An Optimisation Tool to Formulate Diets within a Supplementary Nutrition Program for Children: Fathima Ayoob, Jawahar R Manivannan

Supplementary Tables and Figures

Supplementary Table 1. Fortified Foods per 100 grams in ICDS and their fortification level.

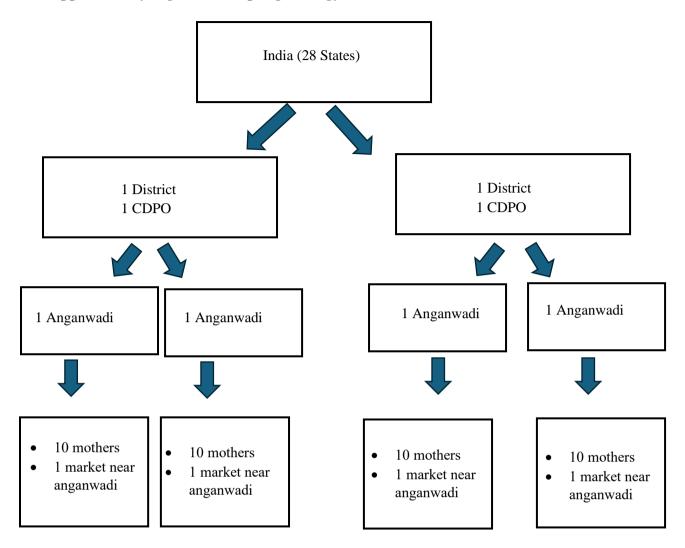
Nutrients	Rice	Whole Wheat	Milk	Salt
		Flour		
Iron (mg)	4.25	4.25		85.0
Folic Acid (mcg)	12.5	12.5		
Vitamin B ₁₂ (mcg)	0.125	0.125		
Vitamin A (mcg)			75.0	
Iodine (ppm)				15.0

Supplementary Table 2. Optimised six-day menu for Hot Cooked Meal with market survey prices for a child 3-6y in Karnataka.

Cost per Beneficiary (Rs.) 0.17 2.5 3.13
(Rs.) 0.17 2.5 3.13
0.17 2.5 3.13
2.5 3.13
3.13
1.2
1.2
1.2
0.17
2.5
3.13
1.2
0.17
2.5
3.14
1.2
0.17
2.5
3.3
1.2

5	Main meal	Egg	1.0	No.	5	2.5
		Vegetable pulao	0.8	Bowl	2.95	2.95
		vegetable pulao	0.0	DOWI	2.73	2.73
	Snacks	Wheat rava	0.5	Bowl	1.85	1.85
		payasam				
6	Main meal	Steamed rice	1.3	Bowl	0.17	0.17
		Egg	1.0	No.	5	2.5
		Horse gram dal	0.65	Bowl	3.47	3.63
		fenugreek leaves				
		sambar				
	Snacks	Roasted groundnut	10.0	gm	1.2	1.2
Total	cost per week	(6 days)			57.7	43.0
Total	cost per day				9.6	7.16

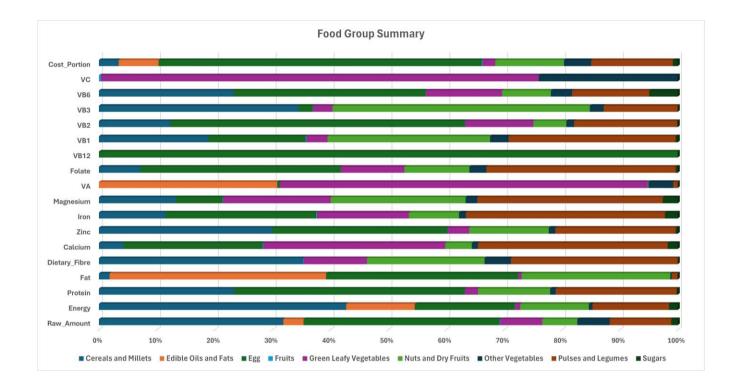
Supplementary Table 3. Cost of an example optimized Take Home Ration solution for children 1-3y from Karnataka state of India.

