
Supplementary Information

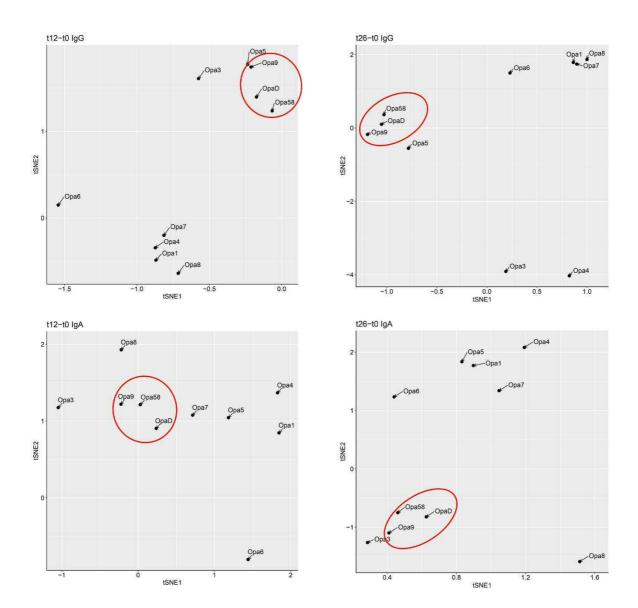

Contents

Figure S1 Heatmaps of vaccine recipient responses.	. 2
Figure S2 tSNE separation of Opa antigens	. 3
Figure S3 Alignment of sequences of Opa proteins used in the microarray	. 4
Figure S4 Example correlations of IgG and IgA responses in the vaccinated cohort for selected Opa protein variants	. 5
Figure S5 PCA analysis applied to IgG and IgA immunoprofiles in the vaccinated cohort at the 10 weeks timepoint.	
Figure S6 PCA analysis applied to IgG and IgA immunoprofiles in the vaccinated cohort at the 24 weeks timepoint.	
Figure S7 Violin plots of bactericidal activity (% recovery) at three serum dilutions	. 8
Figure S8 Violin plots of ELISpot activity.	. 9
Table S1 Peptides used in ELISpot assays	10
Clinical Trial Protocol	11

Figure S1 Heatmaps of vaccine recipient responses. Antigens are ordered in columns, with the same order used for each block. Participants are numbered in rows (numbering is arbitrary). The viridis colour scheme is used, with lowest signals purple/blue, through to yellow for the highest responses. Arrows indicate columns of highly reacting antigens.

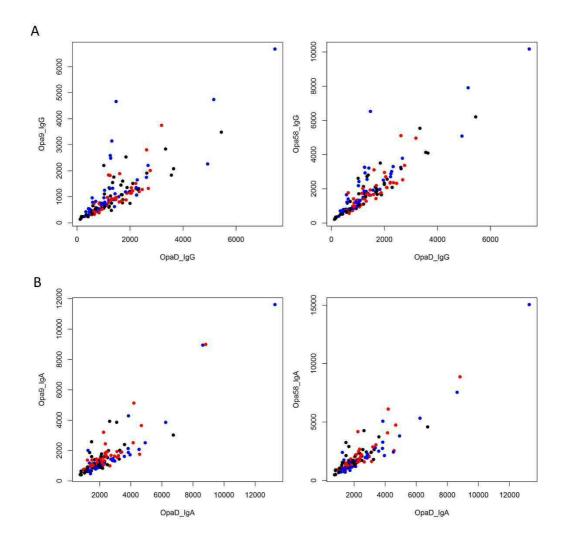

Figure S2 tSNE separation of Opa antigens. The plots use the same data from Fig 3B and C; Opa variants are labelled (sequences in Fig S3). The OpaD/Opa9/Opa58 grouping is circled in red.

Figure S3 Alignment of sequences of Opa proteins used in the microarray. Alignment was carried out using Clustalx. Of the 11 Opas in the genome two were identical in sequence (Opa2 and Opa7); Opa2 was removed. OpaD/Opa9/Opa58 tend to cluster together in tSNE plots (Fig S2) and are highlighted in yellow. The second hypervariable loop region is highlighted in red for these variants.

Opa7	MKETAAAKFERQHMDSPDLGTDDDKAMAVQADLAYAAERITHDYPEPTGA	50
Opa1	MKETAAAKFERQHMDSPDLGTDDDKAMAVQADLAYAAERITHDYPEPTGA	50
Opa3	MKETAAAKFEROHMDSPDLGTDDDKAMAVOADLAYAYEHITRDYPDAAGA	50
Opa4	MKETAAAKFERQHMDSPDLGTDDDKAMAVQADLAYAAERITHDYPEPTGT	50
Opa5	MKETAAAKFERQHMDSPDLGTDDDKAMAVQADLAYAAERITHDYPEPTGA	50
Opa3 Opa8	MKETAAAKTERQHMDSPDLGTDDDKAMAVQADLAYAYEHITRDYPDAAGA	50
	MKETAAAKFERQHMDSPDLGTDDDKAMAVQADLAYAYEHITRDYPDAAGA	50
Opa6	-	
OpaD	MKETAAAKFERQHMDSPDLGTDDDKAMAASEGNGRGPYVQADLAYAAERITHDYPEPTAP	60
Opa9	MKETAAAKFERQHMDSPDLGTDDDKAMAVQADLAYAAERITHDYPEPTAP	50
Opa58	MKETAAAKFERQHMDSPDLGTDDDKAMAASEGNGRGPYVQADLAYAAERITHDYPEPTAP **********************************	60
	******* ****** ****** ****** ****** ****	
_		
Opa7	KKDKKISTVSDYFRNIRTHSVHPRVSVGYDFGSWRIAADYARYRKWNNSKYSVNIKRVKE	110
Opa1	KKG-KISTVSDYFRNIRTHSIHPRVSVGYDFGGWRIAADYARYRKWNNSKYSVNTKKVNE	109
Opa3	NQGKKISTVSDYFKNIRTHSIHPRVSVGYDFGGWRIAADYARYRKWNDNKYSVDIKELEN	110
Opa4	KK-DKISTVSDYFRNIRTHSIHPRVSVGYDFGGWRIAADYARYRKWNNSKYSVNTKKVNE	109
Opa5	KKG-KISTVSDYFRNIRTHSIHPRVSVGYDFGGWRIAADYARYRKWNDNKYSVNIKELGR	109
Opa8	NQGKKISTVSDYFKNIRTRSVHPRLAFGYDFGGWRIAADYARYRKWHNNKYSVNIKELGR	110
Opa6	NKG-KISTVSDYFRNIRTHSIHPRVSVGYDFGGWRIAADYARYRKWHNNKYSVNIKELER	109
OpaD	GKN-KISTVSDYFRNIRTHSIHPRVSVGYDFGGWRIAADYARYRKWHNNKYSVNIKELER	119
Opa9	GKN-KISTVSDYFRNIRTHSIHPRVSVGYDFGGWRIAADYARYRKWNDNKYSVDIKELEN	109
Opa58	GKN-KISTVSDYFRNIRTHSIHPRVSVGYDFGGWRIAADYARYRKWNDNKYSVDIKELEN	119
opaco	. ***********************************	
Opa7	NNGSGKKLTQDLKTENQENGTFHAVSSLGLSAVYDFDTGSRFKPYAGVRVSYGHVR	166
	NKGEKINVTQYLKAENQENGTFHAVSSLGLSAVYDFKLNDKFKPYIGMRVGYGHVR	165
Opa1	KNONKRDLKTENOENGSFHAVSSLGLSAVYDFKLNDKFKPYIGARVAYGHVR	162
Opa3	~ ~	
Opa4	NKGEKINVTQYLKAENQENGTFHAVSSLGLSAVYDFKLNDKFKPYIGARVAYGHVR	165
Opa5	KDGTSSSGRYLNIQTRKTENQENGTFHAVSSLGLSTVYDFRANDKFKPYIGVRVAYGHVR	169
Opa8	NDNSASDSKHLNIKTQKTEHQENGTFHAVSSLGLSTVYDFRANDKFKPYIGVRVAYGHVR	170
Opa6	KNNKTFGGNQLNIKYQKTEHQENGTFHAVSSLGLSTVYDFRVNDKFKPYIGVRVGYGHVR	169
OpaD	KNNKTFGGNQLNIKYQKTEHQENGTFHAVSSLGLSAVYDFKLNDKFKPYIGARVAYGHVR	179
Opa9	KNQNKRDLKTENQENGSFHAVSSLGLSAVYDFKLNDKFKPYIGARVAYGHVR	161
Opa58	KNQNKRDLKTENQENGSFHAVSSLGLSAVYDFKLNDKFKPYIGARVAYGHVR	171
	· · · · · · · · · · · · · · · · · · ·	
Opa7	HSIDSTKKTTDVITAPPTTSDGAPTTYNANPQTQNPYHQSDSIRRVGLGVIAGVGF	222
Opa1	HQVRSVEQETTTVTTYLQSGKPSPIVRGSTLKLPHHESRSSRRLGFGAMAGVGI	219
Opa3	HSIDSTKKTTEFLTAAGQDGGAPTVYNNGSTQDAHQESDSIRRVGLGVIAGIGF	216
Opa4	HSIDSTKKTTEFLTAAGQDGGAPTVYNNGSTQDAHQESDSIRRVGLGVIAGVGF	219
Opa5	HQVHSMEKETTTVTTYPSDGSAKTSVPSEMPPKPAYHENRSSRRLGFGAMAGVGI	224
Opa8	HOVHSMEKETTTVTTYPSDGSAKTSVPSEMPPKPAYHENRSSRRLGFGAMAGVGI	225
Opa6	HGIDSTKKTKNTLTAYHSAGTKPTYYDDIDSGKNQKNTYRQNRSSRRLGFGAMAGVGI	227
OpaD OpaD	HSIDSTKKITGTLTAYPSDADAAVTVYPDGHPQKNTYQKSNSSRRLGFGAMAGVGI	235
Opa9	HSIDSTKKITGTLTAYPSDADAAVTVYPDGHPQKNTYQKSNSSRRLGFGAMAGVGI	217
Opa58	HSIDSTKKITGTLTAYPSDADAAVTVYPDGHPQKNTYQKSNSSRRLGFGAMAGVGI	227
Opaso		221
	* : * :: . :*:	
0 7		
Opa7	DITPNLTLDTGYRYHNWGRLENTRFKTHEASLGMRYRF 260	
Opa1	DVAPGLTLDAGYRYHYWGRLENTRFKTHEASLGVRYRF 257	
Opa3	DITPKLTLDTGYRYHNWGRLENTRFKTHEASLGVRYRF 254	
Opa4	DITPNLTLDAGYRYHNWGRLENTRFKTHEASLGMRYRF 257	
Opa5	DVAPGLTLDAGYRYHYWGRLENTRFKTHEASLGMRYRF 262	
Opa8	DVAPGLTLDAGYRYHYWGRLENTRFKTHEASLGVRYRF 263	
Opa6	DVAPGLTLDAGYRYHYWGRLENTRFKTHEASLGVRYRF 265	
OpaD	DVAPGLTLDAGYRYHNWGRLENTRFKTHEASLGMRYRF 273	
Opa9	DVAPGLTLDAGYRYHNWGRLENTRFKTHEASLGMRYRF 255	
Opa58	DVAPGLTLDAGYRYHNWGRLENTRFKTHEASLGMRYRF 265	
	:: **** **** **********	

