignature screening. **A**. MDS

605 plot showing clustering of the proband (red) with the IDDSELD episignature (purple). **B**. IGV

606 screenshot of pathogenic variant identified by exome sequencing.

Supplementary Figure 21. Diagnosis of *TET3* enabled by episignature screening. **A**. MDS plot showing clustering of the proband with the BEFAHRS episignature. **B**. IGV screenshot of pathogenic duplication identified through GS. **C**. Sanger sequencing validation and segregation of variant indicating that **D**. the *TET3* variant is inherited from the mother, who is mildly phenotypically affected (Supplementary Phenotype data).

Supplementary Figure 22. Diagnosis of UBE2A enabled by episignature screening. A. MDS plot showing clustering of the proband with the MRXSN episignature. B. IGV screenshot of hemizygous variant of uncertain significance identified by exome sequencing. C. Sanger sequencing validation and segregation of variant, D. determined to X-linked and maternally inherited. Variant was determined to be pathogenic by clinical workup.

G G C G G G T G A A A <mark>G</mark> G G T A A G T C C A C

C>G

nmanaa

Proband

Supplementary Figure 23. Diagnosis of *SMS* enabled by episignature screening. **A**. MDS plot showing clustering of the proband with the MRXSSR episignature. **B**. Photos of 31067 displaying dysmorphic features, including friable hair, thin upper lip, fine eyebrows, low anterior hairline, and long, thin fingers. **C**. Sanger sequencing validation and segregation of variant, **D**. determined to X-linked and maternally inherited. **E**. IGV screenshot of hemizygous variant identified by exome sequencing. Variant was determined to be pathogenic by clinical workup.

Supplementary Figure 24. Refinement of the *CHD2* Episignature on the 850K array. **A**. Heatmap and dendrogram showing clustering using the *CHD2* 450K episignature probes (n=200), derived using overlapping 450K/850K probes for n=9 individuals (n=2 450K and n=7 850K) with pathogenic variants in *CHD2* against n=54 controls. **B**. Heatmap and dendrogram showing clustering using the *CHD2* 850K episignature probes (n=200), derived using n=29 individuals with pathogenic variants in *CHD2* against n=58 controls.

638 **Supplementary Figure 25**: Differentially methylated probes found to be shared between multiple 639 cohorts. Percent of probes with an adjusted p < 0.01 that are shared between each pair of cohorts 640 (n=57 total cohorts) that was previously investigated³². For each pair, the colors indicate the 641 percent of the bottom cohort's probes that are also found in the right cohort's probes. The CHD2 642 850K episignature shares some portion of probes with every other episignature represented 643 except for the 3 episignatures with the smallest number of DMPs (<500 DMPs): KDM4B/KDM4B 644 (MIM:619320), CSS9/SOX11 (MIM:615866), and CSS4 c.2650/SMARCA4, a secondary 645 signature for variants near SMARCA4:c.2650, which cluster separately from other 646 CSS4/BAFopathy (MIM:614609) samples.

Supplementary Figure 26. Mean Methylation Difference Comparison Across Episignatures. Genome-wide DNA methylation profiles of the 450K and updated 850K CHD2 cohort and 55 other EpiSign[™] episignatures previously investigated for functional correlational analysis³². Global methylation differences of all differentially methylated probes (false discovery rate<0.05) for each cohort, sorted by mean methylation. Each circle represents 1 probe. Red lines indicate mean methylation. The x-axis represents 1 of the 57 episignatures and the y-axis is the mean methylation difference.

Supplementary Figure 28. Representative *CHD2* DMRs derived on the 850K array. DMRs were called from bumphunter and DMRcate for n=16 individuals with pathogenic variants in *CHD2* vs. n=18 unaffected controls. Final DMR coordinates were considered the overlapping regions of at least 50bp of more. Representative hypermethylated DMR plots (GRCh37/hg19) are shown on

- 674 the left, and hypomethylated DMR plots are shown on the right. The methylation differences were
- 675 considered the average between the two callers and are shown in the DMR plots. The number of
- 676 DMRs called at various methylation differences are noted to the left of the plots. A total of 712
- 677 DMRs were called with at least a 5% methylation difference between *CHD2* and controls.

Supplementary Figure 29. Overlap of *CHD2* episignature probes with DMRs called from the 850K array and WGBS. Venn diagrams showing overlap of 450K CHD2 episignature (n=200 probes, top purple) and 850K (n=200 probes, bottom purple) with 850K array DMRs (left green) and WGBS DMRs (right blue). See methods for a detailed description of how episignatures and DMRs were derived.

Supplementary Figure 30. Representative *CHD2* DMRs called from WGBS. DMRs were called for n=4 individuals with pathogenic variants in *CHD2* vs. n=6 unaffected parents requiring overlap from both DSS and DMRcate tools. Two representative DMRs (1 hyper, 1 hypo) are shown in IGV for n=3 trios. The proband (top track) is clearly differentially methylated compared to both parents (middle and bottom tracks). The center of the plot is marked by a dotted black line.

