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Supplementary Note 1: Sample characterization

Structural and magnetic characterization of bulk NiI2. We studied the crystal structure of
bulk NiI2 single crystals using X-ray diffraction (XRD). Figure S1a shows the XRD pattern col-
lected along the (001) plane, which is consistent with previously reported XRD measurements
of NiI2 single crystals1, 2. We also investigated the magnetic behavior of the crystals using a
superconducting quantum interference device (SQUID) magnetometer (Quantum Design Inc.)
with the applied magnetic field along the out-of-plane crystallographic direction. Figure S1b
shows the variation of the inverse molar magnetic susceptibility (1/χm) (blue curve) and of the
quantity χmT (red curve) with temperature T . The two kinks in the 1/χm response at 75 K and
60 K correspond to distinct phase transitions. We ascribe the first kink to the transition from
a paramagnetic to a collinear antiferromagnetic phase, and we relate the second kink to the
transition from the collinear antiferromagnetic to the spin-spiral phase. A straight line fit (blue
dashed line in Fig. S1b) of the 1/χm versus T data in the high-temperature region (280-300 K)
yields a positive T -intercept (64.26 K) which suggests ferromagnetic nearest-neighbor cou-
pling. As the temperature is lowered, the T -intercept for the linear fit of the data moves toward
negative values, and in the low-temperature region (10-20 K) it becomes negative (-92.97 K).
The latter trend is consistent with the helimagnetic arrangement reported in the literature2, 3.
Figure S1c displays the magnetic field dependence of the magnetization at 10 K and 300 K,
respectively. An S-like-shaped curve lacking hysteresis is observed, and the change in slope
around zero field is more pronounced in the room temperature curve.

Surface quality of exfoliated NiI2 sample. To establish the surface quality of our NiI2 flakes,
we performed atomic force microscopy (AFM) in a glovebox filled with nitrogen. The optical
and AFM images of a representative flake are shown in Fig. S2a,b. Examination of the high-
lighted white lines 1 and 2 in Fig. S2b reveals a clean step profile and a uniform surface with a
roughness of 0.30 nm, respectively. Such profiles are displayed in Fig. S2c and Fig. S2d.

Sample stability upon photoexcitation. To ensure that we probed the same enantiopure do-
main during each pump-probe scan and to exclude any potential dephasing of the underlying
domain, we characterized the static optical second harmonic generation (SHG) polarimetry
signals before and after each time-resolved measurement. We found that the static SHG signal
remained essentially unchanged over time, even after three days of exposure to optical pump
and probe pulses (Fig. S3). Additionally, as evidence of the sample’s stability under our pho-
toexcitation conditions, we monitored the time-resolved SHG (tr-SHG) signal scan-by-scan.
Upon comparing these scans, we observed that the polarized tr-SHG signals were stable even
after 18 hours of measurements in the same polar configuration (Fig. S4).
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Fig. S1 | Structural and magnetic characterization of bulk NiI2. a, Single-crystal XRD of
NiI2 along the (001) plane. b, Variation of 1/χm and χmT with temperature T at an applied out-
of-plane magnetic field of 7 T. The inset is the χm versus T graph. The blue dashed lines are
linear fits of the 1/χm versus T data in the high-temperature (280-300 K) and low-temperature
(10-20 K) regions. c, M -H curves of the NiI2 bulk crystal with a magnetic field ranging from
-1.5 T to 1.5 T applied along the out-of-plane axis at 10 K (blue) and 300 K (red).
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Fig. S2 | Surface quality examination. a, Optical microscopy and b, AFM images of a NiI2
flake. Line-cut profiles along the white lines c, 1 and d, 2 as indicated in panel b.
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Fig. S3 | Static SHG signal stability. Static SHG polarimetry signal taken at 2.4 K on an
enantiopure domain of NiI2 before (left) and after (right) exposing the domain to ∼3 days of
irradiation with the 1.13 eV pump beam (used for tr-SHG measurements) and the 1.20 eV probe
beam.
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Fig. S4 | Tr-SHG polarimetry signal stability. Individual raw anisotropic tr-SHG scans show-
ing the signals collected in the cross-polarized configurations at the beginning of the acquisition
(left) and 18 hours later (right). Data in Fig. 2d,f of the main text displays the oscillatory com-
ponent extracted from the average of all such raw scans. These transient signals are normalized
to the maximum static SHG signal of ∼ 500 µV.

6



Supplementary Note 2: Details on magnon and phonon calculations

Spin Hamiltonian. We studied the magnetic properties of NiI2 by neglecting interlayer inter-
actions. The resulting spin Hamiltonian describing a single magnetic layer is4

HS = H iso
S +Hani

S , (1)

where H iso
S is the dominant isotropic part that can be written as

H iso
S =

1

2

∑
ij

JijSi · Sj +
B

2

∑
⟨ij⟩

(Si · Sj)
2. (2)

Here, Si is the spin of a Ni ion at position ri, and Jij are isotropic exchange interactions extend-
ing up to the third nearest neighbors (denoted by J1, J2, and J3). The competition between the
ferromagnetic nearest-neighbor exchange interaction and the antiferromagnetic third nearest-
neighbor exchange results in a spin-spiral ground state. The parameter B < 0 determines the
nearest-neighbor ferromagnetic biquadratic exchange coupling, favoring collinear order.

In addition, Eq. 1 contains the sub-dominant anisotropic Hamiltonian

Hani
S =

1

2

∑
ij

Si · (Jr
ijSj) +

1

2

∑
i

Si · (AsSi), (3)

where Jr
ij is a traceless and symmetric matrix describing nearest (Jr

1) and third nearest (Jr
3)

neighbor anisotropic exchange, and As is a matrix quantifying the single-ion anisotropy. Hani
S

breaks the rotational symmetry of the spins and fixes the global orientation of the ground state.
We note that the Hamiltonian here is written in the cubic Cartesian axes. Another common
convention for triangular lattices is to write the model in local crystallographic axes (see e.g.,
Ref. 5 for a discussion of the relation between these bases). In the local picture, the anisotropic
Hamiltonian generates a Kitaev interaction K, as well as the so-called Γ and Γ′ interactions. In
our work, we find that operating in the cubic basis set is more convenient. All the parameters
stated below refer to this basis.

We obtained these exchange parameters from first principles using density functional
theory (DFT), as described in the Methods section of the main text. The values of the exchange
interactions and the single-ion anisotropy are given in Table S1. The values are consistent with
those previously reported 4 (see discussion below) and reproduce the spin-spiral ground state
observed experimentally.

Magnon modes. We obtained the low-energy spin-wave excitations by solving the Landau-
Lifshitz equation

∂Si

∂t
= −Si ×

δHS

δSi

, (4)

where HS is the spin Hamiltonian introduced above. As elaborated in the main text, two spin
waves at the Brillouin zone center exhibit opposite parity under the C2 symmetry transforma-
tion. The C2-odd magnon (EMo) is found to have an energy of 3.93 meV, while the C2-even

7



J1 J2 J3 B
-5.03 -0.32 3.95 -0.89
Jr
1,xx Jr

1,yy Jr
1,zz Jr

1,xy

-0.13 0.82 -0.69 -0.96
Jr
3,xx Jr

3,yy Jr
3,zz Jr

3,xy

0.08 -0.02 -0.06 -0.045
Azz

0.44

Table S1 | Parameters of the spin Hamiltonian. Symmetry-allowed magnetic exchange pa-
rameters and single-ion anisotropy calculated from first principles. The spin axes are aligned
such that the y-axis is along a Ni-Ni bond and the z-axis is the out-of-plane direction. The
energy unit is meV. As the second nearest-neighbor exchange is small, only its average value
over all components is shown.

magnon (EMe) lies at an energy of 4.30 meV. We assign these two magnon modes to the col-
lective excitations observed in our measurements. To support this statement, we first rule out
the possibility of hybridized phonon modes and then use both DFT calculations and a model
derived from an effective spin cluster to show that these magnon modes acquire large elec-
tric dipole moments through the inverse Dzyaloshinskii–Moriya interaction (DMI) mechanism
(spin-current mechanism)6.

Phonon modes and magnon-phonon coupling. We performed DFT calculations to obtain
the phonon dispersion of monolayer NiI2 in a ferromagnetic configuration. As illustrated in
Fig. S5, the optical phonons at the Brillouin zone center have energies larger than 8 meV,
and therefore lie above the energies of the two modes detected experimentally. While our
calculations were conducted in the monolayer structure and did not account for interlayer shear
modes, it is important to note that these modes are expected to appear at much lower energies
in bulk NiI27. Furthermore, interlayer phonons would be present around a similar energy at any
temperature7, unlike the electromagnon modes observed in our measurements.

We also ruled out the possibility that zone-folded acoustic phonons hybridize with the
magnon modes. In a spiral magnet, the folded acoustic phonons are forbidden to modulate any
translationally invariant observables by the generalized Bloch theorem8, which is only weakly
broken by spin-orbit coupling. This statement is also supported experimentally, as we did not
observe any sign of folded acoustic phonons in the Raman spectrum, indicating a vanishing
Raman tensor.