Figure S4 Example correlations of IgG and IgA responses in the vaccinated cohort for selected Opa protein variants. Raw fluorescence values are plotted for A) IgG b) IgA. Points are coloured as follows: t0, black; t10, blue; t24 red. Left hand panels are for OpaD versus Opa9; right hand panels are for OpaD versus Opa58.

Figure S5 PCA analysis applied to IgG and IgA immunoprofiles in the vaccinated cohort at the 10 weeks timepoint. For each antigen, the increase in IgG or IgA response was calculated by subtraction of the 0 week timepoint (t0) from the 10 week timepoint (t10). PCA analysis was then carried out using the matrix of antigen responses (t10-t0) for each vaccinated individual (n=47) Points are coloured according to HIV status (positive/negative) or Sex (Female/Male). Ellipses are plotted for each group at 95% significance level, as implemented in factoextra. The centre of each ellipse is also included, as a larger symbol.

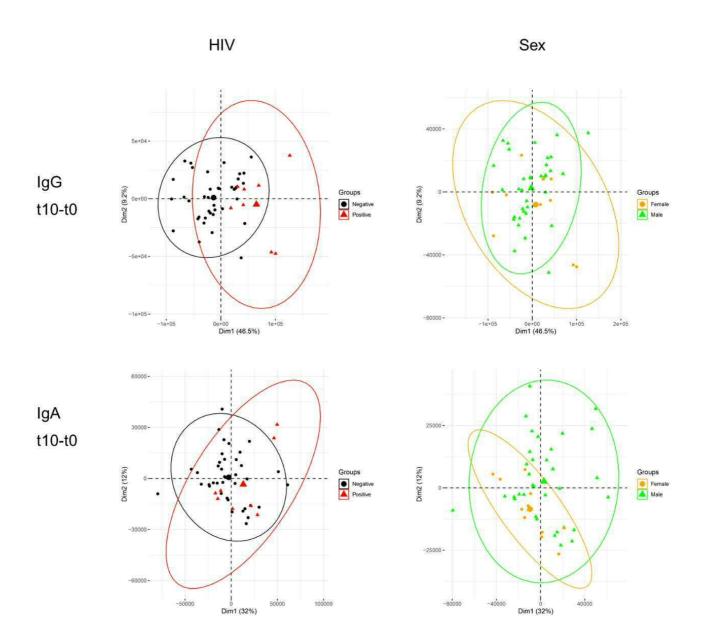
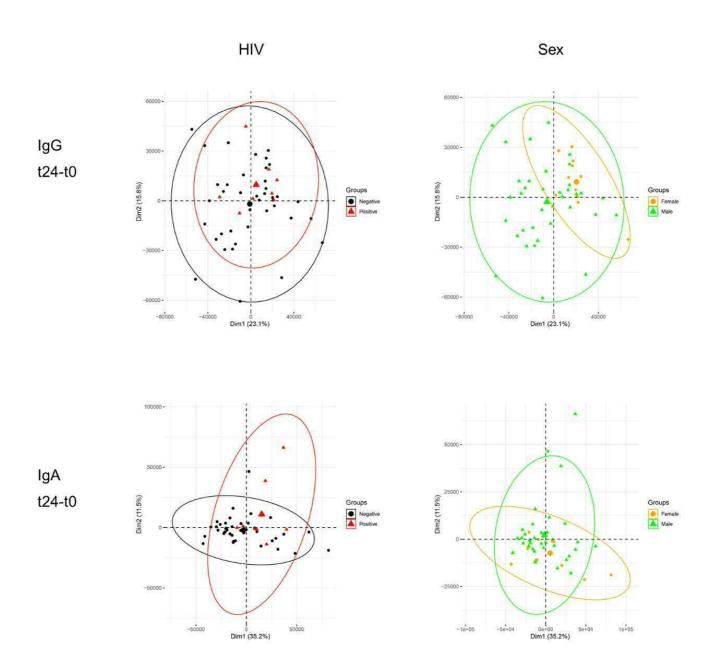
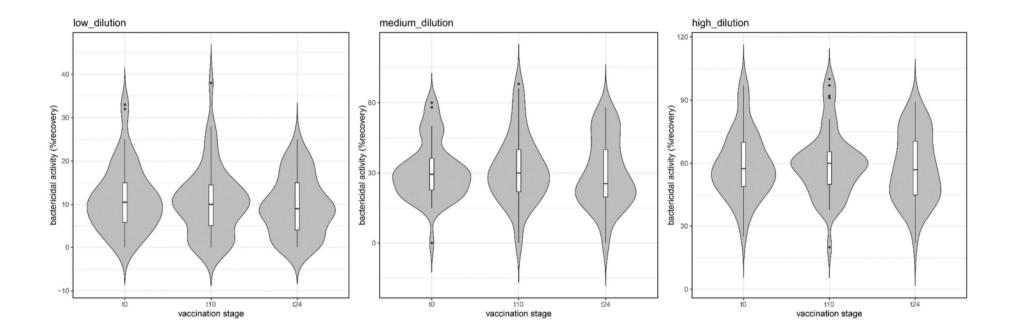




Figure S6 PCA analysis applied to IgG and IgA immunoprofiles in the vaccinated cohort at the 24 weeks timepoint. For each antigen, the increase in IgG or IgA response was calculated by subtraction of the 0 week timepoint (t0) from the 24 week timepoint (t24). PCA analysis was then carried out using the matrix of antigen responses (t24-t0) for each vaccinated individual (n=47). Points are coloured according to HIV status (positive/negative) or Sex (Female/Male).