692 Supplementary Figure 31. Functional annotation of CHD2 DMRs with CpG descriptions. DMRs 693 were called for n=16 CHD2 vs. n=18 unaffected controls using bumphunter and DMRcate for the 694 850K array and n=4 CHD2 vs. n=6 unaffected controls using DSS and DMRcate for WGBS 695 (Methods). DMRs were considered significant if p<0.05 and the percent methylation difference 696 (% meth diff) was greater than or equal to the cutoffs shown (5%, 10%, 20%). DMR composition 697 by CpG descriptors was calculated as a fraction of the length of each DMR to ensure that a DMR 698 overlapping with multiple descriptors was only counted once. CpG islands are areas of the 699 genome with a high density of CpGs. CpG shores are located within 2Kb on either side of CpG

- 700 islands. CpG shelves are located within 2Kb of CpG shores, and interCpG islands (interCGI)
- 701 covers the rest of the genome.

703 Supplementary Figure 32. Functional annotation of CHD2 DMRs by gene region. DMRs were 704 called for n=16 CHD2 vs. n=18 unaffected controls using bumphunter and DMRcate for the 850K 705 array and n=4 CHD2 vs. n=6 unaffected controls using DSS and DMRcate for WGBS (Methods). 706 DMRs were considered significant if p < 0.05 and the percent methylation difference (% meth diff) 707 was greater than or equal to the cutoffs shown (5%, 10%, 20%). DMR composition by gene region 708 includes 1-5Kb upstream of the TSS (1to5kb), the promoters (<1Kb upstream the TSS), the 709 5'UTRs, exons, introns, and the 3'UTRs. Representation as a fraction across hypermethylated 710 DMRs are shown in pink and hypomethylated DMRs are shown in blue.

Supplementary Figure 33. Linear karyotype plots representing *CHD2* episignature probes overlapping with DMRs called from n=4 *CHD2* vs. n=6 unaffected controls using WGBS.
Individual karyotype tracks for chr1-22 (**a-v**) where three grey tracks (upper panel above

718 chromosome) depict individual red (hyper) or blue (hypo) dots for WGBS DMRs (upper), CHD2 719 850K episignature probes (middle) and CHD2 450K episignature probes (lower). The scale 720 denotes the methylation difference between CHD2 relative to controls. Three purple tracks (lower 721 panel below chromosome) depict the coverage for the 450K array probes (lines, upper), 850K 722 array probes (lines, middle), and WGBS reads (distribution, lower). The coverage track for the 723 WGBS is taken from a representative sample after inspecting the average coverage values across 724 all the samples. Examples of where episignature probes form a cluster and overlap with a DMR 725 are boxed in red (hyper) and blue (hypo) for HOXA4, AGAP2, and ZNF577.

727		Full List of Author Abbreviations
728	Christy W. LaFlamme	C.W.L.
729	Cassandra Rastin	C.R.
730	Soham Sengupta	S.S.
731	Helen E. Pennington	H.E.P.
732	Sophie J. Russ-Hall	S.J.R.
733	Amy L. Schneider	A.L.S.
734	Emily S. Bonkowski	E.S.B.
735	Edith P. Almanza Fuerte	E.P.A.
736	Talia J. Allan	T.J.A.
737	Miranda Perez-Galey Zalusk	ky M.P.Z.
738	Joy Goffena	J.G.
739	Sophia B. Gibson	S.B.G.
740	Denis M. Nyaga	D.M.N.
741	Nico Lieffering	N.L.
742	Malavika Hebbar	M.H.
743	Emily V. Walker	E.V.W.
744	Daniel Darnell	D.D.
745	Scott R. Olsen	S.R.O.
746	Pandurang Kolekar	P.K.
747	Mohamed Nahdir Djekidel	M.N.D.
748	Wojciech Rosikiewicz	W.R.
749	Haley McConkey	H.M.
750	Jennifer Kerkhof	J.K.

751	Michael A. Levy	M.A.L.
752	Raissa Relator	R.R.
753	Dorit Lev	D.L.
754	Tally Lerman-Sagie	T.L.S.
755	Kristen L. Park	K.L.P.
756	Marielle Alders	M.A.
757	Gerarda Cappuccio	G.C.
758	Nicolas Chatron	N.C.
759	Leigh Demain	L.D.
760	David Genevieve	D.G.
761	Gaetan Lesca	G.L.
762	Tony Roscioli	T.R.
763	Damien Sanlaville	D.S.
764	Matthew L. Tedder	M.L.T.
765	Sachin Gupta	S.G.
766	Elizabeth A. Jones	E.A.J.
767	Monika Weisz-Hubshman	M.W.H.
768	Shamika Ketkar	S.K.
769	Hongzheng Dai	H.D.
770	Kim C. Worley	K.C.W.
771	Jill A. Rosenfeld	J.A.R.
772	Hsiao-Tuan Chao	H.T.C.
773	Undiagnosed Diseases Network	UDN

774	Geoffrey Neale	G.N.	
775	Gemma L. Carvill	G.L.C.	
776	University of Washington Center for Rar	e Disease Research	UW-CRDR
777	Zhaoming Wang	Z.W.	
778	Samuel F. Berkovic	S.F.B.	
779	Lynette G. Sadleir	L.G.S.	
780	Danny E. Miller	D.E.M.	
781	Ingrid E. Scheffer	I.E.S.	
782	Bekim Sadikovic	B.S.	
783	Heather C. Mefford	H.C.M.	

