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Fig. S1. Legend on the next page. 



Fig. S1. CRISPR screen reveals molecular networks involved in reprogramming and X-chromosome 
reactivation. Related to Fig. 1. (A) Validation of knockout efficiency by flow cytometry. Flow cytometry 
analysis during 6 days of doxycycline treatment in the X-GFP iCas9 ESC line was done to measure the X-
GFP percentage decay in cells containing a gRNA targeting the GFP gene. Gating shows the X-GFP+ 
population. (B) Percentage of gRNA representation in the plasmid library, infected ESCs and the 4 
populations analyzed in two independent screening rounds: NPCs and day 10 reprogramming populations 
(non-pluripotent, early pluripotent, late pluripotent). Error bars represent SD. (C) gRNA abundance 
comparisons (related to D-I): NPCs to non-pluripotent, early pluripotent and late pluripotent populations. 
(D) Pathways related to common underrepresented genes (n=927 genes) in the three reprogramming
populations compared to NPCs (WikiPathways Mouse 2019). For all comparisons, an RRA score < 0.05
and Log2FC < -0.75 (underrepresented) filtering was applied. (E-G) Representation of genes with negative
Log2FC (underrepresented) vs -log10 RRA in the non-pluripotent (E), early pluripotent (F) and late
pluripotent (G) populations compared to NPCs (RRA cutoff = 0.05, Log2FC cutoff = -0.75). (H) Venn
diagram (using Venny 2.1.0) representing overlap of underrepresented genes (compared to NPCs) in each
of the sorted populations at day 10 of reprogramming. (I) Bar plot showing percentages of common and
unique underrepresented genes (compared to NPCs) in each of the sorted populations at day 10 of
reprogramming. (J) Pathways (WikiPathways Mouse 2019) related to underrepresented genes in the “early
pluripotent vs non-pluripotent” comparison (activators of early pluripotency, n=1361 genes) (RRA score <
0.05 and Log2FC < -0.8 filtering was applied). (K) Pathways (WikiPathways Mouse 2019) related to
overrepresented genes in the “early pluripotent vs non-pluripotent” comparison (repressors of early
pluripotency, n=693 genes) (RRA score < 0.05 and Log2FC > 0.8 filtering was applied). (L) Representation
of genes with positive Log2FC (overrepresented) vs -log10 RRA (RRA cutoff = 0.05, Log2FC cutoff =
0.75) in the “early pluripotent vs non-pluripotent” comparison (repressors of early pluripotency). (M)
Representation of genes with positive Log2FC (overrepresented) vs -log10 RRA (RRA cutoff = 0.05,
Log2FC cutoff = 0.75) in the “late pluripotent vs early pluripotent” comparison (repressors of late
pluripotency, X-reactivation). (N) Pathways (WikiPathways Mouse 2019) related to overrepresented genes
in the “late pluripotent vs early pluripotent” comparison (repressors of late pluripotency, X-reactivation,
n=839 genes) (RRA score < 0.05 and Log2FC > 0.8 filtering was applied).



Fig. S2. Legend on the next page. 



Fig. S2. Interferon γ pathway activation during iPSC reprogramming. Related to Fig. 2. (A) Analysis 
of apoptosis by annexin V and DAPI staining with flow cytometry after 48h of reprogramming induction 
+/- IFNγ treatment (n=3 technical replicates). Statistics (unpaired t-tests): ns = non significant; ** = p<0.01; 
*** = p<0.001. Error bars represent SD. (B) RT-qPCR on mRNA for Irf1 and Gbp2 expression at 0h, 3h, 
6h and 9h from reprogramming induction +/- IFNγ treatment (relative to t0). Error bars represent SD (n=3 
technical replicates). (C) Western blotting of STAT1 and pSTAT1 (Tyr701) on day 2 and day 5 
reprogramming cells +/- IFNγ treatment (loading control: PP1α). (D) Immunofluorescence of pSTAT1 
(Tyr701) on day 2 and day 5 reprogramming cells +/- IFNγ treatment. Scale bar = 25 µm. Outlines highlight 
colonies of cells undergoing reprogramming, characterized by smaller nuclei and tight aggregation. (E) 
Percentage of pSTAT1-positive cells from immunofluorescence in (D). Numbers of counted cells are 
indicated on the bottom of the graph. (F) (Related to Fig. 2F-H). Flow cytometry quantification of total X-
GFP percentages (from SSEA1+ cells) on day 7 of reprogramming for 3 clones from the parental cell line, 
3 clones containing a scrambled gRNA, 3 Stat1 -/- clones and 6 Irf1 -/- clones, including three technical 
replicates for each clone, in IFNγ-treated cells and untreated controls. Statistics (unpaired t-tests): ns = non 
significant; * = p<0.05; ** = p<0.01; *** = p<0.001; **** = p<0.0001. Error bars represent SD. (G) 
(Related to Fig. 2I-K). Quantification of SSEA1 percentage on days 5 and 10 of NPC differentiation by 
flow cytometry in control and IFNγ treatment conditions  (n=6 independent replicates). Statistics (paired t-
tests): ns = non significant, * = p<0.05; *** = p<0.001. 