Figure S7 Violin plots of bactericidal activity (% recovery) at three serum dilutions. Box plots are superimposed on each violin plot, providing the median, two hinges which correspond to the first and third quartiles and 'whiskers' which extend to the 'outlier' points, which are plotted explicitly. n=47, for t0, t10 and t24. Low dilution: 1:480; Medium dilution: 1:960; High dilution: 1:1,920.

Figure S8 Violin plots of ELISpot activity. IFN γ -Spot-Forming Units per 10⁶ PBMC are plotted for each of the pooled peptides detailed in Table S1. Box plots are superimposed on each violin plot, providing the median, two hinges which correspond to the first and third quartiles and 'whiskers' which extend to the 'outlier' points, which are plotted explicitly. n=47, for t0, t10 and t24.

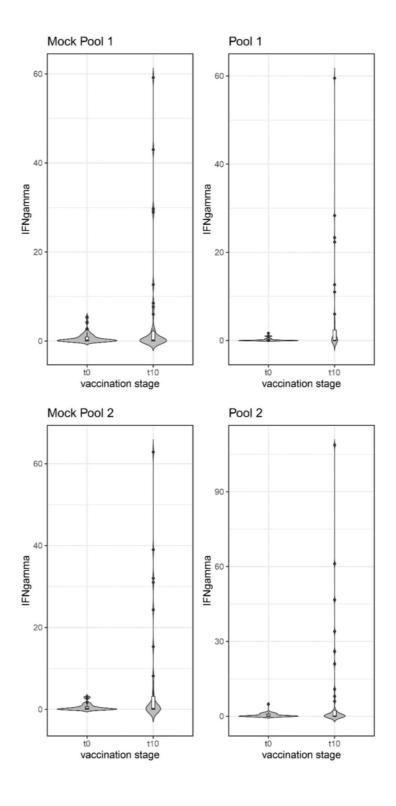


Table S1 Peptides used in ELISpot assays

Antigen	Name	Sequence	Name	Scrambled Sequence	Peptide Pool
NHBA	NHBA1	DFGRTNVGNSVVIDG	NHBA1sc	GGDTFSVVNVIDGNR	1
NHBA	NHBA2	AKGEMLVGTAVYNGE	NHBA2sc	NGLVKMYEAAEGGTV	1
PorB	PorB1	ADKIVSTASAVVLRHKF	PorB1sc	IKAAASVVFRLVKHDST	1
PorB	PorB2	KRTSALVSAGWLQRG	PorB2sc	SKRTAWLASGGQVLR	1
PilQ	PilQ	TDRRELLIFITPRII	PilQsc	RIEIPTLFIRDTIRL	2
NspA/Opa	NspA1	RGFYVQADAAHAKAS	NspA1sc	DFARYAAHAKQVSAG	2
BamA	BamA1	GPMKFSYAYPLKKKPE	BamA1sc	SKPKLGAKYPMPEFYK	2
NspA	NspA2	RINDLRFAVDYTRYK	NspA2sc	AVRDLTYRDNKIYRF	2

Clinical Trial Protocol

Version 1.4 dated 6 November 2020

Protocol number: CSC 182

1 KWTRP
2 CLINICAL TRIAL PROTOCOL

Use of Bexsero immunisation to detect cross reactive antigens and anti-gonococcal

antibodies in key populations in Kenya

1. GENERAL INFORMATION

3

4

5

Protocol Number:	CSC 182
Trial Registration Number:	ClinicalTrials.gov ID: NCT04297436
Investigational Product(s):	4CMenB vaccine (Bexsero®)
Funder:	Wellcome Trust,
	215 Euston Road
	London NW1 2BE, UK
Tel:	+44 2076 118888
Email:	s.towers@wellcome.ac.uk
Sponsor:	University of Oxford
	University Offices, Wellington Square, Oxford OX1 2JD
Tel:	+44 1865 572245
Email:	ctrg@admin.ox.ac.uk
Sponsor's authorized representative /investigator	Prof. Eduard Sanders
	PO Box 239, Kilifi 80108
Tel:	+254723593-762
Email:	ESanders@kemri-wellcome.org
Study monitor:	KWTRP- Clinical Trials Facility
Email:	MMunene@kemri-wellcome.org
Statistician:	Benedict Orindi
	PO Box 239, Kilifi 80108
Email:	Borindi@kemri-wellcome.org
Central Laboratory:	KEMRI-Wellcome Trust Research lab's
Tel:	+254 709 983000
Email:	info@kemri-wellcome.org
Drug/Product Manufacturer:	4CMenB vaccine (Bexsero® -GSK)
	980 Great West Road, Brentford
	Middlesex, TW8 9GS
Tel:	Tel: +44 20 8047 5000
Email:	customercontactuk@gsk.com

Version 1.4 dated 6 November 2020

Protocol number: CSC 182

8 **Confidentiality Statement** 9 The information contained herein is privileged or confidential and may not be disclosed unless such disclosure is required by applicable laws or regulations. In any event, persons to whom the information is disclosed must be 10 11 informed that the information is privileged or confidential and may not be further disclosed by them. These 12 restrictions on disclosure will apply equally to all future information supplied to you, which is indicated as 13 privileged or confidential. This confidentiality statement also applies to data generated during the course of the 14 study. 15 16 SPONSOR'S APPROVAL OF THE PROTOCOL Use of Bexsero immunisation to detect cross reactive antigens and anti-gonococcal antibodies in key 17 populations in Kenya 18 19 **Protocol Number:** 20 The following personnel have reviewed and approved this protocol Bexsero trial in key populations, version 21 22 number 1.3, and date: Rebiem CI Mayaux Signature: Dr. Rebecca Bryant, Research Ethics Manager Date OxTREC 23 INVESTIGATOR'S APPROVAL OF THE PROTOCOL 24 25 26 Use of Bexsero immunisation to detect cross reactive antigens and anti-gonococcal antibodies in key 27 populations in Kenya 28 **Protocol Number: CS 182** 29 The undersigned acknowledge possession of and have read the Investigators' Brochure, Edition x, month year, 30 and protocol Bexsero trial in key populations version 1.4 dated 6 November 2020. Having fully considered all 31 the information available, the undersigned consider that it is ethically justifiable to give 4CMenB vaccine 32 (Bexsero® to selected participants according to the agreed protocol. 33 I understand that all information concerning 4CMenB vaccine (Bexsero®) supplied to me by University of Oxford and/or its agents in connection with this study and not previously published is confidential information. 34 35 This includes the Investigators' Brochure, Clinical Trial Protocol, Case Report Forms and any other preclinical

KEMRI- Wellcome Trust Research Programme (KWTRP)

CONFIDENTIAL

Version 1.4 dated 6 November 2020

Protocol number: CSC 182

and clinical data provided by University of Oxford. I understand that no data are to be made public or published without prior knowledge and written approval by University of Oxford.

By my signature below, I hereby attest that I have read, understood and agreed to abide by all the conditions, instructions and restrictions contained in Protocol Bexsero trial in key populations version 1.4 dated 6

November 2020 and in accordance with the most recent Declaration of Helsinki and Good Clinical Practice and all applicable regulatory requirements.

I acknowledge that the Sponsor of the study University of Oxford has the right to discontinue the study at any

43 time.

44

Chief Investigator Signature
Prof. Christoph Tang, Professor of Pathology,
Chief investigator, Gonococcal Vaccine Initiative

How to be a superior of Pathology to be a superior of Pathol

Principal Investigator Signature

Date

Prof. Eduard Sanders, principal investigator

Table of Contents

45

46	1. GENERAL INFORMATION	
47	GLOSSARY OF TERMS AND ABBREVIATIONS:	6
48	2. LAY SUMMARY	
49	3. LIST OF INVESTIGATORS	8
50	4. ABSTRACT	
51	5. INTRODUCTION	
52	5.1. Background Information	
53	5.2. Name and description of the investigational product(s),	
54	5.3. Justification	
55	6. TRIAL OBJECTIVES AND PURPOSE	
56	6.1. Null hypothesis	
57	7. TRIAL DESIGN	
58	7.1. Overall Study Design and Plan Description	
59	7.1.1. Recruitment	
60	7.1.2. Screening	
61	7.1.3. Enrolment	
62	7.1.4. Unscheduled (interim) Visits	
63	7.1.5. End of Treatment Visits	
64	7.1.6. Follow-up Visit(s).	
	7.1.7. Study Restrictions	
65	7.1. Study Restrictions 7.2. Choice of Control Groups	
66	•	
67		
68	8.1. Description of the population to be studied	
69	8.2. Inclusion criteria	
70	8.3. Exclusion criteria	
71	8.4. Withdrawal criteria	
72	8.5. Managing withdrawals	
73	8.6. Replacing withdrawn participants	
74	9. TREATMENT OF STUDY PARTICIPANTS	
75	9.1. Treatments	
76	Identity of Investigational Product (IP)	
77	9.2. Storage	
78	9.3. Dose Selection	
79	9.4. Timing of Doses	
80	9.5. Randomisation and Blinding	
81	9.6 Packaging and Labelling.	
82	9.7. Dispensing Procedures	
83	9.8. Dose Administration	
84	9.9. Accountability	
85	9.10.Unblinding	
86	9.11.Treatment Compliance	23
87	9.12. Overdosage	
88	9.13.Prior/Concomitant Therapy	23
89	9.13.1. Prohibited Medication	23
90	9.13.2. Rescue Medication	
91	10. ASSESSMENT OF IMMUNOGENICITY	
92	10.1 Identify Ng cross-reactive, human immune responses elicited by Bexsero®:	24
93	10.3 Determining Th1 proliferation	
94	Antibody Responses	
95	Sample storage:	
96	10.7. Drug concentration measurements	
97	10.8. Health economic measures	
98	11. ASSESSMENT OF SAFETY	