Full List of Consortia Members for UW-CRDR and UDN

786

787 University of Washington Center for Rare Disease Research (UW-CRDR)

788 Chia-Lin Wei¹, Michael J. Bamshad^{1,2} and Evan E. Eichler^{1,3}

789

790 Kailyn Anderson¹, Peter Anderson¹, Tamara J. Bacus¹, Sabrina Best¹, Elizabeth E. Blue¹,

791 Katherine Brower¹, Kati J. Buckingham¹, Brianne Carroll¹, Silvia Casadei¹, Jessica X. Chong¹,

Nikhita Damaraju¹, Colleen P. Davis¹, Christian D. Frazar¹, Sophia Gibson¹, Joy Goffena¹,

793 William W. Gordon¹, Jonas A. Gustafson¹, William T. Harvey¹, Martha Horike-Pyne¹, Jameson

R. Hurless¹, Caitlin Jacques¹, Gail P. Jarvik¹, Eric Johanson¹, J. Thomas Kolar¹, Xiaomeng Liu¹,

795 Colby T. Marvin¹, Sean McGee¹, Holli Meyers¹, Heather Mefford⁴, Danny E. Miller^{1,2}, Patrick M.

Nielsen¹, Karynne Patterson¹, Aparna Radhakrishnan¹, Matthew A. Richardson¹, Erica L. Ryke¹,

Aliya Sarkytbayeva¹, Tristan Shaffer¹, Kathryn M. Shively¹, Olivia M. Sommers¹, Sophie H.R.

798 Storz¹, Joshua D. Smith¹, Lea M. Starita¹, Monica Tackett¹, Sydney A. Ward¹, Jeffrey M. Weiss¹,

799 Qian Yi¹, and Miranda P.G. Zalusky¹.

800

- 801 ¹University of Washington
- 802 ²Seattle Children's Hospital
- 803 ³Howard Hughes Medical Institute
- ⁴St. Jude Children's Research Hospital
- 805

Members of the Undiagnos	ed Diseases	
Network (Version: 6.3.2024	5	
Full Name	Affiliation	Email
Aaron Quinlan	University of Utah	aquinlan@genetics.utah.edu
Adeline Vanderver	СНОР	vandervera@chop.edu
Adriana Rebelo	Miami	arebelo@med.miami.edu
Aimee Allworth	PNW	allwoa@uw.edu
Alan H. Beggs	Harvard	beggs@enders.tch.harvard.edu
Alden Huang	UCLA	AYHuang@mednet.ucla.edu
Alex Paul	WUSTL Clinical	alex.paul@wustl.edu
Ali Al-Beshri	UAB	asabeshri@uabmc.edu
Allyn McConkie-Rosell	Duke	allyn.mcconkie@duke.edu
Alyssa A. Tran	BCM Clinical	alyssat@bcm.edu
Andrea Gropman	NIH UDP	agropman@childrensnational.org
Andrew B. Crouse	UAB DMCC	acrouse@uab.edu
Andrew Stergachis	PNW	absterga@uw.edu
Anita Beck	PNW	aebeck@uw.edu
Anna Hurst	UAB	acehurst@uab.edu
Anna Raper	CHOP/UPenn	rapera@pennmedicine.upenn.edu

Anne Hing	PNW	anne.hing@seattlechildrens.org
Arjun Tarakad	BCM Clinical	tarakad@bcm.edu
Ashley Andrews	University of Utah	ashley.andrews@hsc.utah.edu
Ashley McMinn	Vanderbilt	ashley.mcminn@vumc.org
Ashok Balasubramanyam	BCM Clinical	ashokb@bcm.edu
AudreyStephannie C.	Harvard DMCC	audreystephannie_maghiro@hms.harvard
Maghiro		.edu
Barbara N. Pusey	NIH UDP	barbara.pusey@nih.gov
Swerdzewski		
Ben Afzali	NIH UDP, NHGRI	ben.afzali@nih.gov
Ben Solomon	NIH UDP, NHGRI	solomonb@mail.nih.gov
Beth A. Martin	Stanford	martinb@stanford.edu
Breanna Mitchell	Mayo Clinic	Mitchell.Breanna@mayo.edu
Brendan C. Lanpher	Mayo Clinic	lanpher.brendan@mayo.edu
Brendan H. Lee	BCM Clinical	blee@bcm.edu
Brent L. Fogel	UCLA	bfogel@ucla.edu
Brett H. Graham	IU	bregraha@iu.edu
Brian Corner	Vanderbilt	brian.corner@vumc.org
Bruce Korf	UAB	bkorf@uab.uabmc.edu
Calum A. MacRae	Harvard	camacrae@bics.bwh.harvard.edu