Fig. S3. Reseeding of IFNγ-treated day 7 X-GFP negative cells results in higher colony formation and 
equal X-GFP reactivation at day 12. Related to Fig. 2. (A) Flow cytometry plots of X-GFP expression 
(from SSEA1+ cells) in control and IFNγ treatment (day 0-5) on day 12 iPSCs after reseeding SSEA1+ X-
GFP- cells on day 7 of reprogramming (gating shows the X-GFP+ population), and bar plot representation 
of X-GFP percentages (from SSEA1+ cells) (n=3 technical replicates). Statistics (unpaired t-tests): ns (non 
significant). Error bars represent SD. (B) Alkaline Phosphatase (AP) stainings on day 12 of reprogramming 
after reseeding SSEA1+ X-GFP- cells on day 7 of reprogramming, in control and IFNγ treatment (d0-5) 
and counting of AP+ colonies (n=3 technical replicates). Statistics (unpaired t-tests): *** = p<0.001. Error 
bars represent SD. (C) Brightfield and fluorescent images (X-GFP and P-RFP) of live cells at day 12 of 
reprogramming after reseeding SSEA1+ X-GFP- cells on day 7, in control and IFNγ treatment (d0-5). Scale 
bar = 400 µm. 
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Fig. S4. Early activation of the IFNγ pathway during MEF reprogramming reduces colony number 
and does not enhance X-GFP reactivation. (A) RT-qPCR on mRNA for Irf1 and Gbp2 expression in 
control and IFNγ-treated reprogrammable female MEFs after 6 hours since reprogramming induction. 
Expression levels are normalized to Gapdh (2-ΔCT) (n = 3 technical replicates). Statistics (unpaired t-tests): 
**** = p<0.0001. Error bars represent SD. (B,C) X-GFP percentages from SSEA1+ cells at days 8 (B) and 
10 (C) of female MEF reprogramming, in control and different IFNγ treatment conditions (d0-6, d2-6 and 
d0-6 with 4 times more cells seeded) (n = 3 technical replicates). MEFs from two different embryos were 
used. Statistics (unpaired t-tests): ns = non-significant; * = p<0.05; ** = p<0.01. Error bars represent SD. 
(D) Alkaline Phosphatase (AP) stainings on day 12 of reprogramming of MEFs derived from female
embryo 1 in control and IFNγ treatment conditions, and counting of AP+ colonies (n=3 technical replicates).
Statistics (unpaired t-tests): ns = non-significant; * = p<0.05; ** = p<0.01. Error bars represent SD. (E)
Brightfield and fluorescent images (X-GFP) of live cells at day 10 of reprogramming (embryos 1 and 2) in
control and different IFNγ-treatment conditions. Scale bar = 400 µm.
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Fig. S5. Transcriptomic analysis of interferon γ pathway activation during iPSC reprogramming. 
Related to Fig. 3. (A) Flow cytometry plots of X-GFP expression (from SSEA1+ cells) in control and IFNγ-
treated day 7 iPSCs. Gating shows sorted populations for RNA-sequencing. Average percentages between 
two independent reprogramming inductions are indicated for each population. (B, C) Principal component 
analysis of RNA-sequencing of NPCs, day 2, day 5, day 7 reprogramming populations and ESCs, in control 
and IFNγ treatment (day 0-5), representing the top 500 most variable autosomal genes only (B) and X-
chromosomal genes only (C). (D) Expression (FPKM) of selected genes (Stat1, Nanog, Prdm14 and Esrrb) 
in NPCs, ESCs, day 2, day 5 and day 7 reprogramming populations +/- IFNγ treatment (two RNA-
sequencing replicates shown). (E) Venn diagram (using Venny 2.1.0) representing overlapping of 
upregulated and downregulated genes upon IFNγ treatment between day 2 dox-treated cells and day 7 X-
GFP medium cells. (F) MA plot displaying transcriptomic changes of IFNγ vs control day 5 iPSCs (adjusted 
p value = 0.1). Upregulated genes are highlighted in light blue, downregulated genes are highlighted in 
orange. Selected genes are shown with points in red. (G, H) Upregulated (G) and downregulated (H) 
pathways in IFNγ vs control day 5 iPSCs (WikiPathways Mouse 2019) (adjusted p value = 0.1). (I) MA 
plot displaying transcriptomic changes of IFNγ vs control day 7 X-GFP negative iPSCs (adjusted p value 
threshold = 0.1). Upregulated genes are highlighted in light blue, downregulated genes are highlighted in 
orange. Selected genes are shown with points in red. (J, K) Upregulated (J) and downregulated (K) 
pathways in IFNγ vs control day 7 X-GFP negative iPSCs (WikiPathways Mouse 2019) (adjusted p value 
= 0.1). 
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Fig. S6.  Increased expression of NANOG and X-GFP in iPSC colonies upon early interferon γ 
treatment. Related to Fig. 4. (A) Alkaline Phosphatase (AP) stainings on day 10 of reprogramming in 
parental, STAT3-BFP medium and STAT3-BFP high cells +/- IFNγ treatment (d0-5) and counting of AP+ 
colonies (n=3 technical replicates). Statistics (unpaired t-tests): ns = non-significant; ** = p<0.01; *** = 
p<0.001. Error bars represent SD. (B) Percentages of STAT3-BFP+ cells at day 7 of reprogramming in 
parental, STAT3-BFP medium and STAT3-BFP high cells +/- IFNγ treatment (d0-5) (n=3 technical 
replicates). Statistics (unpaired t-tests): **** = p<0.0001. Error bars represent SD. (C) Expression 
(normalized counts) of genes of the X-inactivation center (Tsix, Jpx, Ftx, Rnf12) from X mus and X cas on 
NPCs, ESCs, day 2, day 5 and day 7 reprogramming populations +/- IFNγ treatment (two RNA-sequencing 
replicates shown). The * at Tsix indicates that the gene contains a truncation on the X-mus (112) and 
therefore cannot regulate Xist expression in cis. (D) Immunofluorescence (low magnification, 4x) for 
SSEA1, NANOG and X-GFP (active X chromosome) of day 7 reprogramming colonies +/- IFNγ treatment. 
Scale bar = 200 µm. (E) Percentages of SSEA1+, NANOG+ (low/high) and X-GFP+ (low/high) colonies 
from immunofluorescence in (D). The number (n) of counted colonies is indicated in the graph. NANOG+ 
or X-GFP+ colonies were scored as low or high if approximately less or more than half of the cells in the 
colony were positive for these markers, respectively. (F) Immunofluorescence (high magnification, 63x) 
for NANOG and X-GFP (active X chromosome) of day 7 reprogramming colonies +/- IFNγ treatment. 
Scale bar = 50 µm. (G) Percentages of NANOG+ and X-GFP+ (from NANOG+) cells from 
immunofluorescence in (F). The number (n) of counted cells is indicated in the graph.  



