

Supporting Information

for Adv. Sci., DOI 10.1002/advs.202308934

Deep Batch Integration and Denoise of Single-Cell RNA-Seq Data

Lu Qin, Guangya Zhang, Shaoqiang Zhang* and Yong Chen*

SUPPLEMENTARY MATERIALS

Deep Batch Integration and Denoise of Single-Cell RNA-seq Data

Lu Qin¹, Guangya Zhang¹, Shaoqiang Zhang^{1*}, Yong Chen^{2*}

¹College of Computer and Information Engineering, Tianjin Normal University, Tianjin 300387, China ² Department of Biological and Biomedical Sciences, Rowan University, NJ 08028, USA

* To whom correspondence should be addressed:

S. Zhang (zhangshaoqiang@tjnu.edu.cn); Y. Chen (chenyong@rowan.edu)

This supplementary file includes Table S1-S6, Figure S1-S5.

Table S1. Detailed information of scRNA-seq datasets used.

Table S2. The median iLISI scores of each dataset integrated by each method.

Table S3. The median cLISI scores of each dataset integrated by each method.

Table S4. The ARI and NMI scores of each dataset after batch integration and clustering.

Table S5. Running time comparison of six methods across five datasets.

Table S6. Core code used by five methods for batch integration and clustering.

Figure S1. NMI scores for seven different κ_1 settings across five datasets with fixed values of λ_1 , λ_2 and κ_2 .

Figure S2. NMI scores for seven different κ_2 settings across five datasets with fixed values of λ_1 , λ_2 and κ_1 .

Figure S3. UMAP plots on the "DC" dataset that has 4 cell types.

Figure S4. UMAP plots on the Pancreas" dataset that has 17 cell types.

Figure S5. UMAP plots on the "PBMCs" dataset that has 15 cell types.

Name	Data Source	Platforms	URL	# Cell	# CT
DC	Human dendritic cells	SMART-seq2 SMART-seq2	https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?a cc=GSE94820	286 283	- 4
	Jurkat	10X Genomics	https://support.10xgenomics.com/single-cell-gene- expression/datasets/1.1.0/jurkat	3258	
Cell_lines	HEK293T	10X Genomics	https://support.10xgenomics.com/single-cell-gene- expression/datasets/1.1.0/293t	2885	2
	50% Jurkat + 50% HEK293T	10X Genomics	https://support.10xgenomics.com/single-cell-gene- expression/datasets/1.1.0/jurkat:293t_50:50	3388	_
	Mixture of	10X Genomics	_	902	-
Sc mixoloav	HCC827,	CEL-seq2	- https://aithub.com/LuviTian/sc_mixoloay	274	- 3
ee_mixelegy	H1975 and H2228	Drop-seq	···	225	-
	3pV1	10X Genomics (3')	https://support.10xgenomics.com/single-cell-gene- expression/datasets/1.1.0/pbmc6k	5419	_
PBMCs	3pV2	10X Genomics (3')	https://support.10xgenomics.com/single-cell-gene- expression/datasets/2.1.0/pbmc8k	8381	15
	5р	10X Genomics (5')	https://support.10xgenomics.com/single-cell- vdj/datasets/2.2.0/vdj_v1_hs_pbmc_5gex	7726	-
	Human pancreatic islet cells	CEL-seq	https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?a cc=GSE81076	946	
Pancreas		CEL-seq2	https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?a cc=GSE85241	2238	-
		SMART-seq2	https://www.ebi.ac.uk/gxa/sc/experiments/E- MTAB-5061/	2114	11
		Fluidigm C1	https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?a cc=GSE86469	513	-
		inDrops	https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?a cc=GSE84133	8564	-

Supplementary Table S1. Detailed information of used scRNA-seq datasets. CT: Cell Types.

Supplementary Table S2. The median iLISI scores of each dataset after batch integration.

Method\Dataset	DC	Cell_lines	Sc_mixology	Pancreas	PBMCs
DeepBID	1.379	1.429	1.000	2.475	2.728
Harmony	1.163	1.000	1.000	1.000	1.178
Seurat	1.175	1.004	1.000	1.020	1.012
LIGER	1.071	1.370	1.273	1.011	1.073
scVI	1.302	1.259	1.012	1.000	1.029
DESC	1.016	1.000	1.000	1.000	1.857

Supplemen	ary Table S3	 The median cLISI 	scores of each	dataset after	batch integration
-----------	--------------	--------------------------------------	----------------	---------------	-------------------

Method\Dataset	DC	Cell_lines	Sc_mixology	Pancreas	PBMCs
DeepBID	1.845	3.098	2.466	2.862	4.728
Harmony	2.055	1.947	3.045	3.014	4.153
Seurat	2.016	1.649	3.977	2.885	3.593
LIGER	1.973	7.684	6.794	2.885	7.022
scVI	1.973	4.691	4.609	3.323	6.590
DESC	1.982	2.923	4.553	3.098	3.098

Supplementary Table S4. The ARI and NMI scores of each dataset after batch integration and clustering.