Camilo Toro	NIH UDP	toroc@mail.nih.gov
Cara Skraban	СНОР	skrabanc@chop.edu
Carlos A. Bacino	BCM Clinical	cbacino@bcm.edu
Carson A. Smith	Miami	carsonsmith@med.miami.edu
Cecilia Esteves	Harvard DMCC	cecilia_esteves@hms.harvard.edu
Changrui Xiao	UCI/CHOC	changrx@hs.uci.edu
Chloe M. Reuter	Stanford	creuter@stanfordhealthcare.org
Christina Lam	PNW	ctlam2@uw.edu
Christine M. Eng	BCM Sequencing	ceng@bcm.edu
Claire Henchcliffe	UCI/CHOC	chenchcl@hs.uci.edu
Colleen E. Wahl	NIH UDP	colleen.wahl@nih.gov
Corrine K. Welt	University of Utah	cwelt@u2m2.utah.edu
Cynthia J. Tifft	NIH UDP, NHGRI	ctifft@nih.gov
Dana Kiley	WUSTL Clinical	dana.kiley@wustl.edu
Daniel Doherty	PNW	ddoher@uw.edu
Daniel J. Rader	CHOP/UPenn	rader@pennmedicine.upenn.edu
Daniel Wegner	WUSTL Clinical	danieljwegner@wustl.edu
Danny Miller	PNW	Danny.Miller@seattlechildrens.org
Daryl A. Scott	BCM Clinical	dscott@bcm.edu
Dave Viskochil	University of Utah	dave.viskochil@hsc.utah.edu
---------------------	--------------------	------------------------------------
David A. Sweetser	Harvard	dsweetser@partners.org
David R. Adams	NIH UDP, NHGRI	david.adams@nih.gov
Dawn Earl	PNW	dawn.earl@seattlechildrens.org
Deborah Barbouth	Miami	dbarbouth@miami.edu
Deborah Krakow	UCLA	dkrakow@mednet.ucla.edu
Deepak A. Rao	Harvard	darao@bwh.harvard.edu
Devin Oglesbee	Mayo Clinic	oglesbee.devin@mayo.edu
Devon Bonner	Stanford	devonbonner@stanfordhealthcare.org
Donna Novacic	NIH UDP	donna.novacic@nih.gov
Dustin Baldridge	WUSTL MOSC	dbaldri@wustl.edu
Edward Behrens	СНОР	behrens@chop.edu
Edwin K. Silverman	Harvard	ed.silverman@channing.harvard.edu
Elaine Seto	BCM Clinical	esseto@bcm.edu
Elijah Kravets	Stanford	ekravets@stanford.edu
Elizabeth A. Burke	NIH UDP, NHGRI	elizabeth.burke2@nih.gov
Elizabeth Blue	PNW	em27@uw.edu
Elizabeth L. Fieg	Harvard	efieg@bwh.harvard.edu
Elizabeth Rosenthal	PNW	erosen@uw.edu

Ellen F. Macnamara	NIH UDP	ellen.macnamara@nih.gov
Elsa Balton	PNW	ebalton@medicine.washington.edu
Emilie D. Douine	UCLA	edouine@mednet.ucla.edu
Emily Glanton	Harvard DMCC	Emily_Glanton@hms.harvard.edu
Emily Shelkowitz	PNW	
Eric Allenspach	PNW	eric.allenspach@seattlechildrens.org
Eric Klee	Mavo Clinic	klee.eric@mavo.edu
Erin Baldwin	University of Utah	erin.baldwin@hsc.utah.edu
Erin Conboy	IU	econboy@iu.edu
Erin McRoy	WUSTL Clinical	e.hediger@wustl.edu
Esteban C. Dell'Angelica	UCLA	edellangelica@mednet.ucla.edu
Euan A. Ashley	Stanford DMCC	Euan@stanford.edu
F. Sessions Cole	WUSTL DMCC	fcole@wustl.edu
Filippo Pinto e Vairo	Mayo Clinic	vairo.filippo@mayo.edu
Frances High	Harvard	fhigh@partners.org
Francesco Vetrini	IU	fvetrini@iu.edu
Francis Rossignol	NIH UDP, NHGRI	francis.rossignol@nih.gov
Fuki M. Hisama	PNW	fmh2@uw.edu

Gabor Marth	University of Utah	gmarth@genetics.utah.edu
	DMCC	
Gail P. Jarvik	PNW	pair@uw.edu
Gary D. Clark	BCM Clinical	gdclark@texaschildrens.org
George Carvalho	UCLA	GCarvalhoNeto@mednet.ucla.edu
Gerard T. Berry	Harvard	gerard.berry@childrens.harvard.edu
Ghayda Mirzaa	PNW	gmirzaa@uw.edu
Gill Bejerano	Stanford	bejerano@stanford.edu
Giorgio Sirugo	CHOP/UPenn	Giorgio.Sirugo@pennmedicine.upenn.edu
Gonench Kilich	СНОР	kilichg@chop.edu
Guney Bademci	Miami	g.bademci@miami.edu
Heidi Wood	NIH UDP, NHGRI	heidi.wood@nih.gov
Herman Taylor	Morehouse DMCC	htaylor@msm.edu
Holly K. Tabor	Stanford	hktabor@stanford.edu
Hongzheng Dai	BCM Clinical	Hongzheng.Dai@bcm.edu
Hsiao-Tuan Chao	BCM Clinical	hc140077@bcm.edu
Hugo J. Bellen	BCM MOSC	hbellen@bcm.edu
lan Glass	PNW	ianglass@uw.edu
lan R. Lanza	Mayo Clinic	lanza.ian@mayo.edu
Ingrid A. Holm	Harvard	ingrid.holm@childrens.harvard.edu