Fig. S7.  Generation and characterization of Stat3-/- knockout ESC pools. Related to Fig. 4. (A) Western 
blotting of STAT3 in parental ESCs and ESCs infected with Stat3-targeting gRNAs (Pairs 1 and 2) +/- 
doxycycline treatment for 7 days (loading control: GAPDH). (B) Cell number measurement for days 4-7 +/- 
doxycycline treatment in parental ESCs and ESCs infected with Stat3-targeting gRNAs (Pairs 1 and 2) (25.000 
cells seeded on day 4). (C) Flow cytometry plots on parental ESCs and ESCs infected with Stat3-targeting 
gRNAs (Pairs 1 and 2) upon doxycycline treatment for 8 days, showing expression of SSEA1/P-RFP (top) 
and X-GFP/P-RFP (bottom) and bar plots showing percentages of these double-positive populations in +/- 
doxycycline treatment conditions. (D) RT-qPCR on mRNA for Nanog, Nestin, Gata4 and T on parental 
ESCs and ESCs infected with Stat3-targeting gRNAs (Pairs 1 and 2) +/- doxycycline treatment for 7 days 
(n=3 technical replicates). Statistics (unpaired t-tests): ns = non significant; * = p<0.05; ** = p<0.01; *** 
= p<0.001. Error bars represent SD.  



Fig. S8. Legend on the next page. 