Version 1.4 dated 6 November 2020

99	11.1. Adverse Events (AEs)	2°
100	11.2. Definitions and monitoring of AEs	2
101	11.3. Causality	28
102	11.4. Procedures for Recording Adverse Events	29
103	Documenting AEs	29
104	Reporting Serious Adverse Events (SAEs) and/or Unexpected AEs	
105	11.5. Emergency Procedures	
106	11.3. Pregnancy	
107	12. STATISTICS	
108	12.1. Determination of sample size	
109	12.2. Statistical and analytical plans	
110	13. Access to Data	
111	14. Data Recording and Record Keeping	
112	15. Data entry at study site	
113	15.1.1. Planned statistical methods	
114	16. DIRECT ACCESS TO SOURCE DATA/DOCUMENTS	
115	17. QUALITY CONTROL AND QUALITY ASSURANCE	
116	17.1. Choice of investigators	
117	17.2. Monitors and monitoring plan	
118	18. INTELLECTUAL PROPERTY	
119	19. TIME FRAME/DURATION OF THE TRIAL	
120	20. ETHICS	
121	20.1. Human Subjects	
121	20.2. Community Considerations.	
123	20.3. Informed Consent	
123	20.4. Compensation	
125	20.5. Patient Data Protection/Confidentiality	
126	20.6. Data Sharing	
120	20.7. Safety	
128	20.8. Material Transfer Agreement (if applicable)	
129	21. ARCHIVING AND RECORD RETENTION	
130	22. FINANCING AND INSURANCE	
131	22.1. Budget	
132	22.1. Budget	
133	23. TRIAL MANAGEMENT	
134	24. REPORTING, DISSEMINATION AND NOTIFICATION OF RESULTS	
135	25. APPENDICES	
136	25.1. Roles of Investigators	
137	REFERENCES	
138	REFERENCES	т.
139		
140		
141		
142		
143		
144		
145		
146		
147		
148		
149		
150		
151		

Version 1.4 dated 6 November 2020

152	GLOSSARY O	F TERMS AND ABBREVIATIONS:
153		
154	AMR	antimicrobial resistance
155	ART	anti-retroviral therapy
156	CRF	Case record form
157	CDC	Centers for Disease Control and Prevention
158	C4BP	C4 binding protein
159	CT	Chlamydia trachomatis
160	fH	factor H
161	fHbp	Factor H binding protein
162	FSW	Female sex workers
163	Gc	Gonococcal
164	HBV	Hepatitis B virus
165	iOMP	integral outer membrane protein
166	LGBT	Lesbian Gay Bisexual Transgender
167	MenB	Meningococcal B
168	MSW	Male sex workers
169	MSM	men who have sex with men
170	NadA	Neisseria adhesin A
171	Ng	Neisseria gonorrhoeae
172	NHBA	Neisserial Heparin binding antigen
173	Nm	Neisseria meningitidis
174	OMV	outer membrane vesicles
175	POC	point-of-care
176	PorA P1.4	Porin A
177	PrEP	Pre-exposure Prophylaxis
178	RmpM	reduction-modifiable protein M
179	STI	sexually transmitted infections
180	Th1	T helper cell 1
181	WHO	World Health Organization
182		
183		
184		
185		
186		
187		

Version 1.4 dated 6 November 2020

188	2.	LAY SUMMAR	Y
189		Formal Title U	Jse of Bexsero immunization to detect cross-reactive antigens and anti-gonococcal
190		a	ntibodies in key populations in Kenya
191		Lay Title G	Gonococcal vaccine study in key populations in Kenya
192		What is the pro	blem/background? Gonorrhoea is a sexually transmitted infection that can
193		infect both men	n and women. It can cause infections in the genitals, rectum, and throat. It
194		is a very comm	non infection, especially among young people aged 18-25 years.
195		Meningococca	l disease and gonorrhoea are caused by bacteria that are closely related but
196		cause different	diseases that are spread in different ways. New evidence suggests that the
197		Meningococca	1 B vaccine (Bexsero®) licensed outside of Kenya against meningococcal B
198		disease may als	so be effective against gonorrhoea due to genetic similarities between the
199		two organisms	causing the two diseases. The aim of this study is to generate data to
200		develop a gono	orrhoea vaccine, using an existing vaccine against meningococcal disease.
201			
202		What question	ns are we trying to answer?
203		To assess if imn	nunisation of individuals at risk for gonococcal infection with 4CMenB
204		(Bexsero®) will	enhance an immune response against Neisseria gonorrhoeae.
205			
206		Where is the st	udy taking place, how many people does it involve and how are they selected?
207		Approximately :	50, young adults (aged 18 - 25 years old) who are enrolled in the KEMRI cohort
208		studies (known a	as Open B, Three-site, N, or Sue; including HIV-uninfected and infected
209		individuals) in the	he KEMRI clinic in Mtwapa or Malindi will be able to participate in this study.
210		The study will to	ake place at the KEMRI clinic in the Malindi sub-county hospital.
211			
212		What does the	study involve for those who are in it?
213		Participants will	make five study visits, including a screening visit, an enrolment visit and 3
214		follow up visits.	We will offer vaccination with the Meningococcal B vaccine (Bexsero®) vaccine
215		at the enrolment	visit and approximately 2 months later. We will use socio-demographic and risk
216		behavior data co	ollected under the KEMRI cohort studies. For participants living with HIV, we will
217		collect a screeni	ng sample (1 tea spoon) and confirm that their viral load<200 copies/ml. We will
218		collect a 24 ml b	blood sample (2 ½ table spoons) at enrolment, and a 70 ml blood sample (7 table
219		spoons) following	ng the second vaccination. At study completion (month 6), we will collect a 4ml (1
220		tea spoon) blood	sample. We will collect a throat swab, a urine sample (for men), vaginal swab,
221		and an anal swal	b at the enrolment, month 3 and month 6 visit to test for Chlamydiae and
222		Gonorrhoea infe	ection.

KEMRI- Wellcome Trust Research Programme (KWTRP)

CONFIDENTIAL

Version 1.4 dated 6 November 2020

223	What are the benefit	s and risks/costs of the study fo	or those involved? In this study, the
224	Meningococcal B vac	cine (Bexsero®) is safe and is w	ell tolerated, with over 17 million doses
225	already given worldw	ide. There is the possibility of co	ommon side effects that are mild and may
226	include a mild fever, s	oreness at the injection site, hea	dache and generally feeling unwell for 1-2
227	days, similar to some	other vaccines. As with all vacci	nes there is the possibility of rare and more
228	serious reactions such	as an allergic/ anaphylactic reac	ction to the vaccine.
229			
230	For participants there	are no direct benefits, as they wi	ill receive the same research services as in
231	the KEMRI cohorts th	at they participate in already. M	eningococcal B vaccine (Bexsero®)
232	prevents only against	the meningococcal B strain which	ch is common in Europe, Australia, and the
233	Unites States.		
234			
235	How will the study b	enefit society? Researchers hop	be to gain new insights on how the
236	Meningococcal B vac	cine (Bexsero®) can be improve	ed upon to make a vaccine against
237	gonorrhoeae. There is	currently no vaccine available a	gainst N. gonorrhoeae.
238			
239	When does the study	start and finish?	
240	This study is anticipat	ed to start in the fourth quarter of	of 2020 (or early 2021), following ethical
241	and regulatory approv	als. Participants will be involved	d in the study for 6 months. The sample and
242	data analysis will cont	inue for 1-2 years and a report v	vill be disseminated in 2022.
243			
244	3. LIST OF INVESTIGA	TORS	
245			
246	Prof. Christoph Tang	Chief investigator	University of Oxford
247	Prof. Eduard Sanders	Principal investigator	KEMRI-WTRP
248	Prof. Philip Bejon	co-investigator	KEMRI-WTRP
249	Dr. Eunice Nduati	co-investigator	KEMRI-WTRP
250	Dr. Clara Agutu	co-investigator	KEMRI-WTRP
251	Dr. Susan Graham	co-investigator	KEMRI-WTRP/ UW
252			
253			
254			
255			
256			
257			
258			