Isaac S. Kohane	Harvard DMCC	isaac_kohane@hms.harvard.edu
Ivan Chinn	BCM Clinical	Ivan.Chinn@bcm.edu
J. Carl Pallais	Harvard	Juan.Pallais@mgh.harvard.edu
Jacinda B. Sampson	Stanford	jacindas@stanford.edu
James P. Orengo	BCM Clinical	james.orengo@bcm.edu
Jason Hom	Stanford	jasonhom@stanford.edu
Jennefer N. Kohler	Stanford	jkohler@stanfordhealthcare.org
Jennifer E. Posey	BCM Clinical	Jennifer.Posey@bcm.edu
Jennifer Wambach	WUSTL Clinical	wambachj@wustl.edu
Jessica Douglas	Harvard	Jessica.Douglas@childrens.harvard.edu
Jiayu Fu	NIH UDP, NHGRI	fuj6@mail.nih.gov
Jill A. Rosenfeld	BCM Clinical	mokry@bcm.edu
Jimann Shin	WUSTL MOSC	shinji@wustl.edu
Jimmy Bennett	PNW	jtbenn@uw.edu
Joan M. Stoler	Harvard	joan.stoler@childrens.harvard.edu
Joanna M. Gonzalez	Miami	jmg442@miami.edu
John A. Phillips III	Vanderbilt	John.a.phillips@vumc.org
John Carey	University of Utah	john.carey@hsc.utah.edu
John J. Mulvihill	NIH UDP	johmulvihill@gmail.com

Joie Davis	NIH UDP, NHGRI	jdavis@niaid.nih.gov
Jonathan A. Bernstein	Stanford	Jon.Bernstein@stanford.edu
Jordan Whitlock	UAB DMCC	jbarham3@uab.edu
Jose Abdenur	UCI/CHOC	JAbdenur@choc.org
Joseph Loscalzo	Harvard	jloscalzo@partners.org
Joy D. Cogan	Vanderbilt	joy.cogan@vumc.org
Julian A. Martínez-Agosto	UCLA	julianmartinez@mednet.ucla.edu
Justin Alvey	University of Utah	justin.alvey@hsc.utah.edu
Kahlen Darr	Mayo Clinic	Darr.Kahlen@mayo.edu
Kaitlin Callaway	UAB	kcallaway@uabmc.edu
Kathleen A. Leppig	PNW	leppig@uw.edu
Kathleen Sullivan	СНОР	sullivank@chop.edu
Kathy Sisco	WUSTL Clinical	siscok@wustl.edu
Kathyrn Singh	UCI/CHOC	kesingh@hs.uci.edu
Katrina Dipple	PNW	katrina.dipple@seattlechildrens.org
Kayla M. Treat	IU	ktreat@iuhealth.org
Kelly Hassey	СНОР	hasseyk@chop.edu
Kelly Schoch	Duke	kelly.schoch@duke.edu
Kevin S. Smith	Stanford	kssmith@stanford.edu

Khurram Liaqat	IU	kliaqat@iu.edu
Kim Worley	BCM Clinical	kworley@bcm.edu
Kimberly Ezell	Vanderbilt	kimberly.ezell@vumc.org
Kimberly LeBlanc	Harvard DMCC	kimberly_leblanc@hms.harvard.edu
Kumarie Latchman	Miami	kxl604@med.miami.edu
Lance H. Rodan	Harvard	lance.rodan@childrens.harvard.edu
Laura Pace	University of Utah	laura.pace@hsc.utah.edu
Laurel A. Cobban	Harvard	lcobban@bwh.harvard.edu
Lauren C. Briere	Harvard	lbriere@partners.org
Leoyklang Petcharet	NIH UDP, NHGRI	petcharat.leoyklang@nih.gov
LéShon Peart	Miami	L.peart@med.miami.edu
Lili Mantcheva	IU	Imantche@iu.edu
Lilianna Solnica-Krezel	WUSTL MOSC	solnical@wustl.edu
Lindsay C. Burrage	BCM Clinical	burrage@bcm.edu
Lindsay Mulvihill	Mayo Clinic	mulvihill.lindsay@mayo.edu
Lisa Schimmenti	Mayo Clinic	Schimmenti.Lisa@mayo.edu
Lisa T. Emrick	BCM Clinical	emrick@bcm.edu
Lorenzo Botto	University of Utah	lorenzo.botto@hsc.utah.edu
Lorraine Potocki	BCM Clinical	lpotocki@bcm.edu