Fig. S8.  Day 7 X-GFP- reprogramming cells show a reduction in Xist clouds and in H3K27me3 spots, 
and equal X-chromosomal DNA methylation levels. Related to Fig. 4. (A) RNA FISH showing Xist 
clouds on the inactive X chromosome (Sx9 probe) in NPCs and day 7 SSEA1+ X-GFP-negative/positive 
control/IFNγ iPSCs (scale bar = 5  µm) and quantification of Xist cloud-positive and -negative cells in all 
conditions. (B) H3K27me3 immunofluorescence in NPCs and day 7 SSEA1+ X-GFP negative/positive 
control/IFNγ iPSCs (scale bar = 5  µm) and quantification of H3K27me3 spot-positive and -negative cells 
in all conditions. (C) Analysis of 5mC levels (β-values) of CpGs on autosomes and X chromosome in day 
7 X-GFP-negative iPSCs for control and IFNγ conditions, globally and divided by genomic distribution: 
promoters (<= 1kb from TSS), gene bodies and distal regions (number (n) of detected CpGs from each 
category is indicated on the bottom of the graphs). Δβ-values (mean β-value IFNγ - mean β-value control) 
and p values (comparison IFNγ vs control) are shown in the graphs. Statistics (unpaired t-tests): ns = non-
significant; * = p<0.05; **** = p<0.0001. (D) Δβ-values for 5mC in day 7 X-GFP-negative iPSCs for each 
genomic region in autosomes and X chromosome (corresponding to analysis in (C)). Bars marked with “ns” 
correspond to non-significant changes from analysis in (C). (E) X-chromosome paint DNA FISH in control 
X-GFP-negative and IFNγ-treated (d0-5) X-GFP-negative and -positive day 7 iPSCs (scale bar = 5  µm)
and quantification of cells with 1 or 2 X chromosomes.
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Fig. S9.  Interferon γ treatment promotes TET-mediated DNA demethylation in cells undergoing 
reprogramming. Related to Fig. 5. (A, C) Analysis of 5mC levels in day 5 (A) or 5hmC levels in day 7 
X-GFP+ cells (C) (β-values) of CpGs in autosomes and X chromosome for control and IFNγ (d0-5)
conditions, globally and divided by genomic distribution: promoters (<= 1kb from TSS), gene bodies and
distal regions (number (n) of detected CpGs from each category is indicated on the bottom of the graphs).
Δβ-values (mean β-value IFNγ - mean β-value control) and p values (comparison IFNγ vs control) are
shown in the graphs. Statistics: (unpaired t-tests): ns = non-significant; * = p<0.05; ** = p<0.001; **** =
p<0.0001.  (B, D) Δβ-values for 5mC in day 5 (B, corresponding to analysis in A) or 5hmC in day 7 X-
GFP+ iPSCs (D, corresponding to analysis in C) for each genomic region in autosomes and X
chromosomes. Bars marked with “ns” correspond to non-significant changes from analysis in (A) or (C).
(E) Transcription factor binding site (TFBS) enrichment analysis on differentially methylated X-
chromosomal CpGs (DMPs, logFC<(-0.1), p<0.01, n=468 CpGs) which lose methylation upon IFNγ
treatment compared to control in day 7 X-GFP+ iPSCs. -log10(FDR) capped values are above 25. (F)
Analysis of 5mC and 5hmC levels (β-values) of CpGs in early and main X-reactivating gene promoters at
day 5 and day 7 X-GFP+ iPSCs for control and IFNγ conditions (gene lists were obtained from (24)).
Number (n) of detected CpGs for each category and time point is indicated on the bottom of the graphs.
Δβ-values and p values (comparison IFNγ vs control) are shown in the graphs. Statistics (unpaired t-tests):
ns = non-significant; ** = p<0.001; **** = p<0.0001. (G) Heatmap showing 5mC levels (β-values) of all
X-chromosomal differentially methylated CpGs (n=470 DMPs, logFC cutoff = +/-0.1, p<0.01) sorted by
chromosome position.



Fig. S10. Legend on the next page. 



Fig. S10.  Allele-specific (hydroxy)methylation analysis by targeted amplicon oxidative BS-
sequencing. Related to Fig. 5. Allele-specific analysis of 5mC and 5hmC percentages (relative to total C) 
at day 5 of reprogramming in control and IFNγ-treated samples, in specific promoter loci surrounding CpGs 
from X-reactivating genes that were found as differentially hydroxymethylated on day 5 or 7 in Fig. 5, 
including escapee gene controls. Analysed loci contained promoter regions of the escapee genes Ddx3x (2 
CpGs) and Eif2s3x (16 CpGs) (plotted together because of low variability), and the X-reactivating genes 
Mtm1 (1 CpG), Dlg3 (1 CpG), Eda (3 CpGs) and Zfp185 (4 CpGs) (plotted separately because of high 
variability). 