To numerically verify the lack of strong magnon-phonon interactions, we directly ex-
tracted the coupling strength between magnon and phonon modes using the approach described
in Ref. 9. We defined the hybridization strength as hmp = Xmp/|ϵm − ϵp|, where Xmp is the
magnon-phonon coupling strength, and |ϵm − ϵp| is their energy difference. We obtained a
value of hmp < 0.2 between the two low-energy magnons and all phonon modes. Such small
hybridization can be attributed to the large radius of the I atom and the relatively small ra-
dius of the Ni d-shell. Furthermore, a frozen-phonon calculation revealed that folded acoustic
phonons generally have an electric dipole one order of magnitude smaller than the electro-
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Fig. S5 | Calculated phonon dispersion. Energy-momentum dispersion relation of the
phonon modes of monolayer NiI2 obtained from DFT calculations in a ferromagnetic con-
figuration.

magnon modes. This further rules out the role of phonons in the dynamical magnetoelectric
response.

Electric polarization of the (electro-)magnon modes. We also demonstrated that the low-
energy magnon modes are associated with a finite electric polarization and are, therefore,
electromagnons. We achieved this through two different approaches: (i) by performing first-
principles calculations of the magnon electric dipole moments, and (ii) by an analytical general-
ization of the spin current model presented in Ref. 6, adapted to the present context. The latter
approach shows that the electric polarization emerges as a consequence of the non-collinear
spin order and spin-orbit interactions, in agreement with recent proposals 10.

To obtain the electric dipoles associated with the magnon modes, we first calculated the
static polarization of monolayer NiI2 via the modern theory of polarization11. We found that
the electric polarization has a magnitude of Pel = 5.3 × 10−13 C/m and is directed along the
[010] direction. For a three-dimensional unit cell, this polarization corresponds to a value of
approximately 8.0 × 10−4 C/m2. This is consistent with our symmetry analysis (see below)
and with previous works10.

We then performed restricted DFT calculations, where the directions of the spins were
modulated according to the patterns of the magnon modes EMo and EMe. This treatment al-
lowed us to compute the change in electric polarization induced by the magnons. Within such
a frozen-magnon approximation, we could associate an effective electric dipole moment with
each magnon mode. We found that mode EMo has an electric dipole moment of magnitude
do = 2.5 µB/c perpendicular to the static electric polarization, while mode EMe has an electric
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dipole moment of magnitude de = 10.3 µB/c parallel to the static electric polarization. Here,
µB is the Bohr magneton and c is the speed of light. These results are again consistent with
the C2-symmetry analysis and show that the two low-energy magnon modes are indeed elec-
tromagnons with colossal electric dipole moments that couple strongly to an incident electric
field.

To understand the origin of the electromagnons’ electric polarization, we derived an an-
alytical generalization of the spin-current model introduced by Katsura et al. 6 and later ex-
panded to helical triangular antiferromagnets12, adapted to NiI2. The main differences between
the previous theory and our model are that the spin-orbit interaction in NiI2 acts on the ligand
(instead of the transition metal ion) and that the transition metal-ligand bonds are at approxi-
mately 90◦ (instead of 180◦). In line with Ref. 6, we considered an atomic cluster consisting
of two Ni atoms and one I atom (as indicated in Fig. S6). Working in the hole picture, the eg
orbitals on each Ni atom are occupied by two holes each, while the six p-orbitals on each I atom
are empty. Due to the orbital symmetry, we only had to consider the p-orbitals on the I atoms
that lie in the Ni-I-Ni plane (labeled according to the axes shown in Fig. S6), and the two eg
orbitals of Ni that lie along the Ni-I bonds. Moreover, we treated the Hubbard interaction and
Hund’s coupling on the Ni atoms within the mean-field approximation, which is equivalent to
imposing a large staggering field along the direction of the spin vector Si on each Ni. There-
fore, the low-energy subspace is spanned by the six orbitals {|d1⟩, |d2⟩, |p1↑⟩, |p1↓⟩, |p2↑⟩, |p2↓⟩},
where |d1⟩ and |d2⟩ are the d-orbitals polarized along S1 and S2. In addition, |p1↑⟩, |p1↓⟩ and
|p2↑⟩, |p2↓⟩ are p-orbitals directed along ê1 and ê2, respectively.

Fig. S6 | Illustration of the Ni-I-Ni atomic cluster considered in our calculations. The
shaded areas indicate the relevant atomic orbitals. S1 and S2 denote the spins on the two neigh-
boring Ni atoms. The local ê1, ê2, and ê3 axes are also shown.

Under the above assumptions, the Hamiltonian of the Ni-I-Ni cluster consists of three
parts: Hcluster = Ha + Hd−p + Hso, where Ha describes the isolated atoms, Hd−p the d-p
hybridization, and Hso the spin-orbit coupling on I (which is dominant due to the large atomic
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number of I compared to Ni). The different contributions to the Hamiltonian are

Ha = −∆(d†1d1 + d†2d2)

Hd−p = t
∑
σ

[
χ1σp

†
1σd1 + χ2σp

†
2σd2 +H.c.

]
(5)

Hso = iλ(p†1↓p2↓ − p†1↑p2↑) +H.c.,

where ∆ is the charge-transfer energy, t the d-p hopping amplitude, and λ the strength of the
spin-orbit coupling. The two-component spinors χiσ describe the components of the Ni spin
Si. The operator for the electric polarization is

P̂ = I1

∑
σ

[
χ1σp

†
2σd1ê2 + χ2σp

†
1σd2ê1 +H.c.

]
(6)

+ I2

∑
σ

[
χ1σp

†
1σd1ê1 + χ2σp

†
2σd2ê2 +H.c.

]
,

where ê1 and ê2 are unit vectors along the Ni-I bonds shown in Fig. S6, and I1 and I2 are
overlap integrals defined by

I1 = e

∫
dr(r · ê2)p∗2(r)d1(r) (7)

I2 = e

∫
dr(r · ê1)p∗1(r)d1(r).

Considering the spin-orbit Hamiltonian Hso as a perturbation to the remaining terms H0 =
Ha +Hd−p, the change in polarization due to the magnetic order is given to leading order by

P̂(1) =
λt3

∆4
I1(ê1 + ê2)[ê3 · (S1 × S2)]. (8)

Summing over all the bonds of the magnetic unit cell yields a total polarization along the
[010] axis, in agreement with our first-principles calculations. From Eq. 8, we note that the
polarization tends to zero for vanishing spin-orbit interaction or collinear spins. Therefore, both
spin-orbit interactions and a non-collinear magnetic order are necessary ingredients to induce
a macroscopic polarization in NiI2. This expression also provides the electric polarization
associated with each magnon mode, which agrees with our first-principles calculations and
again confirms that these modes are indeed electromagnons.

Using Eq. 8, we calculated the time-resolved modulation of electric polarization by the
two electromagnon modes and compare it with the transient magnetization of these two modes,
as illustrated in Fig. S7. The C2 parity enforces constraints on the components of electric
polarization and magnetization that the two EM modes modulate. In the following, we define
the axes x- y- and z-axis in line with the convention used in the main text (see Fig. 1c). Namely,
we take the x-axis to lie along the in-plane spiral wave vector, the y-axis to be along the electric
polarization and the z-axis to be along the out-of-plane direction. Thus, the y-axis is parallel to
the C2-axis, and the C2-even mode (EMe) only modulates the amplitude of the y-component of
electric polarization and magnetization (Fig. S7a), while the C2-odd mode (EMo) modulates the
amplitude of the x- and z-components of the electric polarization and magnetization (Fig. S7b).
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Fig. S7 | Electromagnon dynamics. Calculated polarization dynamics (∆P ) and magnetiza-
tion dynamics (∆M ) for a, EMe and b, EMo, as obtained from DFT calculations using the
frozen-magnon approximation. Te and To represent the oscillation periods of EMe and EMo,
respectively.

Another prominent feature from Fig. S7 is that the modulation of electric polarization
and magnetization differs by a phase of ±π/2. This π/2 phase arises from the quasi-time-
reversal symmetry T̃ of the system. T̃ consists of ordinary time-reversal combined with a
half-spiral translation along the vector q, i.e., parallel to the spiral wave vector but shifted by
half the spiral period. The electric polarization and magnetization transform under T̃ as even
and odd, respectively; this implies that their complex amplitudes necessarily differ by a factor
of i, leading to the π/2 phase shift.

Dependence of the magnetoelectric properties on the spin-plane canting angle and mag-
netic parameters. To demonstrate the robustness of our results to variations in the magnetic
parameters, in Tab. S2 we compare the spin parameters calculated in this work with the values
recently reported in Ref. 13. In our work, we used the Perdew-Burke-Erzenhof (PBE) func-
tional together with the four-state method14–16 to extract the spin parameters, while the work of
Ref. 13 considers either the PBE or hybrid HSE06 (HSE) functional together with a machine
learning approach. Interestingly, our values are closer to those of Ref. 13 obtained with the HSE
functional rather than the PBE functional, indicating a dependence of the parameters on both
the functional and the method used to extract them. However, since all parameter sets are in
close agreement, both the electromagnon energies and electric polarizations are expected to be
insensitive to the choice of functional and calculation method.