Datasets	Indices	Harmony	Seurat	LIGER	scVI	DESC	DeepBID
DC	NMI	0.65246	0.73514	0.84188	0.65721	0.80453	0.84437
DC	ARI	0.78790	0.84787	0.63021	0.78302	0.87448	0.89067

	NMI	0.48738	0.60919	0.56768	0.55534	0.74793	0.98498
Sc_mixology	ARI	0.44375	0.61212	0.29195	0.38914	0.27613	0.99146
Coll lines	NMI	0.58549	0.36147	0.37397	0.22004	0.51159	0.97854
Cell_lilles	ARI	0.44557	0.31408	0.07088	0.13607	0.36330	0.99821
DBMCa	NMI	0.71250	0.57896	0.60484	0.69486	0.68155	0.72594
PDIVICS	ARI	0.63037	0.42125	0.43478	0.70293	0.48305	0.73191
Pancreas	NMI	0.65348	0.68489	0.45291	0.69524	0.70117	0.71923
	ARI	0.36379	0.46508	0.60950	0.50869	0.23283	0.62265

Supplementary Table S5. Running time comparison of six methods across five datasets. The cell numbers for each dataset are provided in parentheses, and the running time is measured in seconds (s). The running time of each tool was recorded for their core code processing, excluding data preprocessing time.

Name	DC (569)	Sc_mixology (1401)	Cell_lines (9531)	Pancreas (14375)	PBMCs (21526)
DeepBID	4.45s	7.85s	140.94s	302.3s	416.5s
Harmony	1.76s	2.4s	40.9s	85.1s	93.7s
Seurat	1.09s	1.62s	21.59s	24.87s	40.83s
LIGER	59.51s	74s	210s	417.51s	482.86s
DESC	31.4s	31.9s	326.5s	574.3s	586.1s
scVI	14.9s	38.9s	326.2s	667.3s	883.4s

Supplementary Table S6. Core code used by five methods for batch integration and clustering.

Method	Core code					
	scRNA_liger <- merge(batches)					
	SCRNA_liger <- NormalizeData(SCRNA_liger)					
	SCRINA_IIIger <- FIIIQVariableFeatures(SCRINA_IIger)					
LIGER	acPNA_liger <- ScaleData(SCRIVA_liger, split.by - origident, do.center - r)					
	SCRINA_liger <- RunOpininzeAL3(SCRINA_liger, 4 - 50, lanbda - 5, spin.by - Orig.ident.)					
	scRNA_iiger <- RunQuantienorm(scRNA_iiger, split.by - olig.ident)					
	SCRINA_liger <- FindNeighbols(SCRINA_liger), eduction - INVIF, k.param - 10,dims - 1.50)					
	scRNA_liger >- Finderlagestion Angel ;					
	scRNA.antchols < - FindiniegrationAntchols(object.list = ScRNAlist)					
Seurat	scRNA_seural <- IntegrateData(anchorset = ScRNA,anchors)					
	scRNA_seural <- RunDMAP(ScRNA_seural, gims = 1:30)					
	scring source - Findneighbors(scring source, and source) %>% FindClusters()					
	scRNA_narmony <- merge(batches)					
	scRNA_harmony <- NormalizeData(scRNA_harmony) %>% FindVariableFeatures() %>%					
	ScaleData() %>% RunPCA(verbose=FALSE)					
Harmony	scRNA_narmony <- RunHarmony(scRNA_narmony, group).py.vars = "orig.ident")					
	scRNA_narmony <- RunOMAP(scRNA_narmony, reduction = narmony, dims = 1:30)					
	scRNA_narmony <- FindNeignbors(scRNA_narmony, reduction = "narmony", dims = 1:30) %>%					
	FindClusters()					
	scanpy.pp.scale(adata,max_value=6) # require scanpy					
	save_or					
DESC	adata=DESC.train(adata, dims=[adata.snape[1],64,32], to=0.005, n_neighbors=10, batch_size=256,					
	iouvain_resolution=[0.8,1.0], save_dir=str(save_dir), do_tsne=True, learning_rate=200,					
	use_GPU=Irue, num_Cores=1, num_Cores_tsne=4, save_encoder_weights=False,					
scVI	save_encoder_step=3, use_ae_weights=False, do_umap=False)					
	scanpy.pp.highly_variable_genes(adata, flavor="seurat_v3", n_top_genes=2000, layer="norm_data",					
	batch_key="batch", subset=1rue,)					
	scvi.model.SCVI.setup_anndata(adata,batch_key="batch")					
	vae = scvi.model.SCVI(adata, n_layers=2, n_latent=30, gene_likelihood="nb")					
	vae.train()					

Supplementary Figure S1. NMI scores for seven different κ_1 settings across five datasets with fixed values of λ_1 , λ_2 and κ_2 .

Supplementary Figure S2. NMI scores for seven different κ_2 settings across five datasets with fixed values of λ_1 , λ_2 and κ_1 .

Supplementary Figure S3. UMAP plots on the "DC" dataset that has 4 cell types. The first column illustrates the original cell type labels by method, the second column displays the labels for 2 batches, and the third column shows the clustering outcomes after batch effect removal.

Supplementary Figure S4. UMAP plots on the "Pancreas" dataset that has 17 cell types. The first column illustrates the original cell type labels for each method, the second column displays the labels for 5 batches, and the third column shows the clustering outcomes after batch effect removal.

Dataset: Pancreas

Supplementary Figure S5. UMAP plots on the "PBMCs" dataset that has 15 cell types. The first column illustrates the original cell type labels for each method, the second column displays the labels for 3 batches, and the third column shows the clustering outcomes after batch effect removal.

Dataset: PBMCs