Fig. S11. Legend on the next page. 



Fig. S11.  Absence of TET1 does not impede IFNγ-mediated enhanced X-GFP reactivation at day 7 
of reprogramming. Related to Fig. 5. (A) PCR on genomic DNA of parental (WT) and Tet1-/- clones 
showing an around 200 bp deletion in exon 3. The asterisk marks the clones used for further experiments. 
(B) Schematic representation of Sanger sequencing (and amino acid equivalence) of PCR products from
genomic DNA in the parental clone (WT) and 5 Tet1-/- clones used for the experiment, which showed a
premature STOP codon (represented in black). (C) Experimental design for (D): Tet1-/-, parental and
scrambled gRNA control ESCs were differentiated into NPCs and then reprogrammed into iPSCs in the
presence or absence of IFNγ (day 0-5). X-GFP percentages (from SSEA1+ cells) were measured by flow
cytometry at day 7 of reprogramming. 3 clones from the parental cell line, 3 clones containing a scrambled
gRNA and 5 Tet1 -/- clones were used, including three technical replicates for each clone. (D) Fold change
of percentage of X-GFP+ cells (from SSEA1+ cells) in IFNγ-treated cells compared to untreated controls
on day 7 of reprogramming, measured by flow cytometry. Bars represent the average X-GFP fold change
(IFNγ vs control) for clones with the same genotype, listed in (C). Each dot represents the mean of three
technical replicates for each clone. Statistics (unpaired t-tests): ns = non-significant. Error bars represent
SD. (E) RT-qPCR on mRNA for Tet1, Tet2 and Tet3 expression in day 7 SSEA1+ cells (+/- IFNγ treatment
day 0-5) from 3 scrambled and 3 Tet1-/- clones. Expression levels are normalized to Gapdh (2-ΔCT).
Statistics (paired t-tests between control and treatment within clones, unpaired t-tests for comparisons
between different clones): ns = non-significant; * = p<0.05. Error bars represent SD.



Supplemental Tables Description 

Supplemental Table S1. MAGeGK gene summary for CRISPR screen comparisons. Related 
to Fig. 1 and fig. S1. Statistical comparisons for each gene in “non-pluripotent vs NPCs”, “early 
pluripotent vs NPCs”, “late pluripotent vs NPCs”, “early vs non-pluripotent” and “late vs early 
pluripotent”. 

Supplemental Table S2. Lists of genes and pathways for CRISPR screen comparisons. 
Related to Fig. 1 and fig. S1. Gene lists for each category and pathways (“WikiPathways mouse 
2019”) corresponding to each of them: essentialome, repressors of colony formation, drivers and 
repressors of early pluripotency, drivers and repressors of late pluripotency and X-reactivation. 

Supplemental Table S3. DESeq2 and pathway analysis from RNA-sequencing experiments. 
Related to Fig. 3 and fig. S5. Differential gene expression analysis for each reprogramming 
timepoint (IFNγ vs control) and pathways (“WikiPathways mouse 2019”) associated to them (day 
2, day 5, day 7 X-GFP negative, day 7 X-GFP medium, day 7 X-GFP high), and allelic ratio for 
X-linked genes in ESCs, NPCs and each reprogramming population.

Supplemental Table S4. DNA methylation: DMPs, TFBS enrichment, gene lists and pathway 
analysis. Related to Fig. 5, fig. S8 and fig. S9. Differentially methylated CpGs (DMPs) for 5mC 
at days 5 and day 7 (X-GFP+) iPSCs (IFNγ vs control); overlap of upregulated genes in day 7 X-
GFP+ cells by RNA-seq and genes with lower promoter 5mC levels in day 7 X-GFP+ cells and 
pathways (WikiPathways mouse 2019) associated to them; lists of X-reactivating, “early” and 
“main” X-reactivating, and escapee genes obtained from (24), SeSAMe TFBS enrichment (based 
on ChIP-seq data from Cistrome/ENCODE databases) at days 5 and 7 for CpGs losing 5mC 
globally, and for CpGs losing 5mC on the X chromosome at day 7. 

Supplemental Table S5. Resources: oligonucleotides, antibodies, molecules for pathway 
validation, cell lines and softwares used in this study. 

Supplemental Table S6. Source data for figure panels. 
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