To support this statement, we note that the most sensitive property in our model calcula-
tions is the canting angle of the spin rotation plane with respect to the monolayer plane. Indeed,
Ref. 13 found that this angle depends sensitively on the ratio between the nearest-neighbor and
third nearest-neighbor exchanges J1 and J3, with a larger value of J3/J1 favoring a larger cant-
ing angle. We observe that our model predicts an angle of 45◦ compared to the experimentally
measured angle of 55◦. However, to compensate for this effect, we performed our DFT calcu-

12



J1 J2 J3 K B
Ref. 13 (PBE, ML) -4.338 -0.121 3.155 1.433 -0.685
Ref. 13 (HSE, ML) -4.976 -0.155 2.250 0.858 -0.719

This work (PBE, 4S) -5.030 -0.320 3.950 0.960 -0.890

Table S2 | Comparison of spin parameters calculated with different exchange-correlation po-
tentials and computational schemes. The functionals are either the generalized gradient ap-
proximation (GGA) potential of Perdew, Burke and Erzenhof (PBE) or the hybrid functional
HSE06. The computational approach to extract the spin parameters are either a fit using ma-
chine learning (ML) or the four-state method (4S). Ji denote isotropic exchange interactions
between ith nearest neighbors, K is the nearest neighbor Kitaev interaction, and B is the near-
est neighbor biquadratic exchange. The energy unit is meV.

Fig. S8 | Dependence of the electromagnon energies on the third nearest-neighbor ex-
change parameter J3 and the nearest-neighbor Kitaev interaction K. The electromagnon
energies have an approximately linear scaling on the parameters: specifically, the energies of
electromagnons increase by ∼10% when J3 and K increase by ∼20%. The blue and red curves
correspond to EMo and EMe, respectively.

lations in the experimental magnetic configuration and still found a similar value of the electric
polarization within our model (with PDFT = 5.3 × 10−13 C/m and Pmodel = 4.1 × 10−13

C/m). Furthermore, from Eq. 8, we see that the electric polarization changes with the canting
angle as P = P0 sin θ, where θ is the angle between the spiral propagation vector q and its
projection q∥ onto the monolayer plane. This demonstrates that the change in polarization with
respect to θ is approximately linear, such that small changes in θ lead to small changes in P . In
addition, this result indicates that our theory slightly underestimates the electric polarization,
since sin(45◦) < sin(55◦).

A similar argument can be made for the electromagnon energies. We note that the param-
eter set used in our work has slightly larger values of the nearest-neighbor and third nearest-
neighbor exchanges J1 and J3, compared to the model in Ref. 13. In Fig. S8, we show the
change in electromagnon energies when varying the third-nearest neighbor parameter J3 and
the Kitaev interaction K, keeping J1 fixed to define the overall unit of energy (this parameter
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is in good agreement between different approaches, see Tab. S2). For moderate changes in
the magnetic parameters, the electromagnon energies are approximately linear functions of the
variation, showing that small changes in parameters lead to small changes in the energies (up
to 10% for variation in J3 or K up to 20%). In particular, our calculated values of the elec-
tromagnon energies of 3.93 meV and 4.30 meV compare well with the experimental values of
4.09 meV and 4.51 meV, and would be even lower with the HSE parameters.

Based on these considerations, we are confident that our model provides a good descrip-
tion of the electromagnons and the associated ferroelectric properties, as validated by compar-
isons to both our DFT data and experiments.

Connection to the transient SHG signal. To connect the electromagnon modes to the ob-
served modulation of the SHG signal, we first perform a symmetry analysis of how the magnon
modes modulate the electric polarization and optical susceptibility tensor. Assuming that the
amplitudes of the spin precessions are small enough, a given physical observable A can be
expanded as

A(t) = Aeq + aeme(t) + aomo(t) +O(m2), (9)

where Aeq is the value of the observable in equilibrium, and me and mo denote the amplitudes
of the C2-even and C2-odd magnon modes, respectively. The symmetry of the equilibrium
system enforces that both ae and ao are invariant under a C2 transformation and, by acting with
this transformation on both sides of the equation, we see that ao = 0 for a C2-even observable
while ae = 0 for a C2-odd observable.

As above, we define the x-axis to lie along the in-plane spiral wave vector, and the y-axis
to be along the electric polarization. Thus, the y-axis is parallel to the C2-axis. Therefore,
since the x- and y-components of the polarization are respectively odd and even under the C2

transformation, we expect the odd magnon mode EMo to modulate the x-component of the
transient electric polarization, and the even magnon mode EMe to modulate the y-component
of the transient electric polarization. We also expect that out of the six independent in-plane
components of the optical susceptibility tensor, the C2-even ones χ(2)

xxy, χ(2)
yxx and χ

(2)
yyy will be

modulated by EMe, while the three C2-odd ones χ(2)
yyx, χ(2)

xyy and χ
(2)
xxx will be modulated by EMo.

These symmetry considerations are in good agreement with the modulation patterns observed
in our experiments.

To provide a more quantitative analysis of the transient modulation of the SHG signal, we
consider the response to a time-dependent external electric field described by the Hamiltonian

Hext = A(t) · Ĵ. (10)

Here, A(t) = (E0/ω) cos (ωt) is the electromagnetic vector potential for an electric field with
strength E0 and angular frequency ω, and the current operator Ĵ is

Ĵ = J
∑
σ

[χ1σp
†
1σd1ê1 + χ2σp

†
2σd2ê2 +H.c.], (11)

where J is the current integral and ê1 and ê2 are unit vectors along the Ni-I bonds shown
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in Fig. S6. The optical response to second order in the perturbation Hext, calculated via the
second-order Kubo formula, provides the time-dependent polarization

∆P(2)(t) = −
∫ t

t1

∫ t1

t2

dt1dt2⟨[[P̂(t), Hext(t1)], Hext(t2)]⟩, (12)

where the operators P̂(t) and Hext(t) are both in the Heisenberg picture with respect to the
static Hamiltonian Hcluster. Treating again Hso as a perturbation to H0, the polarization is given
to leading order by

∆P(2,1)(t) =
λtJ 2I1

ω3∆2(∆− ω)
[ê3 · (S1 × S2)](cos (2ωt)E0E0) (13)

: [(ê1ê1ê1 + ê2ê2ê2) +
3

2
(ê1ê2ê2 + ê2ê1ê1) +

3

4
(ê1ê1ê2 + ê2ê2ê1 + ê1ê2ê1 + ê2ê1ê2)].

From this equation, we can identify the second-order optical susceptibility tensor,

χ =
λtJ 2I1

ω3∆2(∆− ω)
[ê3 · (S1 × S2)] (14)

× [(ê1ê1ê1 + ê2ê2ê2) +
3

2
(ê1ê2ê2 + ê2ê1ê1) +

3

4
(ê1ê1ê2 + ê2ê2ê1 + ê1ê2ê1 + ê2ê1ê2)].

Similarly to the case of the electric polarization, the total susceptibility is obtained by summing
over all nearest-neighbor bonds.

Although the above calculation was performed in the velocity gauge, the light-matter
coupling (in the dipole approximation) can equivalently be written in the length gauge as

Hext = E(t) · P̂. (15)

This form of the light-matter coupling explains the large SHG signal observed below the or-
dering temperature of the equilibrium system, where the electric polarization acquires a finite
expectation value ⟨P̂⟩ = P0.
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Supplementary Note 3: Microscopic source terms for SHG

In magnetic materials, several forms of spatial-inversion symmetry (P) breaking could give rise
to different second-order nonlinear responses. Here, we explore the potential contribution of
these sources to the SHG signals observed in our NiI2 measurements. This discussion also aims
to contribute to the current debate on the origin of the SHG signal at our photon energy2, 7, 17–19.
In all the SHG analysis to follow, we will use the x, y, z coordinate system from the main text
(see Fig. 1c) and consider light beams propagating along the out-of-plane direction z.