Lynette Rives	Vanderbilt	lynette.c.rives@vumc.org
Lynne A. Wolfe	NIH UDP, NHGRI	lynne.wolfe@nih.gov
Manish J. Butte	UCLA	mbutte@mednet.ucla.edu
Margaret Delgado	NIH UDP, NHGRI	margaret.delgado@nih.gov
Maria T. Acosta	NIH UDP	acostam@nhgri.nih.gov
Marie Morimoto	NIH UDP, NHGRI	marie.morimoto@nih.gov
Mariko Nakano-Okuno	UAB DMCC	marikonk@uab.edu
Mark Wener	PNW	wener@uw.edu
Marla Sabaii	NIH UDP, NHGRI	marla.sabaii@nih.gov
Martha Horike-Pyne	PNW	mpyne@medicine.washington.edu
Martin G. Martin	UCLA	mmartin@mednet.ucla.edu
Martin Rodriguez	UAB	rodriguez@uabmc.edu
Matthew Coggins	Harvard	mcoggins@bwh.harvard.edu
Matthew Might	UAB DMCC	might@uab.edu
Matthew T. Wheeler	Stanford	wheelerm@stanford.edu
Maura Ruzhnikov	Stanford	ruzhnikov@stanford.edu
MayChristine V. Malicdan	NIH UDP, NHGRI	maychristine.malicdan@nih.gov
Meghan C. Halley	Stanford	mhalley@stanford.edu
Melissa Walker	Harvard	walker.melissa@mgh.harvard.edu

Michael Bamshad	PNW	mbamshad@uw.edu
Michael F. Wangler	BCM MOSC	mw147467@bcm.edu
Miguel Almalvez	UCI/CHOC	malmalve@hs.uci.edu
Mohamad Mikati	Duke	mohamad.mikati@duke.edu
Monika Weisz Hubshman	BCM Clinical	hubshman@bcm.edu
Monte Westerfield	UO MOSC	monte@uoneuro.uoregon.edu
Mustafa Tekin	Miami	mtekin@miami.edu
Naghmeh Dorrani	UCLA	ndorrani@mednet.ucla.edu
Neil H. Parker	UCLA	nhparker@mednet.ucla.edu
Neil Hanchard	NIH UDP, NHGRI	neil.hanchard@nih.gov
Nicholas Borja	Miami	nborja@med.miami.edu
Nicola Longo	University of Utah	nicola.longo@hsc.utah.edu
Nicole M. Walley	Duke	nicole.walley@duke.edu
Nina Movsesyan	UCI/CHOC	nmovsesyan@choc.org
Nitsuh K. Dargie	PNW	nitsuhk@medicine.washington.edu
Oguz Kanca	BCM MOSC	Oguz.Kanca@bcm.edu
Orpa Jean-Marie	NIH UDP, NHGRI	orpa.jean-marie@nih.gov
Page C. Goddard	Stanford	pgoddard@stanford.edu
Paolo Moretti	University of Utah	paolo.moretti@hsc.utah.edu

Patricia A. Ward	BCM Sequencing	pward@bcm.edu
Patricia Dickson	WUSTL Clinical	pdickson@wustl.edu
Paul G. Fisher	Stanford	pfisher@stanford.edu
Pengfei Liu	BCM Sequencing	pliu@baylorgenetics.com
Peter Byers	PNW	pbyers@uw.edu
Pinar Bayrak-Toydemir	University of Utah/ARUP	pinar.bayrak-toydemir@arup.com
Precilla D'Souza	NIH UDP	precilla.d'souza@nih.gov
Queenie Tan	Mayo Clinic	Tan.KhoonGheeQueenie@mayo.edu
Rachel A. Ungar	Stanford	raungar@stanford.edu
Rachel Mahoney	Harvard DMCC	rachel_mahoney@hms.harvard.edu
Ramakrishnan Rajagopalan	СНОР	rajagopalanr@chop.edu
Raquel L. Alvarez	Stanford	raquela1@stanford.edu
Rebecca C. Spillmann	Duke	rebecca.crimian@duke.edu
Rebecca Ganetzky	СНОР	ganetzkyr@chop.edu
Rebecca Overbury	University of Utah	rebecca.overbury@hsc.utah.edu
Rebekah Barrick	UCI/CHOC	rebekah.barrick@choc.org
Richard A. Lewis	BCM Clinical	rlewis@bcm.edu
Richard L. Maas	Harvard	maas@genetics.med.harvard.edu
Rizwan Hamid	Vanderbilt	rizwan.hamid@vumc.org