Version 1.4 dated 6 November 2020

Protocol number: CSC 182

259260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

4. ABSTRACT

Meningococcal disease and gonorrhoea are caused by bacteria that are closely related but cause different diseases that are spread in different ways. New evidence suggests that the Meningococcal B vaccine (Bexsero®) licensed outside of Kenya against meningococcal B disease may also be effective against gonorrhoea due to genetic similarities between the two organisms causing the two diseases. We will conduct a clinical trial of the Meningococcal B vaccine (Bexsero®) in approximately 50 male and female participants aged 18-25 years who are in follow up in KEMRI cohorts (including HIVuninfected and infected individuals) at the KEMRI clinic in Mtwapa or Malindi. This is not an efficacy trial. Instead, we will assess if immunisation of individuals at risk for gonococcal infection with 4CMenB (Bexsero®) elicits humoral and T cell cross-reactive responses against Neisseria gonorrhoeae (Ng). Participants will make five study visits, including a screening visit, an enrolment visit and 3 follow up visits. We will offer vaccination with the Meningococcal B vaccine (Bexsero®) vaccine at the enrolment visit and approximately 2 months later. We will collect a 20ml blood sample at enrolment, and a 70ml blood sample following the second vaccination. At study completion (month 6), we will collect a 4ml blood sample. We will collect a throat swab, a urine sample (for men), vaginal swab, and an anal swab at the enrolment, month 3 and month 6 visit to test for Chlamydiae and Gonorrhoea infection. Total study participation for participants is 6 months. Upon study completion, participants will continue to receive research care at the KEMRI clinic in the Mtwapa-area and Malindi.

278

279

280

281

282

283

284

285

286

5. INTRODUCTION

5.1. Background Information

Infection with *Neisseria gonorrhoeae* (Ng) remains a major public health problem worldwide ^[1]. The bacterium is a leading cause of sexually transmitted infections (STI), and responsible for mucosal infection, cases of pelvic inflammatory disease ^[2], and chronic, asymptomatic infection ^[3]. Ng has a significant adverse impact on reproductive health (through ectopic pregnancy, infertility, prostatitis), while infection during birth can result in neonatal blindness ^[3]. Furthermore, Ng is an important risk factor for HIV acquisition, associated with a 4.6 fold increased risk ^[4]. There are over 300,000 cases of

Version 1.4 dated 6 November 2020 Gonococcal (Gc) infection in the USA per annum, and the number of cases has risen dramatically in 287 England (14,985 in 2008 to 42,4420 in 2017, https://www.gov.uk/government/statistics/sexually-288 289 transmitted-infections-stis-annual-data-tables), while the highest rates are in countries where diagnostic facilities and treatment are limited [5]. 290 The relentless rise of antimicrobial resistance (AMR) in Ng, with resistance developing soon after 291 antibiotics are introduced ^[6], poses challenges for effective therapy ^[7]. Furthermore, the emergence 292 293 and spread of Ng strains which are resistant to azithromycin and ceftriaxone jeopardise control based on contact tracing and treatment of asymptomatic carriers [3]. Consequently, there is an urgent need to 294 295 develop novel approaches to tackle Gc infection. 296 Historically, vaccines have proven remarkably effective in protecting individuals from infectious 297 298 diseases, and can interrupt AMR spread, evident from the effect of conjugate capsular vaccines on Streptococcus pneumoniae [8]. 299 There has been remarkably little progress in Ng vaccine development, even with recent advances in 301 302

300

303

304

305

306

307

308

vaccine development against the closely related Neisseria meningitidis (Nm). The stumbling blocks for vaccines against Ng have been well documented: i) there is little evidence of immunity following natural infection^[9], as the bacterium suppresses immune responses^[10, 11]; ii) there are no known correlates of protection; iii) clinical trials with Gc killed whole-cell preparations offered no protection [12], while vaccines based on the pilin of Type IV pili, a major Gc adhesin were undermined by the emergence of strains expressing variant pilins in immunised volunteers [13], highlighting iv) difficulties in vaccine development with this variable pathogen.

309

310

311

312

313

However, technical advances and understanding of Ng immunity and pathogenesis provide strategies towards Gc vaccine development with prospects for success. Ng and Nm recruit the negative regulator of complement, factor H (fH)^[14, 15]. Ng binds fH via PorB, the most abundant integral outer membrane protein (iOMP). There are two main variants of PorB, PI.A and PI.B, with the 5th extracellular loop of

314	PI.A engaging fH ^[14] ; this is enhanced by sialylation of bacterial lipopolysaccharide ^[16] . PI.A and PI.B
315	PorB loops also bind to C4 binding protein (C4BP), further subverting complement ^[17] . Furthermore,
316	PorB is delivered to phagocytes in outer membrane vesicles (OMVs), causing apoptosis ^[18] , potentially
317	preventing antigen presentation. Additionally, antibodies against PIII (homologue of Nm RmpM)
318	subvert responses against other surface antigens ^[19, 20] .
319	OMV vaccines have been successfully deployed against clonal outbreaks of Nm. Nm epidemics
320	have been controlled by OMV vaccines in Cuba, Norway, and most recently New Zeeland [21].
321	We will employ OMV-based approaches against Ng. Immunisation with Nm OMVs was associated
322	with protection against Ng. An Nm outbreak in New Zealand led to vaccination with MeNZB, an
323	OMV vaccine from the causative isolate NZ98/254. A recent case-controlled study estimated
324	MeNZB effectiveness against Ng as 31% (C.I. 21-39) [22]. The basis of this cross-protection is
325	assumed to be similarity of Ng and Nm surface proteins. OMVs from NZ98/254 are a key
326	constituent of Bexsero®, licensed Nm vaccine given in the UK ^[23] . Therefore, we exploit Bexsero®
327	as an immunological probe to identify Ng antigens by cross-reactive responses in individuals with
328	high Gc exposure as recurrent exposure to Ng may elicit some immunologic memory [24].
329	
330	A recent study assessed cross reactivity to Ng of serum raised to the 4CMenB vaccine (Bexsero®),
331	which contains the MeNZB OMV component plus three recombinant antigens (NadA, fHBP-
332	GNA2091, and NHBA-GNA1030). ^[25] It was shown that a high level of sequence identity exists
333	between MeNZB OMV and Bexsero OMV antigens, and gonococcal proteins. NHBA is the only
334	4CMenB vaccine (Bexsero®) recombinant antigen that is conserved and surfaced exposed in Ng.
335	4CMenB vaccine (Bexsero®) induces antibodies in humans that recognise gonococcal proteins. ^[25]
336	The goal of this study is to define the immune responses to Bexsero® in individuals (HIV uninfected
337	and infected) who are at risk and are likely to have been exposed previously to N. gonorrhoeae. This
338	is with the overall aim of generating a vaccine against <i>N. gonorrhoeae</i> by identifying cross-reactive

339	antigens elicited by the meningococcal vaccine Bexsero® that might confer protection against
340	gonococcal infection. In this way, we will be exploiting a vaccine that has already been licensed in the
341	UK and the US for use in our target population. Therefore this is not an efficacy study, and we will not
342	require a control group with non-immunised subjects.
343	
344	Description of the population to be studied
345	Trial participants will be recruited from a KEMRI-cohort of mostly male and female sex workers
346	(MSW; FSW) in Mtwapa and Malindi, which represents an at-risk, core population for STI transmission.
347	Our incidence estimates for Ng (based on Xpert testing) in HIV-negative 18-25 year-old MSM
348	participants is 21.4 per 100 person-years (95% CI: 13.1-35.0), and 43.5 per 100 person-years (95% CI:
349	23.4-80.8) in HIV-infected individuals (unpublished). At present, the KEMRI cohort in Mtwapa follows
350	125 MSM aged 18-25 years (100 HIV-1 negative, and 25 HIV-1 positive), and 9 FSW (5 HIV-1
351	negative-, and 4 HIV-1 positive). There is no Ng incidence estimates available for women. Therefore,
352	this cohort is subject to high Ng exposure, so study participants are likelier to develop responses against
353	Ng than the general population [24].
354	
355	Summary of the known and potential risks and benefits, if any, to human participants
356	Potential Benefit to Participants: Vaccine recipients will have no direct benefit of receiving 4CMenB
357	vaccine (Bexsero®) as Meningococcal B (MenB) disease is uncommon in Kenya. Participants will
358	benefit from point-of-care (POC)X-pert sexually transmitted infections (STI)screening and treatment
359	of infections as most STI are asymptomatic. All participants in the KEMRI cohort studies benefit from
360	regular risk reduction counselling, HIV testing (when HIV negative), hepatitis B virus (HBV)
361	vaccination, pre-exposure prophylaxis (PrEP) (if participants indicate that they wish to be on PrEP),
362	and antiretroviral therapy (ART).
363	
364	Potential Risk to Participants:

391

365	1. Collection of oropharyngeal and anal swabs for STI screening. Collection of swabs can be
366	uncomfortable, but should cause minimal distress to participants. 2. Vaccination.
367	The most common reported side effect in adolescents and young adults following vaccination with
368	4CMenB (Bexsero®) is pain at the injection site, headache, and generally feeling unwell. Other
369	possible side effects include fever, feelings of tiredness and nausea [26].
370	
371	As with all vaccines, there is a small chance of an allergic reaction to the vaccine including a severe
372	allergic reaction, or anaphylaxis (risk less than 1 in a million doses for existing vaccine) [27].
373	
374	5.2. Name and description of the investigational product(s),
375	4CMenB vaccine (Bexsero®) was licensed in 2013 in Europe and North America and in various other
376	jurisdictions. 4CMenB vaccine (Bexsero®) is an FDA-approved vaccine to prevent invasive disease
377	caused by Neisseria meningitidis serogroup B. It is approved for use in individuals 10 through 25
378	years of age. During clinical development, the vaccine was evaluated in adolescents, and it was
379	demonstrated that two doses of 4CMenB vaccine (Bexsero®) induced robust immune responses
380	against the vaccine antigens [26, 28]. The vaccine was well tolerated, and no safety concerns were
381	identified (reviewed in [29]).
382	
383	Route of administration, dosage, dosage regimen, and vaccination period
384	4CMenB vaccine (Bexsero®; 0.5mL). The vaccine is given by deep intramuscular injection, in the
385	deltoid muscle region of the upper arm, twice and approximately two months apart. Each dose of
386	vaccine contains recombinant Neisseria meningitidis group B NHBA fusion protein (50 micrograms);
387	recombinant Neisseria meningitidis group B NadA protein (50 micrograms); recombinant Neisseria
388	meningitidis group B fHbp fusion protein (50 micrograms) and Outer membrane vesicles (OMV) from
389	Neisseria meningitidis group B strain NZ98/254 (25 micrograms measured as amount of total protein
390	containing the PorA P1.4) adsorbed on aluminium hydroxide (0.5 mg Al3+).

Version 1.4 dated 6 November 2020

Protocol number: CSC 182

	T 4.00	
5.3.	Justifi	ication
٥.٠.	oustill	Cauon

Neisseria gonorrhoeae (Ng) is a leading cause of sexually transmitted infections (STI) worldwide, responsible for >70 million cases annually ^[30]. The emergence of antimicrobial resistance (AMR) has made combatting Ng a priority for the WHO and CDC. Difficulties treating Ng adversely impacts female reproductive and foeto-maternal health, while gonococcal (Gc) infection is an important cofactor for HIV transmission ^{[31].} Furthermore, control of Gc transmission is based on contact tracing and treatment, and threatened by AMR ^{[32].}

While vaccines are a valuable approach to combat AMR, Gc vaccine research has been hampered by limited/lack of protective immunity following infection, no correlates of protection, variation of Ng, and past vaccine failures.

However, recent advances have provided fresh impetus for vaccine development. Our collaborators will validate effective candidate antigens for inclusion in a Gc vaccine through pre-clinical evaluation, work that falls outside of this protocol. Our study will assess immune responses in highly exposed individuals before and after vaccination with Meningococcal B vaccine (Bexsero®). Previously, Plummer et al showed that female sex workers with repeated NG infection in Nairobi had specific but incomplete protection against subsequent infection with the homologous serovar. For this reason, we will enroll highly exposed individuals from Kenya. Specifically, we aim to identify Ng cross-reactive, human immune responses elicited by 4CMenB vaccine (Bexsero®): We will perform a clinical trial of Bexsero®, a licensed vaccine outside of Kenya containing *Neisseria meningitidis* (Nm) OMVs, in a well characterised, at-risk cohort of sex workers in Kenya. We do not intend to evaluate the protective efficacy of 4CMenB vaccine (Bexsero®). Instead we will exploit 4CMenB vaccine (Bexsero®) as an immunologic probe to identify antigens that elicit humoral and T cell cross-reactive responses against Ng, which will inform vaccine design.

6. TRIAL OBJECTIVES AND PURPOSE

KEMRI- Wellcome Trust Research Programme (KWTRP)	KEMRI-	Wellcome	Trust Research	Programme	(KWTRP)
--	--------	----------	----------------	-----------	---------

Version 1.4 dated 6 November 2020

419	6.1. Null hypothesis. This is an explorative study using 4CMenB vaccine (Bexsero®). Therefore, a
420	null hypothesis will not be tested.
421	6.2 Primary objective –To assess if immunisation of individuals at risk for gonococcal infection with
422	4CMenB (Bexsero) elicits humoral and T cell cross-reactive responses against Ng.
423	
424	Explorative objective – To assess if immunisation of individuals at risk for gonococcal infection with
425	4CMenB (Bexsero) differs between HIV negative and positive participants.
426	We will exploit Bexsero as an immunological probe to identify antigens that elicit humoral cross-
427	reactive responses against Ng. We will examine IgG reactivity against these Ng proteins in
428	microarrays with sera from Bexsero vaccinated individuals with high Ng exposure.
429	Comparison of the pre/post immunization sera will provide a comprehensive overview of Bexsero
430	antigens which induce Ng-cross reactive IgG responses and could therefore be responsible for Nm
431	OMV-mediated protection against Ng. This approach is likely to be more informative than comparing
432	results between control and immunized subjects, as individuals' exposure and responses to Ng are
433	likely to differ. We will also explore if immune responses differ between HIV-negative and positive
434	participants. Screening will be performed on plasma taken at enrolment, approximately 2 weeks post
435	first immunization, approximately 2 weeks post second immunization and at 6 months.
436	
437	7. TRIAL DESIGN
438	7.1. Overall Study Design and Plan Description
439 440	This study will be an open-label single-arm clinical trial with a 4CMenB vaccine (Bexsero®), licensed
441	in over 40 countries. The study will take place at the KEMRI-clinic in Malindi which has provided
442	HIV prevention and care services to key populations since 2010. Prospective participants will be
443	invited from existing prevention and care cohort studies. Therefore, all participants will be in regular
444	(3-monthly) follow up, have received hepatitis B vaccination, receive HIV testing (if HIV negative),
445	and adherence counselling for PrEP or ART, as appropriate. The KEMRI clinic is supported by a

community engagement programme, and new studies will be discussed with a key population community advisory board, and other stake holders.

Trial participants will be aged 18-25 years, be available for follow up for six months, and not participate in any other vaccine study. A course of Bexsero® vaccinations requires a minimum interval of one month. Participants will be immunised twice at an interval of two months to allow for maturation of immune responses. Participants will be screened for Chlamydia trachomatis (Ct) and Ng in urine/vaginal, rectal and oropharyngeal secretions at enrolment, month 3, and month 6 (study completion), and receive treatment when a CT/Ng infection is detected. We will collect approximately 6 ml at study screening (for participants living with HIV only), 20 ml blood at enrolment, 70 ml of blood two weeks after the second vaccination, and 4 ml at study completion.