From the wave equation, the source term for the nonlinear optical response S(t) can be ex-
pressed in terms of the induced nonlinear polarization PNL and magnetization MNL as

S(t) = µ0

(
∂2PNL

∂t2
+∇× ∂MNL

∂t

)
, (16)

where µ0 is the vacuum magnetic permeability. For magnetic materials with broken P sym-
metry, the second-order nonlinear signal consists of two leading-order responses. In the plane-
wave approximation with angular frequency ω, these can be written in the component-wise
amplitudes of the nonlinear polarization PNL

i (2ω) and magnetization MNL
i (2ω) as (1) an elec-

tric dipole (ED) response of the form20

PNL
i (2ω) = ϵ0

(
χ
(i,eee)
ijk + χ

(c,eee)
ijk

)
Ej(ω)Ek(ω), (17)

and (2) a magnetic dipole (MD) response of the form21

MNL
i (2ω) = ϵ0

c

n
χ
(c,mee)
ijk Ej(ω)Ek(ω), (18)

where ϵ0 is the vacuum dielectric permittivity, c is the speed of light, n is the index of refrac-
tion at the angular frequency ω, and Ei(ω) is the component amplitude of the probe electric
field. The second-order nonlinear optical susceptibilities χ

(2)
ijk are categorized as either i-type

(time-invariant, representing crystalline asymmetry) or c-type (time-variant, representing the
magnetic ordering).20 In our experiments, both the fundamental and second harmonic probe
photon energies are off-resonant with d-d or other parity-even transitions (see Extended Data
Fig. 1 in the main text), signifying the absence of resonant enhancement for the MD pathway
and making the MD response negligible compared to the ED response.20

Therefore, the main components of the SHG response are the ED terms χ(i,eee)
ijk and χ

(c,eee)
ijk

induced by the inversion-symmetry-broken ground state. The i-type SHG stems from the elec-
tric polarization, χ(i,eee)

ijk ∝ PFE , which reduces the crystalline point group to 2. In contrast,
the c-type SHG originates from the antiferromagnetic order, χ(c,eee) ∝ L, which reduces the
magnetic point group to either 21′ or 1 depending on the treatment of the incommensurate spin-
spiral19. Assuming the former 21′ symmetry, the c-type SHG must necessarily be zero due to
the gray magnetic point group22, and hence the SHG signal can be ascribed to an i-type SHG
of ferroelectric origin. If we instead take the latter 1 magnetic point group, then a c-type SHG
is allowed in addition to the i-type SHG from the electric polarization. Assuming the induced
PFE along y, the SHG arising from the latter will manifest at χ(i,eee)

xxy , χ(i,eee)
yxx , and χ

(i,eee)
yyy , while

the SHG arising from the spin spiral order will manifest at χ(c,eee)
xxy , χ(c,eee)

yxx , χ(c,eee)
yyy , χ(c,eee)

yyx ,
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χ
(c,eee)
xyy , and χ

(c,eee)
xxx . In this formulation, both types of symmetry breaking could, in principle,

contribute to the overall SHG signal. However, we argue that the nonlinear response from the
dipolar order still dominates in our experimental conditions.

One reason is the size of the observed nonlinear optical susceptibility in NiI2 (|χ(2)
22 | ≈

20 pm/V, see Supplementary Note 4), which is comparable to those from traditional ferro-
electrics devoid of magnetic order, such as BaTiO3 (|χ(2)

31 | = 36 pm/V) and LiNbO3 (|χ(2)
33 | =

69 pm/V).23 Apart from a few exceptions24, the nonlinear optical susceptibility arising from
magnetic ordering is substantially weaker than that originating from crystal asymmetry due
to the requirement of higher-order effects (e.g., spin-orbit coupling) to break parity symmetry
in the electronic system25, 26. In the same spirit, comparable multiferroic materials, including
MnWO4

27, DyMn2O5
28, hexagonal RMnO3 (R = Y, Ho, etc.)20, 29, 30, exhibit predominant i-

type SHG responses resulting from the material polarization outside of resonance with a d-d
transition.

Another reason is the anisotropic SHG response. Significant contributions from both
ferroelectric and spin-spiral orders would lead to an anisotropic response containing a mixture
of χ(i,eee)

ijk and χ
(c,eee)
ijk components, resulting in a loss of mirror symmetry in the polarimetry

patterns. However, the experimentally observed SHG anisotropy exhibits a clear reflection
symmetry and can be accurately assigned to a single ferroelectric domain with point group 2,
using only the χ

(i,eee)
xxy , χ(i,eee)

yxx , and χ
(i,eee)
yyy elements (see Fig. S9 and Table S5).

Finally, we note that should the magnetic point group be assigned to 21′, the system
would allow a magnetic SHG of i-type, χ(i,eee)

ijk ∝ L2.22 However, since PFE ∝ L2, such an
SHG signal would be indistinguishable from the SHG induced by the electric polarization.

In combination, these factors strongly suggest that the observed SHG signal originates
from an ED mechanism arising from the ferroelectric order, consistent with previous interpre-
tations of the SHG signal from NiI22, 17. This assignment is further supported by the observation
of a π/2 phase shift between the tr-SHG and tr-RKerr signals observed in the main text.
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Supplementary Note 4: Modelling of SHG Data

In this section, we report the derivation of the SHG models used to analyze the static and tr-
SHG signals shown in the main text. We then utilize these models to extract the static second-
order susceptibility and the dynamic susceptibility modulations induced by both electromagnon
modes.

Static SHG. At normal incidence (kω, k2ω||z), the most general second-order nonlinear polar-
ization, P(2ω), induced by an incoming electric field, E(ω), is:

Pi = ϵ0
∑
jk

χ
(2)
ijkEjEk,with (19)

Px = ϵ0[χ
(2)
xxxExEx + χ(2)

xxyExEy + χ(2)
xyxEyEx + χ(2)

xyyEyEy]

Py = ϵ0[χ
(2)
yxxExEx + χ(2)

yxyExEy + χ(2)
yyxEyEx + χ(2)

yyyEyEy],

where χ
(2)
ijk is the third-rank nonlinear optical susceptibility tensor. Note that the frequencies

ω have been omitted for simplicity. For a quasi-two-dimensional material with point group 2,
i.e., C2 symmetry, there are 4 non-vanishing tensors elements assuming a two-fold axis parallel
to y (crystallographic [010] axis) given by {xxy, xyx, yxx, yyy}. By applying the intrinsic
permutation symmetry appropriate for SHG, χ(2)

xxy = χ
(2)
xyx, we have

Px = 2ϵ0χ
(2)
xxyExEy (20)

Py = ϵ0[χ
(2)
yxxExEx + χ(2)

yyyEyEy],

Decomposing the electric polarization into azimuthal fields yields

Px(ϕ) = ϵ0E
2[2χ(2)

xxy cosϕ sinϕ] (21)

Py(ϕ) = ϵ0E
2[χ(2)

yxx cos
2(ϕ) + χ(2)

yyy sin
2(ϕ)],

where ϕ is the azimuthal angle measured from the x-axis. Writing out the parallel- and cross-
polarized SHG signals gives

P||(ϕ) = Px(ϕ) cosϕ+ Py(ϕ) sinϕ (22)

= ϵ0E
2[(2χ(2)

xxy + χ(2)
yxx) sinϕ+ (χ(2)

yyy − 2χ(2)
xxy − χ(2)

yxx) sin
3 ϕ]

P⊥(ϕ) = −Px(ϕ) sinϕ+ Py(ϕ) cosϕ (23)

= ϵ0E
2[(χ(2)

yyy − 2χ(2)
xxy) cosϕ− (χ(2)

yyy − 2χ(2)
xxy − χ(2)

yxx) cos
3 ϕ].

Suppose the electric polarization is along x instead. The nonlinear polarization can then be
obtained by making the replacements x → y, y → x and ϕ → ϕ+ π

2
, yielding

P ′
||(ϕ) = ϵ0E

2[(2χ(2)
yyx + χ(2)

xyy) cosϕ+ (χ(2)
xxx − χ(2)

xyy − 2χ(2)
yyx) cos

3 ϕ] (24)

P ′
⊥(ϕ) = ϵ0E

2[(2χ(2)
yyx − χ(2)

xxx) sinϕ+ (χ(2)
xxx − χ(2)

xyy − 2χ(2)
yyx) sin

3 ϕ].
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Similarly, if the electric polarization is along some general axis, the total nonlinear polarization
is the combination

P tot
|| (ϕ) = P||(ϕ) + P ′

||(ϕ) (25)

P tot
⊥ (ϕ) = P⊥(ϕ) + P ′

⊥(ϕ).

In equilibrium, we take the electric polarization from a single domain to be along y and
fit the static SHG signal intensity to Eqs. 22 and 23. The resulting fits, plotted in Fig. S9,
show excellent agreement with the experimental data, with the corresponding nonlinear optical
susceptibilities given in Table S3.

0

90

180

270

0

ϕ

Fig. S9 | Static anisotropic SHG model. The experimental static SHG polar pattern (circles)
is plotted alongside fits (solid lines) for both parallel- (blue) and cross- (red) polarization con-
figurations. The C2-axis (y-axis) is along ϕ = 90◦.

χ
(2)
xxy −14.6 pm/V

χ
(2)
yxx 8.6 pm/V

χ
(2)
yyy 19.7 pm/V

Table S3 | Static second-order nonlinear optical susceptibilities calculated from the calibrated
SHG power, a probe pulse duration of 270 fs, a beam size of 1 µm and an optical penetration
depth of 20 nm at ℏω = 2.4 eV.

Time-resolved SHG. Assume that the elements of the nonlinear optical susceptibility tensor
are proportional to the component of the instantaneous electric polarization allowed by sym-
metry

χ(2)
xxy(t), χ

(2)
yxx(t), χ

(2)
yyy(t) ∝ Py(t) (26)

χ(2)
yyx(t), χ

(2)
xyy(t), χ

(2)
xxx(t) ∝ Px(t). (27)
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This means that the nonlinear polarizations can be separated into azimuthal components V (ϕ)
and temporal components P(t) as

P tot
|| (ϕ, t) = V||(ϕ)Py(t) + V ′

||(ϕ)Px(t) (28)

P tot
⊥ (ϕ, t) = V⊥(ϕ)Py(t) + V ′

⊥(ϕ)Px(t), (29)

Empirically, the time-dependent electric polarization along y can be written as

Py(t) = P0 +∆Py(t), (30)

which includes the EMEe electromagnon, ∆Py(t), and the the initial polarization, P0. The
electric polarization along x includes only a contribution from the EMo electromagnon:

Px(t) = ∆Px(t).