Rong Mao	University of	rong.mao@aruplab.com
	Utah/ARUP	
Ronit Marom	BCM Clinical	ronit.marom@bcm.edu
Rosario I. Corona	UCLA	rcoronadelafuente@mednet.ucla.edu
Russell Butterfield	University of Utah	russell.butterfield@hsc.utah.edu
Sam Sheppeard	PNW	samshep@uw.edu
Sanaz Attaripour	UCI/CHOC	sattarip@hs.uci.edu
Seema R. Lalani	BCM Clinical	seemal@bcm.edu
Serena Neumann	Vanderbilt	serena.neumann@vumc.org
Shamika Ketkar	BCM Clinical	ketkar@bcm.edu
Shamil R. Sunyaev	Harvard DMCC	ssunyaev@hms.harvard.edu
Shilpa N. Kobren	Harvard DMCC	Shilpa_Kobren@hms.harvard.edu
Shinya Yamamoto	BCM MOSC	yamamoto@bcm.edu
Shirley Sutton	Stanford	scsutton@stanford.edu
Shruti Marwaha	Stanford	mshruti@stanford.edu
Sirisak Chanprasert	PNW	sirisc@uw.edu
Stanley F. Nelson	UCLA	snelson@ucla.edu
Stephan Zuchner	Miami	szuchner@miami.edu
Stephanie Bivona	Miami	sab355@miami.edu
Stephanie M. Ware	IU	stware@iu.edu

Stephen Pak	WUSTL MOSC	stephen.pak@email.wustl.edu
Steven Boyden	University of Utah	steven.boyden@genetics.utah.edu
Suman Jayadev	PNW	sumie@uw.edu
Surendra Dasari	Mayo Clinic	dasari.surendra@mayo.edu
Susan Korrick	Harvard	skorrick@bwh.harvard.edu
Suzanne Sandmeyer	UCI/CHOC	sbsandme@hs.uci.edu
Tahseen Mozaffar	UCI/CHOC	mozaffar@hs.uci.edu
Tammi Skelton	UAB	tlskelton@uabmc.edu
Tara Wenger	PNW	tara.wenger@seattlechildrens.org
Terra R. Coakley	Stanford	tcoakley@stanford.edu
Thomas Cassini	Vanderbilt	thomas.a.cassini@vumc.org
Thomas J. Nicholas	University of Utah	thomas.nicholas@utah.edu
Timothy Schedl	WUSTL MOSC	ts@wustl.edu
Tiphanie P. Vogel	BCM Clinical	tiphanie.vogel@bcm.edu
Vaidehi Jobanputra	Columbia	vj2004@cumc.columbia.edu
Valerie V. Maduro	NIH UDP	vbraden@mail.nih.gov
Vandana Shashi	Duke	vandana.shashi@duke.edu
Virginia Sybert	PNW	flk01@uw.edu
Vishnu Cuddapah	СНОР	cuddapahv@chop.edu

Wendy Introne	NIH UDP, NHGRI	wintrone@nhgri.nih.gov
Wendy Raskind	PNW	wendyrun@uw.edu
Willa Thorson	Miami	wthorson@miami.edu
William A. Gahl	NIH UDP, NHGRI	gahlw@mail.nih.gov
William E. Byrd	UAB DMCC	webyrd@gmail.com
William J. Craigen	BCM Clinical	wcraigen@bcm.edu
Yan Huang	NIH UDP, NHGRI	yan.huang@nih.gov
Yigit Karasozen	UCLA	Ykarasozen@mednet.ucla.edu

808		Supplementary References
809	1	Noriega MA, S. A. Trisomy 13. (StatPearls Publishing, Updated 2023 Aug 13).
810	2	Tsutsumi, M. et al. A female patient with retinoblastoma and severe intellectual disability
811		carrying an X;13 balanced translocation without rearrangement in the RB1 gene: a case
812		report. BMC Med Genomics 12, 182, doi:10.1186/s12920-019-0640-2 (2019).
813	3	Mefford, H. C. et al. Rare copy number variants are an important cause of epileptic
814		encephalopathies. Ann Neurol 70, 974-985, doi:10.1002/ana.22645 (2011).
815	4	Winnepenninckx, B. et al. CGG-repeat expansion in the DIP2B gene is associated with
816		the fragile site FRA12A on chromosome 12q13.1. Am J Hum Genet 80, 221-231,
817		doi:10.1086/510800 (2007).
818	5	Singh, R., Scheffer, I. E., Crossland, K. & Berkovic, S. F. Generalized epilepsy with
819		febrile seizures plus: a common childhood-onset genetic epilepsy syndrome. Ann Neurol
820		45 , 75-81, doi:10.1002/1531-8249(199901)45:1<75::aid-art13>3.0.co;2-w (1999).
821	6	Heron, S. E. et al. Genetic variation of CACNA1H in idiopathic generalized epilepsy. Ann
822		<i>Neurol</i> 55 , 595-596, doi:10.1002/ana.20028 (2004).
823	7	Heron, S. E. et al. Extended spectrum of idiopathic generalized epilepsies associated
824		with CACNA1H functional variants. Ann Neurol 62, 560-568, doi:10.1002/ana.21169
825		(2007).
826	8	Morel Swols D, T. M. KBG Syndrome. <i>GeneReviews</i> (1993-2023).
827	9	Roston A, G. W. SETD1B-Related Neurodevelopmental Disorder. GeneReviews (1993-
828		2023).
829	10	JA., F. TET3-Related Beck-Fahrner Syndrome GeneReviews (1993-2023).
830	11	Stevenson, R. E. et al. UBE2A-related X-linked intellectual disability. Clin Dysmorphol
831		28 , 1-6, doi:10.1097/MCD.00000000000242 (2019).
832	12	Schwartz CE, P. A., Kutler MJ. Snyder-Robinson Syndrome. GeneReviews® (2020).