Table 1: Study Schedule

	Visit 1 Screening	Visit 2 Enrolment	Visit 3 Follow-up	Visit 4 Follow-up	Visit 5 Follow-up
Study week	-2	0	8	10	24
Assessment /					
Procedure					
Informed Consent	X				
Demography	х				
Medical history	X				
Symptom directed physical examination		Х		Х	X
Urine (pregnancy test)		X	x		
Vaccination		X	X		
Blood /swab collection for lab assays and storage	х	х		Х	Х

7.1.1.Recruitment

Healthy adult male and female volunteers, aged 18-25 years, participating in ongoing KEMRI cohorts (SSC 894, SSC1224, SERU 3520, SERU 3788) at the Mtwapa or Malindi clinics will be eligible for

KEMRI- Wellcome	Trust Research Programme	(KWTRP)	

Version 1.4 dated 6 November 2020

Protocol number: CSC 182

464	study screening. The KEMRI cohorts SSC No. 894 and SERU 3788 follows HIV negative at-risk
465	participants who are in three-monthly follow up, and receive risk reduction counselling, PrEP, and
466	treatment for symptomatic STI's. KEMRI cohort SERU No. 3520 and SSC 1224 follows HIV-positive
467	participants in monthly and three-monthly follow up, respectively, who receive risk reduction
468	counselling, ART, and treatment for symptomatic STI's. HIV-positive participants who are adherent
469	to ART and virally suppressed (i.e. viral load < 200 copies per ml) are considered healthy.
470	
471	We will aim to enroll both HIV-negative and positive participants, mostly male and female sex
472	workers, and target participants for whom Ng was detected by Xpert CT/NG testing during their
473	previous KEMRI visits. At present, over 100 HIV-negative participants (100 MSM, 5 FSW), and 29
474	HIV-positive participants (25 MSM and 4 FSW) aged 18-25 years are eligible for screening.
475	
476	Prior to study screening, participants will be invited to an information session at the KEMRI clinic and
477	their interest in study participation assessed.
478	
479	7.1.2. Screening
480	Screening assessments will be performed up to 14 days before enrolment. Screening procedures will
481	only be performed after the volunteer's written consent has been obtained. Before providing informed
482	consent, prospective volunteers will receive a study screening number and be screened for study
483	eligibility. Demographic, risk behaviour and medical history information will be obtained from
484	existing protocol databases. For participants living with HIV, a 6 ml sample will be collected to
485	confirm that the viral load<200 copies per ml to be eligible for screening.
486	
487	7.1.3.Enrolment
488	All eligible participants will receive a vaccination at their enrolment visit.
489	Prior to the first vaccination, site personnel will:

Review any questions the volunteer may have about the study

Review the Informed Consent Document with the volunteer

490

491

192	• Review screening safety laboratory data (i.e. pregnancy screen)
193	Review interim medical history
194	• Assess baseline vital signs (i.e. axillary temperature)
195	Perform a symptom directed physical examination
196	• Collect specimens for all tests as indicated in the Schedule of Procedures Appendix A
197	including CT/NG testing of oropharyngeal and anal swabs, and urine.
198	• Administer the 4CMenB vaccine (Bexsero®) according to instructions in the Study
199	Operations Manual.
500	Observe volunteer closely for at least 30 minutes after vaccine/investigational medicinal
501	product administration for any acute (reactogenicity/solicited adverse reactogenicity
502	/solicited adverse reactions).
503	Assess any other adverse events
504	7.1.4.Unscheduled (interim) Visits
505	Visits / contacts other than those described in the Schedule of Procedures (Appendix A) will be
506	classified as unscheduled or interim visits and recorded on applicable source documents. They may
507	occur:
508	• For administrative reasons e.g. the volunteer may have questions for the study staff or may need
509	to re-schedule a follow up visit.
510	To review a laboratory investigation from a previous visit
511	• To review the outcome of an adverse event.
512	• To conduct a study visit where a volunteer has missed the scheduled study visit window.
513	• For any other reason requested by the volunteer or Principal Investigator.
514	
515	7.1.5.End of Treatment Visit. Participants will have a second vaccination scheduled
516	approximately two months after enrolment at which the first vaccination has been given
517	(schedule of Procedures -Appendix A)
518	Prior to the second vaccination, site personnel will:

KEMRI- Wellcome	Trust Research Prog	gramme (KWTRP)
-----------------	---------------------	----------------

Version 1.4 dated 6 November 2020

19	• Review any questions the volunteer may have about the study
520	• Review the Informed Consent Document with the volunteer
521	Review screening safety laboratory data and perform a pregnancy test
522	Review interim medical history
523	• Assess baseline vital signs (i.e. axillary temperature)
524	Perform a symptom directed physical examination
525	• Collect specimens for all tests as indicated in the Schedule of Procedures Appendix A
526	Administer the 4CMenB vaccine (Bexsero®) according to instructions in the Study
527	Operations Manual.
528	Observe volunteer closely for at least 30 minutes after vaccine/investigational medicinal
529	product administration for any acute (reactogenicity/solicited adverse reactogenicity
330	/solicited adverse reactions).
331	Assess any other adverse events.
532	
333	7.1.6. Follow-up Visit(s). One follow up visit is scheduled approximately two weeks following
334	receipt of the final 4CMenB vaccine (Bexsero®) according to the schedule of procedures,
335	for blood collection and immunogenicity assessments, and a final follow up visit is
336	scheduled 24 weeks post enrolment for CT/NG testing of oropharyngeal and anal swabs,
337	and urine, and immunogenicity assessments. Upon detection of any CT/NG infection,
38	participants will be contacted to receive treatment. Upon detection of any Xpert NG
39	infection, swabs will be collected from the infected site for Ng culture and drug sensitivity
540	testing.
541	
542	7.1.7.Study Restrictions
543	Each participant has the right to withdraw from the trial at any time.

Version 1.4 dated 6 November 2020

544	If a participant withdraws consent for the whole study, no further study procedures should take
545	place. In some circumstances, participants will withdraw consent for specific procedures, or fail
546	to attend a visit, but may still be willing to participate in subsequent visit/ procedure.
547	In this situation the following guidelines apply:
548	• If any of the procedures at the enrolment visit are refused then they will be considered as
549	withdrawn from the study, and no further procedures will take place.
550	• If a participant refuses or doesn't attend for the 2nd immunisation, they can remain in the
551	study for the final CT/NG swab and urine and immunogenicity blood collection, and
552	should be encouraged to do so.
553	In addition, the Investigator may discontinue a participant from the trial at any time if the
554	Investigator considers it necessary for any reason including:
555	• An adverse event which requires discontinuation of the trial medication or results in
556	inability to continue to comply with trial procedures
557	• Withdrawal of Consent (as above)
558	• Loss to follow up, but we will still include any data already gathered from the participant
559	in the final analysis, unless consent is withdrawn.
560	• Exclusion from the trial will not result in exclusion of the data already taken for that
561	participant.
562	• The reason for withdrawal will be recorded in the case record form (CRF).
563	• If the participant is withdrawn due to an adverse event, the Investigator will arrange for
564	follow-up visits or telephone calls until the adverse event has resolved or stabilised.
565	Withdrawn participants will not be replaced.
566	• Patient Obligations. Participants are expected to complete all 5 study visits, and report any
567	adverse event to the investigators.
568	7.2. Choice of Control Groups
569	n/a.
570	8. SELECTION AND WITHDRAWAL OF STUDY PARTICIPANTS

599

Protocol number: CSC 182

	version 1.4 dated o november 202
571	8.1. Description of the population to be studied
572	We will enroll up to 50 participants, including approximately 35 HIV-uninfected and 15 HIV-1
573	infected male and female sex workers from ongoing KEMRI observational studies.
574	
575	8.2. Inclusion criteria
576	• Healthy male and female as assessed by a medical history, physical exam, and laboratory
577	tests. HIV-positive participants who are adherent to ART and virally suppressed (viral
578	load <200 copies per ml) are considered healthy.
579	• At least 18 years of age on the day of screening and will not reach 26th birthday on the
580	day of the second vaccination (approximately 6 weeks after enrolment)
581	• Willing and able to give informed consent for participation in the trial before any study-
582	related procedures are performed.
583	• Willing to donate blood samples for immunogenicity assessments.
584	
585	8.3. Exclusion criteria
586	Any clinically significant acute or chronic medical condition that is considered
587	progressive that, in the opinion of the Principal Investigator or designee, makes the
588	volunteer unsuitable for participation in the trial
589	• Pregnancy
590	• Participation in another clinical trial (i.e. investigational HIV vaccine candidate),
591	within the previous 3 months or expected participation during the study
592	Bleeding disorder diagnosed by a physician (e.g., factor deficiency, coagulopathy or
593	platelet disorder that requires special precautions).
594	History of severe local or systemic reactogenicity to vaccines (e.g., anaphylaxis,
595	respiratory difficulty, angioedema).
596	
597	8.4. Withdrawal criteria
598	The Final Visit or Early Termination Visit procedures will be performed according to the

Schedule of Procedures (Appendix A). Participant retention strategies and procedures are aimed

KEMRI- Wellcome	Trust Research Progra	amme (KWTRP)