The associated time-dependent anisotropic nonlinear polarizations are

P (ϕ, t) = P0(ϕ) + ∆Py(ϕ, t) (31)
= V (ϕ)(P0 +∆Py(t)) (32)

P ′(ϕ, t) = ∆Px(ϕ, t) (33)
= V ′(ϕ)∆Px(t). (34)

Finally, we can write the time-dependent SHG intensity as

I(ϕ, t) = |P tot(ϕ, t)|2 (35)
= |P (ϕ, t) + P ′(ϕ, t)|2 (36)

= P0(ϕ)
2 + 2P0(ϕ)[∆Px(ϕ, t) + ∆Py(ϕ, t)] +

∆Px(ϕ, t)
2 +∆Py(ϕ, t)

2 + 2∆Px(ϕ, t)∆Py(ϕ, t).
(37)

In the limit of weak electromagnon modulation, i.e., P0 ≫ ∆Px(t),∆Py(t), heterodyning of
the electromagnon signal with the SHG background results in an overall background-free signal
modulation of:

∆I(ϕ, t) = I(ϕ, t)− P0(ϕ)
2 (38)

= 2P0(ϕ)[∆Px(ϕ, t) + ∆Py(ϕ, t)], (39)

which yields the following expressions for the time-dependent SHG intensity:

∆I||(ϕ, t) = 2P0,||(ϕ)[(2∆χ(2)
xxy +∆χ(2)

yxx) sinϕ+ (∆χ(2)
yyy − 2∆χ(2)

xxy −∆χ(2)
yxx) sin

3 ϕ+

(2∆χ(2)
yyx +∆χ(2)

xyy) cosϕ+ (∆χ(2)
xxx −∆χ(2)

xyy − 2∆χ(2)
yyx) cos

3 ϕ]

(40)

∆I⊥(ϕ, t) = 2P0,⊥(ϕ)[(∆χ(2)
yyy − 2∆χ(2)

xxy) cosϕ− (∆χ(2)
yyy − 2∆χ(2)

xxy −∆χ(2)
yxx) cos

3 ϕ+

(2∆χ(2)
yyx −∆χ(2)

xxx) sinϕ+ (∆χ(2)
xxx −∆χ(2)

xyy − 2∆χ(2)
yyx) sin

3 ϕ].

(41)

We then proceed to fit this model to the experimentally measured tr-SHG signal. To focus
exclusively on the coherent electromagnons’ oscillatory response, we eliminate the incoherent
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background from the raw data. This is achieved by fitting the temporal traces at each probe
polarization angle to a double-exponential decay. Due to the challenge of the global fit in
accurately capturing the incoherent background at early time delays for all probe polarizations,
we only consider the oscillatory signal starting from ∼2 ps.

Single-oscillator model. To account for the simplest scenario, we first model the signal with
a generalized single harmonic oscillator whose components can be written as:

∆χ(2)
xxy(t) = Axxye

−γt cos (ωt+ Φ)

∆χ(2)
yxx(t) = Ayxxe

−γt cos (ωt+ Φ)

∆χ(2)
yyy(t) = Ayyye

−γt cos (ωt+ Φ)

∆χ(2)
yyx(t) = Ayyxe

−γt cos (ωt+ Φ)

∆χ(2)
xyy(t) = Axyye

−γt cos (ωt+ Φ)

∆χ(2)
xxx(t) = Axxxe

−γt cos (ωt+ Φ),

(42)

where Ai, γ, ω, and Φ are the amplitude, decay constant, angular frequency, and initial phase
of the respective oscillations. The corresponding fits to the experimental data and residual
signals are shown in Fig. S10, with the fitted parameter values shown in Table S4. The results
reproduce the strong 0.97 THz (4.01 meV) oscillations || C2 axis in both parallel- and cross-
polarized detection configurations, i.e., around ϕ = 90◦, 270◦, which we can assign to the C2-
even electromagnon. However, the lower frequency oscillations observed most prominently
in the perpendicular polarization near ϕ = 0◦, 180◦ are not captured by this model, as can
be seen in the significant oscillation in the residual. This indicates that a single oscillator
cannot explain the complex anisotropic oscillatory features in the tr-SHG signal. Note that the
oscillation represented by this model does not need to obey the underlying symmetry of the
lattice, so it is notable that the results are consistent with a dominant C2-even oscillation.
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Fig. S10 | Single-oscillator tr-SHG model. Results obtained from fitting the experiment tr-
SHG signal in the a, parallel- and b, cross-polarized detection channels with a single-oscillator
model. The corresponding fitting parameters are reported in Table S4.

ijk Aijk (fm/V) γ (ps−1) ω/2π (THz) Φ/π (rad)
xxy −89

0.28 0.98 −0.03

yxx 46
yyy 96
yyx 11
xyy 20
xxx 14

Table S4 | Single-oscillator tr-SHG fitting parameters.

Two-oscillator model. To reproduce all the significant features of the tr-SHG signal, we now
turn to a two-oscillator model. As the previous single-oscillator model suggests, the dominant
oscillation originates from a predominantly C2-even mode. Thus, it is natural to choose a
pair of C2-even and C2-odd oscillations with angular frequencies ωe and ωo respectively. By
doing so and assuming that the two modes are perfectly orthogonal, we do not observe perfect
agreement with the data due to the enforced symmetry of the C2-odd oscillations. Instead, we
expect some symmetry-breaking upon photoexcitation, as evidenced by the slight asymmetry
in the induced incoherent anisotropic tr-SHG background. Through an iterative fit of the time-
resolved SHG data, we establish this angle to be 25◦. Assuming that the C2-odd mode has its
principal axis rotated by 25◦ defined as the x′ and y′ axes, we can then fit the data with a model
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of the form:

∆χ(2)
xxy(t) = Axxye

−γet cos (ωet+ Φ)

∆χ(2)
yxx(t) = Ayxxe

−γet cos (ωet+ Φ)

∆χ(2)
yyy(t) = Ayyye

−γet cos (ωet+ Φ)

∆χ
(2)
y′y′x′(t) = Ay′y′x′e−γot cos (ωot+ Φ)

∆χ
(2)
x′y′y′(t) = Ax′y′y′e

−γot cos (ωot+ Φ)

∆χ
(2)
x′x′x′(t) = Ax′x′x′e−γot cos (ωot+ Φ).

(43)

To apply this model, we perform a preliminary fit of the raw time traces for each probe po-
larization using a damped sinusoidal function. Afterward, we conduct the full fit by fixing the
phase of the oscillations to the average phase obtained through the pre-fits. The results of the fit
and the residuals are shown in Fig. S11, while the fitting parameters can be found in Table S5.
Within this model, the frequencies of the two electromagnon modes are 0.97 THz (4.01 meV)
and 0.93 THz (3.85 meV). As noted in the main text and seen in the greatly suppressed residual
signal, this fixed-phase two-oscillator model accurately reproduces the major oscillatory fea-
tures in the tr-SHG data. However, we note that allowing the oscillations’ phase to vary freely
yields an almost identical phase. Letting the phase of the two oscillators vary independently
(e.g., Φo ̸= Φe) leads instead to unphysical results, where the two oscillators have the same
frequency but dramatically different phases and damping rates.
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Fig. S11 | Two-oscillator tr-SHG model. Results obtained from fitting the experimental tr-
SHG signal in the a, parallel- and b, cross-polarized detection channels with a two-oscillator
model. Corresponding fitting parameters are reported in Table S5.
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ijk Aijk (fm/V) γ (ps−1) ω/2π (THz) Φ/π (rad)
xxy −113

0.31 0.97

−0.02

yxx 31
yyy 126
y′y′x′ −26

0.10 0.93x′y′y′ −8.1
x′x′x′ 21

Table S5 | Fitting parameters of the two-oscillator tr-SHG model.

Unconstrained oscillator model. Lastly, we note that an alternative, less constrained fitting
procedure can be used to fit the above model to the tr-SHG data. The results of such a fit-
ting procedure are presented in Figs. 3a and 3b of the main text, with the full parameters
shown below in Table S6. Here, rather than fitting the overall anisotropic tr-SHG signal with
a pair of oscillators, we first fit the time-dependent polar patterns obtained in both parallel-
and cross-polarized detection configurations to Eqs. 40 and 41. Doing so yields a set of six
time-dependent susceptibility modulations ∆χ

(2)
i (t) which we then fit with damped oscillators

of the form:

∆χ
(2)
i (t) = Aie

−γit cos (ωit+ Φ). (44)

With this method, we can identify a pair of oscillators that correspond to the higher frequency
EMe and lower frequency EMo modes. Moreover, the observed amplitudes, decay, and fre-
quencies match well with the two-oscillator model presented above. To retrieve reliable fitting
parameters, we smooth the raw anisotropic tr-SHG data and fix the initial phase of the oscilla-
tors in the fits. Specifically, we first perform a free fit of the data and then use the average phase
of the resulting fits (-0.12π rad).

ijk Aijk (fm/V) γ (ps−1) ω/2π (THz) Φ/π (rad)
xxy −92 0.33 0.98

−0.12

yxx 30 0.15 0.97
yyy 95 0.32 0.98
y′y′x′ −28 0.14 0.93
x′y′y′ −14 0.14 0.90
x′x′x′ 30 0.22 0.93

Table S6 | Fitting parameters of the unconstrained oscillator tr-SHG model.
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Supplementary Note 5: Comparison between tr-RKerr and tr-SHG signals

Thus far, we have demonstrated that tr-SHG is an excellent tool for capturing the dynamical
evolution of the electromagnon modes in NiI2 through modulations of the electric polariza-
tion. In this section, we explore the use of a complementary tool, time-resolved reflective Kerr
effect (tr-RKerr), to probe the corresponding evolution of the transient magnetization of the
same electromagnons. In particular, we will: i) demonstrate the contrasting phase between the
observed polarization and magnetization modulations; ii) extract the fluence-dependent Kerr
rotation parameters for both electromagnons; and iii) calculate the relationship between the
observed reflective Kerr rotation and the electromagnon density.