- 833 13 Parkinson Progression Marker, I. The Parkinson Progression Marker Initiative (PPMI).
- 834 *Prog Neurobiol* **95**, 629-635, doi:10.1016/j.pneurobio.2011.09.005 (2011).
- 835 14 Dong, Q. et al. Genome-wide association studies identify novel genetic loci for
- epigenetic age acceleration among survivors of childhood cancer. *Genome Med* **14**, 32,
- 837 doi:10.1186/s13073-022-01038-6 (2022).
- 838 15 Vaisvila, R. *et al.* Enzymatic methyl sequencing detects DNA methylation at single-base
- resolution from picograms of DNA. *Genome Res* **31**, 1280-1289,
- 840 doi:10.1101/gr.266551.120 (2021).
- 16 Danecek, P. *et al.* Twelve years of SAMtools and BCFtools. *Gigascience* **10**,
- 842 doi:10.1093/gigascience/giab008 (2021).
- 843 17 MethylDackel (https://github.com/dpryan79/MethylDackel).
- Ryan, P. *et al.* Scaling accurate genetic variant discovery to tens of thousands of
 samples. *bioRxiv*, 201178, doi:10.1101/201178 (2018).
- 846 19 Karczewski, K. J. *et al.* The mutational constraint spectrum quantified from variation in
- 847 141,456 humans. *Nature* **581**, 434-443, doi:10.1038/s41586-020-2308-7 (2020).
- 848 20 Karczewski, K. J. *et al.* The ExAC browser: displaying reference data information from
- 849 over 60 000 exomes. *Nucleic Acids Res* **45**, D840-D845, doi:10.1093/nar/gkw971
- 850 (2017).
- Fu, W. *et al.* Analysis of 6,515 exomes reveals the recent origin of most human proteincoding variants. *Nature* 493, 216-220, doi:10.1038/nature11690 (2013).
- 853 22 Genomes Project, C. *et al.* A global reference for human genetic variation. *Nature* **526**,
- 854 68-74, doi:10.1038/nature15393 (2015).
- Liu, X., Jian, X. & Boerwinkle, E. dbNSFP: a lightweight database of human
- 856 nonsynonymous SNPs and their functional predictions. *Hum Mutat* **32**, 894-899,

857 doi:10.1002/humu.21517 (2011).

- Landrum, M. J. *et al.* ClinVar: improving access to variant interpretations and supporting
 evidence. *Nucleic Acids Res* 46, D1062-D1067, doi:10.1093/nar/gkx1153 (2018).
- Li, Q. & Wang, K. InterVar: Clinical Interpretation of Genetic Variants by the 2015
- 861 ACMG-AMP Guidelines. *Am J Hum Genet* 100, 267-280, doi:10.1016/j.ajhg.2017.01.004
 862 (2017).
- 863 26 Wang, K., Li, M. & Hakonarson, H. ANNOVAR: functional annotation of genetic variants
 864 from high-throughput sequencing data. *Nucleic Acids Res* 38, e164,
- 865 doi:10.1093/nar/gkq603 (2010).
- 866 27 Jaganathan, K. et al. Predicting Splicing from Primary Sequence with Deep Learning.
- 867 *Cell* **176**, 535-548 e524, doi:10.1016/j.cell.2018.12.015 (2019).
- 868 28 McLaren, W. *et al.* The Ensembl Variant Effect Predictor. *Genome Biol* **17**, 122,
- 869 doi:10.1186/s13059-016-0974-4 (2016).
- 870 29 Ewels, P. A. *et al.* The nf-core framework for community-curated bioinformatics
- 871 pipelines. *Nat Biotechnol* **38**, 276-278, doi:10.1038/s41587-020-0439-x (2020).
- 30 Giacopuzzi, E., Popitsch, N. & Taylor, J. C. GREEN-DB: a framework for the annotation
- and prioritization of non-coding regulatory variants from whole-genome sequencing data.
- 874 *Nucleic Acids Res* **50**, 2522-2535, doi:10.1093/nar/gkac130 (2022).
- 875 31 Yépez, V. A., Murdock, D. R. & Lee, B. Gene expression counts from fibroblast, strand876 specific, BCM UDN. *Zenodo*, doi:10.5281/zenodo.3963474 (2020).
- 877 32 Levy, M. A. *et al.* Functional correlation of genome-wide DNA methylation profiles in
- genetic neurodevelopmental disorders. *Hum Mutat* **43**, 1609-1628,
- doi:10.1002/humu.24446 (2022).
- 880 33 Levy, M. A. *et al.* Novel diagnostic DNA methylation episignatures expand and refine the
- 881 epigenetic landscapes of Mendelian disorders. *Human Genetics and Genomics*
- 882 *Advances*, doi:10.1016/j.xhgg.2021.100075 (2021).