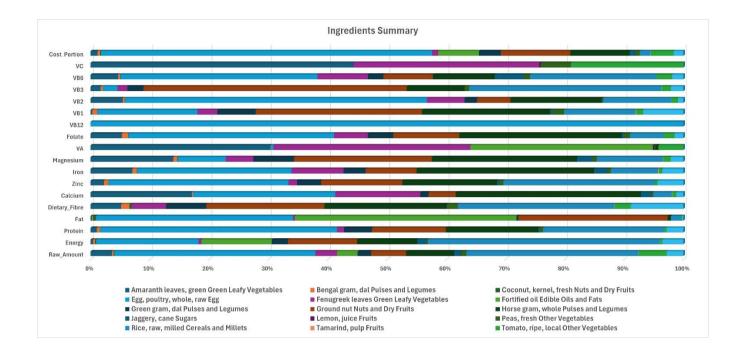

	Cost	Subsidised Cost		
Per day (₹, average)	7.8	6.7		
Per week (₹, 6 days)	46.8	40.1		
Per month (₹, 25 days)	194.9	167.2		
Per year (₹, 300 days)	2339.3	2006.3		

Supplementary Table 4. Ingredient composition of the optimized THR solution with market and subsidised prices.

	Wheat	Whole	Whole	Fortified	Sugar	Total
	Flour	Green	Milk	Oil		
		Gram	Powder			
Quantity/beneficiary/day	54	25	10	10	5	104
(g)						
Cost/beneficiary/day (₹)*	0.11	2.04	3.7	1.75	0.2	7.8
Subsidised	0.11	2.04	2.59	1.75	0.2	6.69
cost/beneficiary/day (₹)*						
Cost/kg (₹)*	2	84	370	180	40	
Subsidised cost/kg (₹)*	2	84	259	180	40	

^{* 82} Indian rupee (₹) equivalent to 1 USD


Supplementary Figure 1. Sampling strategy for data collection


Supplementary Figure 2: Line chart illustrating the weekly analysis of nutrient provision, highlighting fluctuations in macronutrient composition in each day, along with the corresponding fat:energy and protein:energy ratios for an optimized solution for Hot Cooked meal in Karnataka state.

Supplementary Figure 3: Stacked bar diagrams of the percent contribution of each food group to macro and micro-nutrient content in the example of optimized Hot Cooked Meal for 3-6y children in Karnataka. Each bar represents the 100% of the nutrient in the optimized HCM and each colour within that bar is a % contribution of a food group to that nutrient.

Supplementary Figure 4: Stacked bar diagram of the percent contribution of each food to macro and micronutrient content in the example of optimized Hot Cooked Meal for 3-6y children.

LPP of HCM

Objective function

$$min \sum_{i=1}^{I} S_i C_i$$
 (1)

Subject to

Constraint for EAR and TUL of nutrients

$$EAR(N_j) \le \sum_{i=1}^{I} S_i N_{ij} \le TUL(N_j)$$
 , $\forall i \in Recipe, \forall j \in Nutrients$

Constraints for Normal children

$$\begin{split} &\sum_{j=1}^{J} S_{j} D_{j} \leq 1.5 \text{ , } \forall j \in \textit{Main dish recipes} \\ &\sum_{j=1}^{J} D_{j} = 1 \text{ , } \forall j \in \textit{Main dish recipes} \\ &\sum_{i=1}^{J} S_{i} D_{i} \leq 1 \text{ , } \forall i \in \textit{Snack recipes} \\ &\sum_{i=1}^{J} D_{i} = 1 \text{ , } \forall i \in \textit{Snack recipes} \end{split}$$

Constraints for SAM children

$$\begin{split} &\sum_{j=1}^{J} S_{j} D_{j} \leq 1.5 \text{ ,} \forall j \in \textit{Main dish recipes} \\ &\sum_{j=1}^{J} D_{j} = 1 \text{ ,} \forall j \in \textit{Main dish recipes} \\ &\sum_{i=1}^{I} S_{i} D_{i} \leq 2 \text{ ,} \forall i \in \textit{Snack recipes} \\ &\sum_{i=1}^{J} D_{i} = 1 \text{ ,} \forall i \in \textit{Snack recipes} \end{split}$$