For tr-RKerr measurements, we employed a polar Kerr geometry and monitored the
pump-induced polarization rotation of a linearly polarized probe reflected off a sample at nor-
mal incidence. By recording this light polarization rotation signal (∆θK) as a function of pump-
probe delay, we sought to measure the transient modulation of the out-of-plane magnetization
due to the coherent electromagnon modes. For these tr-RKerr measurements, we chose the
same pump and probe photon energies as in tr-SHG, i.e., ℏωpump = 1.13 eV, ℏωprobe = 1.20 eV,
which enabled us to compare the two results (as shown below). For tr-SHG, we utilized an
x-polarized probe, which selected the EMo oscillation and allowed us to compare the phases of
the two oscillations accurately. For tr-RKerr, we chose the same probe polarization along x, as
this also minimized the incoherent background.

Figure S12 displays the tr-SHG and tr-RKerr signals obtained at several incident pump
fluences on NiI2. Both techniques yield traces with similar features. In all cases, the sig-
nals consist of a fast, resolution-limited response that is followed by a decaying incoherent
background and coherent electromagnon oscillations. We then isolate the oscillatory response
by plotting the background-subtracted tr-SHG and tr-RKerr signals and show the results in
Fig. S13a,b. A visual inspection of the two signals reveals that the two techniques yield simi-
lar oscillatory dynamics that are characterized by a nearly monotonic decay, indicative of the
oscillation of a single mode. We then fit this oscillation to a decaying sinusoid of the form

Ae−γt cos(ωt+ Φ), (45)

where A is the amplitude, γ is the decay constant, ω is the angular frequency, and Φ is phase of
the oscillator. These fits (solid lines) are plotted alongside the experimental data in Fig. S13a,b,
with the oscillatory parameters shown in Fig. S14. The amplitude of the oscillations in both
probes scales linearly with the incident pump fluence, indicating that our measurements are
performed in a linear regime of pump-probe spectroscopy. The oscillations in both probes
also share a common energy softening on the incident pump fluence, suggesting that the same
electromagnon mode EMo is coherently excited by the pump pulse. This scenario is further
supported by the evolution of the decay constant, which is the same for both oscillations and
linearly increases as a function of incident pump fluence. Such a trend can be explained
by a combination of pure dephasing (i.e., through mutual scattering processes on the same
magnon branch) and population relaxation (i.e., anharmonic decay via three/four-magnon scat-
tering processes or charge carrier-mediated processes)31–35. Although both tr-SHG and tr-RKerr
clearly show the evolution of the same coherent modes, a visual inspection of the oscillations
reveals that the two detection schemes show contrasting initial phases. This behavior is con-
firmed by examining the fitted phase in Fig. S14 which exhibits a clear π/2 shift between the
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probes. Notably, the same phase difference is seen in the calculated polarization and magne-
tization dynamics of the electromagnons as shown in Fig. S7 and discussed in Supplementary
Note 2. Below, we will attribute this phase shift to assignments of the tr-SHG and tr-RKerr
signals to modulations of the electric polarization and transient magnetization, respectively.
Finally, it should be noted that neither probe sees substantial contributions from the higher fre-
quency EMe. For the x-polarized tr-SHG signal, this behavior can be explained by the fact that
x is orthogonal to the polarization modulation induced by EMe (i.e., along y) and hence the
SHG probe cannot detect it. Furthermore, calculations show that the EMe mode exhibits no
out-of-plane magnetization. Hence, no polar magneto-optical Kerr rotation would be seen in
the tr-RKerr signal.
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Fig. S12 | Fluence-dependent tr-SHG and tr-RKerr response. a Time-resolved SHG sig-
nal, ∆ISHG, obtained from measurements of NiI2 at several incident pump fluences. The sig-
nal shows coherent oscillations corresponding to the C2-odd electromagnon, EMo. b Time-
resolved reflective Kerr rotation, ∆θK , obtained from measurements of NiI2 at several incident
pump fluences. The inset shows the weak oscillatory features in the Kerr rotation, which is oth-
erwise dominated by a strong incoherent response. For both sets of measurements, time-zero
was uniformly determined by fitting the initial coherent response with an error function and
setting the inflection point as zero-delay. The right panels show the corresponding signals in
the region near time-zero.
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Fig. S14 | Fitted electromagnon oscillatory parameters at 2.4 K. Observed EMo oscillatory
parameters from both tr-SHG and tr-RKerr measurements: a, amplitude A, b, decay constant
γ, c, energy ℏω, and d, the initial oscillatory phases, Φ, obtained from the corresponding fits in
Fig. S13 as a function of the incident pump fluence. All error bars show the 95% confidence
intervals obtained from the fits.

Theoretical analysis of tr-RKerr data. In this section, we disentangle the relative contribu-
tions of polarization and magnetization dynamics in the reflective Kerr signal by performing
a perturbative expansion with regard to the pump-induced dielectric responses. To begin, we
consider the electric displacement D field in a biaxial magneto-optical crystal, which we write
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in terms of the electric field E as

D = ϵ0 (ε+ iG)E

= ϵ0

 εxx εxy εxz
εyx εyy εyz
εzx εzy εzz

+ i

 0 −Gz Gy

Gz 0 −Gx

−Gy Gx 0

E,

where ε is the anisotropic permittivity tensor, G is the gyrotropic tensor, and ϵ0 is the per-
mittivity of free space. Choosing the axis {x, y, z} to be the optical axes of the crystal, the
permittivity tensor can be written as

εii = ε0ii +∆εii (46)
εij = ∆εij, i ̸= j, (47)

where ε0ii are components of the diagonal static permittivity tensor and ∆εij are the pump-
induced modulations of the permittivity. We now consider an electromagnetic wave at optical
frequencies, propagating in the crystal with wavevector k||z. The wave equation can be written
as

k× k× E+ k2
0 (ε+ iG)E = 0. (48)

Taking into account that the anisotropy in ε only occurs in the xy-plane (due to the normal
incidence of the probe beam), the equation above can be reduced to

k2
0

(
εxx εxy − iGz

εyx + iGz εyy

)
E = k2

zE, (49)

where k0 = 2π/λ0 and λ0 is the wavelength of the incident light beam in vacuum. Thus, we
see that (kz/k0)2 is the eigenvalue for the total complex Hermitian permittivity tensor

ε̃ =

(
εxx εxy − iGz

εyx + iGz εyy

)
. (50)

Fig. S15 | Schematic diagram of the sample-substrate system. A 100-nm-thick exfoliated
NiI2 sample was deposited on a 285-nm-thick SiO2 layer that lied on a Si substrate.
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The reflected probe light traversing this optical system will experience a complex po-
larization rotation originating from both the real (∆ϵyx) and imaginary (Gz) components of
the dielectric tensor’s off-diagonal elements due to modulations of the C2-odd electromagnon
mode. To quantify this polarization rotation signal, we first write the transfer matrix of a trilayer
optical system (see Fig. S15) consisting of a NiI2 sample (with thickness d) placed on a layer
of SiO2 (with thickness L) and a Si substrate. We account for the pump-induced birefringence
as

T03 = T01G1(d)T12G2(L)T23,

where Tij accounts for the boundary conditions of electromagnetic waves at the interface be-
tween layers i and j:

Tij =

(
1 1√
ε̃j −

√
ε̃j

)−1(
1 1√
ε̃i −

√
ε̃i

)
. (51)

The bold 1 is the 2 × 2 identity matrix, ε̃i and ε̃j are the 2 × 2 Hermitian permittivity tensors
for layer i and j, as defined in Eq. 50. The square root indicates the arithmetic square root for
positive-definite matrices, i.e., if B̃ =

√
Ã then B̃B̃ = Ã, where both Ã and B̃ are positive-

definite Hermitian matrices.

Gi(l) are propagation matrices accounting for the bidirectional traversal of light through
layer i with thickness l:

Gi(l) =

(
e
i2π

√
ε̃i

l
λ0 0

0 e
−i2π

√
ε̃i

l
λ0

)
, (52)

where the exponential and square root are also for matrices. Assuming that the incident, re-
flected, and transmitted light fields have strength Ei, Er, and Et, we have

T03

(
Ei

Er

)
=

(
Et

0

)
.

Given Ei, we can solve for Et and Er. In the experimental setup, the incident light has its
polarization perpendicular to the C2 axis, and thus Ei = (1, 0)T . Accordingly, the reflected
Kerr signal is calculated by

∆θK =
|Erx + Ery|2 − |Erx − Ery|2

|Erx + Ery|2 + |Erx − Ery|2
. (53)

Using DFT calculations, we obtained the in-plane permittivity tensor of NiI2 without
pumping, which reads

ε̃ =

(
εxx 0
0 εyy

)
, (54)

where εxx ≈ 6.87 and εyy ≈ 6.98. Note that, in our trilayer system, only layer 1 (i.e., NiI2)
possesses any notable birefringence. We can see that, without pumping, the reflected light also
polarizes along the x axis; thus, ∆θK = 0.
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Through our DFT calculations, we also obtained the modulation of the permittivity tensor
by EMo, which reads

∆ε̃ =

(
0 ∆εxy − iGz

∆εxy + iGz 0

)
, (55)

where ∆εxy ≈ 0.016ρEM , Gz ≈ -0.010 ρEM , and ρEM is the electromagnon density (i.e., the
number of electromagnons per unit cell). In the limit of small electromagnon modulations, the
reflective Kerr signal takes the form of

∆θK ≈ Aε∆εxy + AGGz, (56)

where Aε and AG are coefficients. After pumping, we create a coherent electromagnon den-
sity in the system, giving rise to a non-zero oscillating Kerr signal. Using the experimental
parameters L = 285 nm, d = 100 nm, and the refraction indices of SiO2 and Si at 1.20 eV
(nb ≈ 1.45 and n3 ≈ 3.57), we have |AG| ≫ |Aϵ| and ∆θK ≈ 0.0023ρEM , where ρEM is the
electromagnon density derived from the modulation amplitude of the Kerr angle. This elec-
tromagnon density will play a critical role in the estimate of the dynamical magnetoelectric
coupling constant (see Supplementary Note 6). We also emphasize that, in our experimental
geometry, the Kerr signal mainly stems from the gyrotropic contribution Gz. This is confirmed
by manually setting ∆εxy = 0 in the calculations, as the resulting ∆θK ≈ 0.0025ρEM remains
almost unchanged.

Phase of the oscillations in the tr-RKerr and tr-SHG responses. Based on the previous
theory, we can write the complex electromagnon coordinate as

Q̃(t) = (Q′ + iQ′′)eiωt, (57)

where Q′ and Q′′ correspond to the time-symmetric (i.e., polarization) and time-antisymmetric
(i.e., magnetization) components of the electromagnon modulation. We can then expand the
complex Kerr rotation angle as

∆θ̃K(t) ∝
∑
i,j

Aij

∂χ
(1)
ij

∂Q̃
Q̃(t) (58)

∝
[
Aε

∂εxy
∂Q′ Q

′ + iAG
∂Gz

∂Q′′Q
′′
]
eiωt, (59)

where Aij encodes the dielectric contributions to the Kerr rotation (primarily χ
(1)
xy and χ

(1)
yx ),

and we have imposed the symmetry of the respective tensor elements. Similarly, the complex
nonlinear polarization can be written as

∆P̃
(2)
i (ϕ, t) ∝

∑
j,k

ajk(ϕ)
∂χ

(2)
ijk

∂Q̃
Q̃(t) (60)

∝
∑
j,k

ajk(ϕ)
∂χ

(2)
ijk

∂Q′ Q
′eiωt, (61)
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where ajk(ϕ) encodes the anisotropy of the optical SHG signal. Since the probe absorption is

negligible,
∂χ

(2)
ijk

∂Q̃
is necessarily real and, based upon the discussion in Supplementary Note 3,

also time-reversal symmetric. We can recover our signal by taking the real parts of the Kerr
rotation and the nonlinear polarization. This yields

∆θK(t) ∝ −AG
∂Gz

∂Q′′Q
′′ sin (ωt) (62)

∆P
(2)
i (ϕ, t) ∝

∑
j,k

ajk(ϕ)
∂χ

(2)
ijk

∂Q′ Q
′ cos (ωt). (63)

Note we have used the fact that, in our experimental geometry,
∣∣∣Aε

∂εxy
∂Q′

∣∣∣≪ ∣∣∣AG
∂Gz

∂Q′′

∣∣∣, as shown
in the previous section. Hence, the electromagnon oscillations in the tr-RKerr and tr-SHG
signals exhibit a π/2 phase shift based on their independent sensitivities to the magnetization
and polarization modulations, respectively.
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Supplementary Note 6: Dynamical magnetoelectric coupling

Having established the independent sensitivities of tr-SHG and tr-RKerr to the transient electric
polarization and magnetization, respectively, we can now estimate the dynamical magnetoelec-
tric coupling constant by comparing the corresponding oscillatory features. We focus on the
EMo mode due to its substantial symmetry-allowed out-of-plane magnetization and examine
the relative tr-SHG and tr-RKerr modulations at an incident pump fluence of 1.65 mJ/cm2.

We begin by writing the first-order dynamical magnetoelectric response at angular frequency
ω36:

∆P i(ω) = ϵ0χ
e
ii(ω)∆Ei(ω) + αij(ω)∆Hj(ω), (64a)

∆M j(ω) = χm
jj(ω)∆Hj(ω) +

1

µ0

αij(ω)∆Ei(ω). (64b)

Here, αij is the dynamical magnetoelectric coupling tensor that couples the electric polariza-
tion Pi, electric field Ei, magnetizing field Hi, and magnetization Mi. Likewise, χe

ii and χm
jj

are the linear electric and magnetic susceptibility tensor elements, and ϵ0 and µ0 are the di-
electric permittivity and magnetic permeability of free space, respectively. The elements αij

are responsible for a variety of optical phenomena, including directional dichroism37, 38 (by the
off-diagonal elements) and natural optical activity/gyrotropic birefringence39–41 (by the diago-
nal elements). In general, αij is a complex quantity even in a dissipationless material whose
real and imaginary components represent the amplitude of the magnetoelectric response that is
in-phase and π/2 out-of-phase, respectively. In NiI2, the evolution of either electromagnon pro-
duces magnetization and polarization responses that are nearly parallel to one another, which
will induce gyrotropic birefringence and optical activity via the diagonal elements of the mag-
netoelectric response via the in-phase and out-of-phase responses, respectively. Our theoretical
model proves that the magnetization and polarization oscillate almost completely out-of-phase
(Fig. S7, Supplementary Note 2), indicating that the optical activity is the dominant response
from the electromagnons.

Here, we estimate the intrinsic coupling characterizing the electric polarization and mag-
netization of the electromagnons via two procedures. For the first, we consider the microscopic
picture centered upon a material whose electromagnons evolve freely in the absence of a reso-
nant external terahertz field, i.e., E(ω) = B(ω) = 0. In this case, using Hi(ω) = −Mi(ω), we
write the magnetoelectric constant based upon Eq. 64a as

∆P i(ω) = −αij(ω)∆M j(ω). (65)

Alternatively, one can consider the macroscopic dynamical magnetoelectric response in the
terahertz regime under the assumption that χm

jj = 0 and χe
ii ≫ 1√

ϵ0µ0
αji, which, following

Eqs. 64a and 64b, yield an electromagnon response of

∆M j(ω) ≈
c2

χe
ii

αij(ω)∆P i(ω). (66)

As will be demonstrated shortly, both Eqs. 65 and 66 provide similar estimates of the magneto-
electric constant of the material. From the anisotropic tr-SHG signal, we estimate that the EMo
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amplitude in terms of the nonlinear optical susceptibility is ∼ 20 fm/V (see Supplementary
Note 4). Based upon the static susceptibility of ∼ 20 pm/V and the reported bulk polariza-
tion of single-domain NiI23, Pel = 9.2×10−14 C/m, when converted to a unit cell of theoretical
monolayer height (i.e., 1/3 the standard unit cell or c = 6.59 Å), the observed two-dimensional
polarization modulation is

∆P x
EMo

=
∆χ

(2)
EMo

χ
(2)
yyy

Pel

≈ 1× 10−3Pel

≈ 9.2× 10−17C/m.

From tr-RKerr, we obtain an approximate EMo amplitude in terms of the Kerr rotation of
∼ 4 µrad at 1.65 mJ/cm2 (see Fig. S14). The corresponding magnetization modulation can be
written as

∆M z
EMo

=
ρEMµEMo

A
, (67)

where µEMo is the magnetic dipole moment of EMo (≈ 0.7µB from calculations, where µB is
the Bohr magneton), ρEM is the EMo density per unit cell, and A is the area of the unit cell.
From the transfer matrix calculations detailed in Supplementary Note 5, ρEM can be obtained
from the Kerr rotation via θK ≈ 0.0023ρEM . Thus, given the two-dimensional magnetic unit
cell with a = 23.95 Å, b = 3.95 Å (perpendicular to each other), we obtain a two-dimensional
magnetization modulation of

∆M z
EMo

≈ ∆θK
0.0023

0.7µB

ab
≈ 1.2× 10−8 A.