Constraints for proportions in combinations, where R1 (main dish), R2 (curry) and R3 (side dish)

$$\begin{array}{lll} 0.5 \, S_i D_i & \leq & S_k D_k & \leq & 0.8 \, S_i D_i \ , \forall i \in R_1, \forall \ k \in R_2 \\ 0.25 \, S_i D_i & \leq & S_m D_m & \leq & 0.75 \, S_i D_i \ , \forall i \in R_1, \forall m \in R_3 \end{array}$$

Constraint for compulsory foods

 $0.5 \le S_i D_i \le 1.5$, $\forall i$ in Compulsory foods where $D_i = 1$, $\forall i$ in Compulsory foods

Constraint for additional foods

 $S_i D_i \leq 1.5$, $\forall i$ in Additional foods where $D_i \in \{0,1\}$, $\forall i$ in Additional foods

$$S_i, C_i, N_{ij}, N_j, S_k, S_m \in \mathbb{R}^+$$

where S is the serving size of the corresponding recipe $\frac{type}{t}$, C_i is the cost of the i^{th} recipe and N_{ij} is the j^{th} nutrient value of the i^{th} recipe and N_j is the j^{th} nutrient value.

$$D_i, D_j, D_k, D_m \in \{0, 1\}$$

where D are the decision variables for the corresponding recipe $\frac{type}{t}$, i.e whether the recipe shall be included in the model or not.

Objective function

$$min \sum_{i=1}^{I} Q_i C_i$$
 (2)

subject to

$$EAR(N_j) \le \sum_{i=1}^{I} Q_i N_{ij} \le TUL(N_j)$$
, $\forall i \in Food\ Items, \forall j \in (Energy, Protein\ and\ Fat)$

Constraint on the inclusion of at least one food item from each food group for whole foods and blended premix

$$N_{k_min} \leq \sum_{i=1}^{l} D_{ik} \leq N_{k_max}$$
, $\forall i \in Items \ in \ k^{th} \ food \ group$

Constraints on the minimum and maximum quantities within each food group for whole foods and blended premix

$$Q_{k_min} \leq \sum_{i=1}^{l} Q_{ik} \leq Q_{k_max}$$
, $\forall i \in Items \ in \ k^{th} \ food \ group$

Constraints subjected to quantity restrictions at the food item level for whole foods and blended premix

$$D_iQ_{i_min} \leq Q_i \leq D_i \ Q_{i_max}$$
, $\forall \ i \in \{oils, eggs, ground\ nut, sugar, jaggery, whole\ milk\ powder, black\ \&\ white\ sesame\ seeds\}$

Constraint for maintaining a cereal:pulse ratio of 2:1

$$1.8 \sum_{m=1}^{M} Q_m \leq \sum_{n=1}^{N} Q_n \leq 2.2 \sum_{m=1}^{M} Q_m \text{ ,} \forall m \in Pulses and } \forall n \in Cereals$$

Constraint for compulsory inclusion of cereal or millet

$$Q_{k_min} \leq \sum_{i=1}^{I} Q_{ik} \leq Q_{k_max}$$
 , $\forall i \in Items \ in \ cereals \ or \ millets$

$$Q_i, C_i, N_j, N_{ij}, Q_{k_min}, Q_{k_max}, Q_{ik}, Q_{i_min}, Q_{i_max}, Q_m, Q_n \in \mathbb{R}^+$$

where Q_i is the quantity of the ith food item, C_i is the cost of the ith food item, N_j is the jth nutrient value, N_{ij} is the jth nutrient value of the ith food item, Q_{k_min} is the minimum quantity of kth food group, Q_{k_max} is the maximum quantity of the kth food group, Q_{i_k} is the quantity of ith food item belonging to kth food group, Q_{i_min} is the minimum quantity of ith food item, Q_{i_max} is the maximum quantity of the ith food item, Q_m is the quantity of pulses, , Q_n is the quantity of cereals

$$D_i \in \{0,1\}$$

where D_i is the decision variable for the ith food item, i.e whether the food item shall be included in the model or not.

$$N_{k_min}, N_{k_max} \in Q^+$$

 N_{k_min} is the minimum number of food items to be chosen from k^{th} food group, N_{k_max} is the maximum number of food items to be chosen from k^{th} food group.