To compare these dynamics, we first convert the measured in-plane polarization (||x) and out-
of-plane magnetization (||z) response and project both onto the EMo axis κ ∼ (x̂+

√
2ẑ)/

√
3.

Doing so while taking into account the observed π/2 out-of-phase dynamics yields a magneto-
electric constant ακκ at the EMo resonance frequency ωo of

|Im {ακκ(ωo)}| =
∣∣∣∣ ∆P κ

EMo

∆Mκ
EMo

∣∣∣∣
≈ 11× 103 ps m−1,

utilizing Eq. 65. By performing the same estimation via Eq. 66 and χe(ωo) ∼ 1142, we obtain

|Im {ακκ(ωo)}| =
∣∣∣∣χe∆Mκ

EMo

c2∆P κ
EMo

∣∣∣∣
≈ 11× 103 ps m−1.

Remarkably, both methods yield similar values. These values agree well with our theoretical
estimate of 25/7c≈ 12×103 ps m−1, obtained using Eq. 65 by combining the electric (2.5µB/c)
and magnetic dipole (0.7µB) of EMo obtained from DFT (see Supplementary Note 2). To
our knowledge, this coupling strength exceeds that of all known magnetoelectric materials in
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the terahertz spectral range (see Table S7), and in particular, exceeds those responsible for
the natural optical activity or gyrotropic birefringence in such materials, being equivalent to a
colossal polarization rotation of η ≈ 1000◦/mm.

Optical phenomena from magnetoelectric coupling. Several distinctive optical phenomena,
including directional dichroism, natural optical activity, and gyrotropic birefringence, arise
from the magnetoelectric coupling tensor. Here, we will review the differences and similari-
ties between these processes, along with their origins from the magnetoelectric tensor. Firstly,
directional dichroism refers to the nonreciprocal absorption of light traveling through a mate-
rial in opposite directions. Microscopically, it originates from the off-diagonal element of the
magnetoelectric tensor, αij, i ̸= j, and is strongest for light propagating along the plane normal
êi × êj . Intuitively, this form of magnetoelectric interaction can be considered as a source term
for light emission with the same polarization as the incident radiation, e.g., the Hj(ω) of light
will induce Ei(ω). However, the axial nature of this coupling means that the induced light
fields have opposite phases for opposite propagation directions. Hence, in one direction, the
magnetoelectric coupling will emit light that deconstructively interferes with the incident radi-
ation, thus reinforcing the natural absorption of light in the material. In the other direction, the
induced light will constructively interfere with the incident radiation, thus counteracting that
same absorption.

The other two processes, natural optical activity and gyrotropic birefringence, are both
optical phenomena that induce a complex polarization rotation of light.43 The former can be
described by the reciprocal birefringence of left- and right-circularly polarized light, thus serv-
ing as an inherent probe of the material’s chirality. In contrast, the latter can be described by
a non-reciprocal rotation of the material’s principal optical axis. Conceptually, the two can
be distinguished in that the eigenpolarizations of the former are circular, while those of the
latter are linear. Another major difference is that natural optical activity can occur even in
systems that preserve time-reversal symmetry, while gyrotropic birefringence requires broken
time-reversal symmetry and typically scales with an applied magnetic field. Microscopically,
the two processes originate from the diagonal components of the magnetoelectric coupling ten-
sor αii, which serves as a source term for light emission that is polarized orthogonal to the
incident light radiation, e.g., the Hi(ω) of light will induce Ei(ω) || Hi(ω). The two differ
because natural optical activity and gyrotropic birefringence originate from the imaginary and
real parts of αii, respectively, in a non-dissipative system. The former results in a π/2 out-of-
phase emission of the orthogonally polarized light, leading to ellipticity, while the latter results
in an in-phase emission, leading to rotation.
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Material ω/2π (THz) H (T) T (K) Tmultiferroic ij αij (ps/m) Resonance
NiI2 (EMo) 0.93 0 2.4 T < 60 K Im[κκ]† 11000 IDM

(Fe, Zn)2Mo3O8
40 1.4 0 5 T < 60 K Im[xx− zz]† 140 ES

Eu0.7Y0.3MnO3
44 0.55 5 4 T < 24 K Im[xx]† 770 ES + AFMR

Eu0.55Y0.45MnO3
44 0.10 7 4 T < 24 K Im[xz] 1100 IDM

0.58 7 Im[xz] 300 ES
Ba2CoGe2O7

39 1.0 7 5 T < 6.5 K Im[xx+ yy] /2† 500 ES
CuO45 0.67 0 214 212 K < T < 231 K Re[xx− yy] /2† 17 IDM

Gd0.5Tb0.5MnO3
38 0.25 7 8.3 T < 25 K Im[xz] 1840 IDM

0.67 7 Im[xz] 330 ES
CuFe0.965Ga0.035O2

43 0.25 0 4 T < 7 K Re[xx− yy] /2† 244 IDM
LiCoPO4

46 1.2 0 2 T < 22.5 K Im[xz] 32 ES

Table S7 | Dynamical magnetoelectric coupling strengths in different materials. Dynam-
ical αij(ω) for various magnetoelectric materials measured in resonance with characteristic
collective modes. Indicated resonances include electrostriction-based electromagnons (ES), in-
verse Dzyaloshinskii–Moriya interaction-based electromagnons (IDM), and antiferromagnetic
resonances (AFMR). † In typical frequency domain measurements, dissipation in the system
will exchange the real and imaginary parts of αij at resonance. Thus, observations of natural
optical activity in CuO and CuFe0.965Ga0.035O2 show a peak in Re[αii] which is still comparable
to our time-domain observation of Im[αii] in NiI2. Similarly, the gyrotropic birefringence in
(Fe, Zn)2Mo3O8, Eu0.7Y0.3MnO3, and Ba2CoGe2O7 is observed in Im[αii] and not Re[αii].
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Supplementary Note 7: Pump polarization dependence

We performed a series of tr-SHG measurements while varying the incident linear pump polar-
ization and helicity. We then fitted the oscillations of the EMo mode to a decaying sinusoid of
the form

Ae−γt cos(ωt+ Φ), (68)

where A is the amplitude, γ is the decay constant, ω is the angular frequency, and Φ is phase
of the oscillator. The resulting amplitudes and initial phase of the oscillations are shown in
Fig. S16. Notably, we observed that the electromagnon oscillations show little dependence on
the linear polarization of the incident pump, which is inconsistent with coherent excitation via
the inverse Cotton-Mouton effect47, 48. The small residual dependence of the amplitude (<10%)
may be attributed to the weak birefringence in the material. Similarly, a comparison of the EMo

signal as a function of the helicity of the light reveals little dependence, which also excludes the
inverse Faraday effect behind coherent magnon generation49, 50. Combining these observations,
we believe that the likely excitation mechanism is mediated by the photoexcited carrier density
produced by the residual absorption of the 1.13 eV pump pulse. Recent studies have identified
possible microscopic mechanisms that can lead to such results in various canted and zig-zag
antiferromagnets51–53. Possible extensions of these theories to the case of spiral magnetic orders
that lead to type-II multiferroicity may shed light on the physics at play in NiI2.
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Fig. S16 | Pump polarization dependent tr-SHG signal. a, The photoexcited EMo amplitude
A (blue) and initial phase Φ (red) as a function of the linear pump polarization angle, θ, where
θ = 90◦ corresponds to excitation parallel to the C2 axis. b, Similar EMo amplitude and initial
phase as a function of pump helicity. The measurements were performed with an incident
pump fluence of 1.65 mJ/cm2 at 2.4 K. QWP: quarter-wave plate. All error bars show the 95%
confidence intervals obtained from the fits.
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Supplementary Figures

Fig. S17 | Schematic diagram of the experimental setup. The samples could be imaged
and measured using different techniques, including spontaneous Raman scattering, tr-SHG,
and tr-RKerr, under the same experimental conditions. The red and blue lines indicate the
pump and probe paths in tr-SHG and tr-RKerr, respectively. The light green, green, and split
blue lines represent the detection of the Raman, tr-SHG, and tr-RKerr signals, respectively.
DL: delay stage; P: polarizer; BS: beamsplitter; DM: dichroic mirror; HWP: half-wave plate;
M: microscope objective; BP: bandpass filter; L: lens; WP: Wollaston prism; NF: notch filter.
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Fig. S18 | Temperature-dependent static SHG polarimetry patterns. SHG polarimetry pat-
terns measured in perpendicular (red) and parallel (blue) polarization configurations at different
temperatures. Note that the pattern observed at 65 K has been scaled by 103 for clarity. Above
THM ≃ 60 K, the SHG signal shows a six-fold anisotropy. When the temperature drops below
THM , a strong SHG emission with a two-fold anisotropy pattern appears, indicating the emer-
gence of an electric polarization and the reduction in crystal symmetry (3̄m → 2).
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parallel (left) and crossed (right) polarized configurations. Data corresponding to the same
signals are shown in Fig. 2d,f of the main text, but without the incoherent background. Signals
are normalized to the maximum static SHG signal of ∼ 500 µV.
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