Version 1.4 dated 6 November 2020

500	to achieve a study retention of >90%. Participants may voluntarily withdraw from the study at		
501	any time and for any reason. Participants may be withdrawn from the study permanently if:		
502	• The principal investigator(s) or designee has reason to believe that a participant is		
503	not complying with the study or study procedures.		
504	• The sponsor or local regulatory authorities decide to stop or cancel the study.		
505	Participant is lost to follow up.		
506 507			
508	8.5. Managing withdrawals		
509	• If a participant withdraws from the study, the date and reasons for study withdrawal		
510	(if available) will be recorded in the volunteer's source documents and study records		
511	and stored samples will be retained unless consent is withdrawn.		
512	8.6. Replacing withdrawn participants		
513	This is not an efficacy trial, but an observational study of immune responses to a licensed vaccine.		
514	We will not replace any participant should any participant withdraw, as our sample will		
515	oversample up to 10% of participants.		
516			
517	9. TREATMENT OF STUDY PARTICIPANTS		
518	9.1. Treatments		
519	4CMenB vaccine (Bexsero® -GSK) 0.5mL intra-muscularly; two doses administered 2 months		
520	apart. Each dose of vaccine contains recombinant Neisseria meningitidis group B NHBA fusion		
521	protein (50 micrograms); recombinant Neisseria meningitidis group B NadA protein (50		
522	micrograms); recombinant Neisseria meningitidis group B FHbp fusion protein (50 micrograms)		
523	and Outer membrane vesicles (OMV) from Neisseria meningitidis group B strain NZ98/254 (25		
524	micrograms measured as amount of total protein containing the PorA P1.4) adsorbed on		
525	aluminium hydroxide (0.5 mg Al ₃₊).		
526	The vaccine will be administered into the deltoid muscle of the non-dominant arm.		
527	Identity of Investigational Product (IP)		

10. ASSESSMENT OF IMMUNOGENICITY

659

528	4CMenB vaccine (Bexsero® -GSK) - Bexsero suspension for injection in pre-filled syringe. The		
529	manufacturer will be requested to label the vaccine as an investigational product for clinical trial		
630	use only.		
531	9.2. Storage		
632	Supply of 4CMenB will be through GSK, UK. The vaccine will be stored in 2–8 degree Celsius		
633	fridges at KEMRI clinic study pharmacy. The fridge will be temperature monitored.		
534	9.3. Dose Selection		
535	There are no planned dose modifications.		
636			
637	9.4. Timing of Doses		
638	n/a.		
539	9.5. Randomisation and Blinding. n/a.		
540	9.6 Packaging and Labelling. Bexsero® (GSK vaccine) will be packaged and labelled by the		
541	manufacturer. We will ensure that the vaccine will be labelled as an investigational product for		
542	clinical trial use only.		
543	9.7. Dispensing Procedures. Dispensing procedures will be described in the study operational		
544	manual (SOM).		
545	9.8. Dose Administration. Vaccine will be provided in a pre-filled syringe.		
546	9.9. Accountability		
547	4CMenB vaccine (Bexsero® -GSK) will be ordered through GSK. Investigational medical		
548	product (IMP) will be administered according to the protocol. No additional labelling of IMPs is		
549	required.		
650	9.10. Unblinding. <i>n/a</i> .		
651	9.11. Treatment Compliance		
552	Participants are expected to complete all 5 study visits, including a screening visit, 2 vaccination		
553	visits, a 2-week post vaccination visit, and an end of study visit.		
554	9.12. Overdosage <i>n/a</i> .		
555	9.13. Prior/Concomitant Therapy There are no concomitant medications that would result in		
656	exclusion from this trial, therefore we will not be recording them.		
657	9.13.1. Prohibited Medication. n/a.		
558	9.13.2. Rescue Medication. n/a.		

be measured in two ways:

Version 1.4 dated 6 November 202

10.1 Identify Ng cross-reactive, human immune responses elicited by Bexsero®:		
We will exploit Bexsero as an immunological probe to identify antigens that elicit humoral cross-		
reactive responses against Ng. Our collaborators have analysed the OMV proteome of Bexsero and		
have constructed protein microarrays containing 91 Nm proteins. We will examine IgG reactivity		
against these Nm proteins in microarrays with sera from Bexsero vaccinated individuals with high Ng		
exposure at a collaborative laboratory at the University of Manchester.		
Comparison of the pre/post immunization sera will provide a comprehensive overview of Bexsero		
antigens which induce Ng-cross reactive IgG responses and could therefore be responsible for Nm		
OMV-mediated protection against Ng. Screening will be performed on plasma taken at enrolment,		
approximately 2 weeks post second immunization and at 6 months time point. The screening will take		
place at three sites, KEMRI -CGMRC, the University of Oxford, and a collaborators lab at the		
Uniformed Services University in the USA. Antigens and/or microarrays will be sent to KEMRI-		
CGMRC where printing on slides and running of the microarray will be performed. Microarrays will		
also be done by Jeremy Derrick at University of Manchester. Samples with cross-reactive antibodies		
against the OMV antigens, which may offer protection against Ng will be selected to inform antigen		
choice and vaccine design.		
10.2 Determining systemic antibody levels and subclass analysis		
Serum antigen- and OMV-specific IgG1, IgG2a, Ig3A and IgA titres will be determined by ELISA		
approximately two weeks after final immunizations. Responses will be compared among pre-post test		
groups by repeated measures ANOVA.[33]		
10.3 Determining Th1 proliferation		
Currently all candidate vaccines that show efficacy in the mouse models against Ng (2C7 peptide		
mimetic, Gc OMVs administered with IL-12) induce Th1 responses compared to over 10 other Gc		
antigens that were tested with Th2-inducing adjuvants and were not protective. T cell responses will		

686 In
687 (ii)

Indirect responses: by determining the IgG1/IgG2 ratios after immunization. Ig subclass levels (including IgG1/IgG2a ratios) will be indicative of Th1 responses.

Direct responses: PBMCs will be isolated at enrolment, , and 2 weeks post second immunization and used for the detection of antigen-specific IFN γ secreting T cells. A panel of overlapping peptides that cover the entire length of the immunogen will be used. To maximize cell use, IL-2 and IFN γ will be simultaneously detected using a dual-colour ELISpot assay. The presence of these cytokines after antigen specific stimulation will be indicative of the Th1 response. Additionally, we will assess T cell polyfunctionality and the induction of immunological memory and homing patterns by intracellular cytokine staining and surface staining by flow cytometry. KWTRP has a 17 colour flow cytometry allowing extensive phenotypic characterization.

Detailed epitope mapping studies are also planned again using flow cytometry to more fully examine the depth of vaccine induced T cell responses. Th1 proliferations will be assessed by Ann Jerse Uniformed Services University, Bethesda, Maryland, USA.

Antibody Responses

The induction of antibody will be measured by a standard endpoint ELISA assay using peptides covering recombinant protein antigens, purified antigens, and defined OMVs. The protein antigens will be generated during the fabrication of protein microarrays, and as candidate vaccines. Antigens will be coated onto microtiter plates, and circulating antibody responses in sera detected by incubating serial dilutions of sera with antigens; binding of total IgG, IgA, and IgG subclasses will be determined using specific secondary antibodies. Antibody titres from individuals approximately two weeks following the final immunisation and/or infected individuals will be compared with levels measured at study entry, and statistical significance analysed by unpaired T tests.

After the final immunization, PBMCs will be collected for isolation of antigen-specific memory B cells. B-cell sorting will require a blood draw of 50 ml (appendix A: schedule of procedures). The aim of this will be to generate human monoclonal antibodies (mAbs) against key vaccine candidates; these mAbs will be a valuable resource during the development and evaluation of vaccine candidates. Generated monoclonal antibodies will be characterized and testing for effector function. Specifically, in those participants where cross-reactive plasma will be identified in section 10.1, antigen-specific memory B cells will be isolated two weeks post second immunization.

The immunoglobulin genes will be independently amplified and the variable gene regions cloned into expression vectors. Monoclonal antibodies will then be expressed and purified. These monoclonal antibodies will be characterized and tested for their binding capacity against Ng antigens. This work will be done at KEMRI-CGMRC where similar studies are currently on going. We will select samples for isolating antigen-specific cells based on individuals' responses as judged by results using immune sera with protein microarrays and ELISA.

Sample storage:

PBMC, serum and plasma samples will be stored as indicated in the Laboratory Analytical Plan (LAP) at laboratories at KEMRI-WTRP- (Kilifi, Kenya), Universities of Oxford, and Manchester (UK), and Uniformed Services University (USA) and analysed for the purposes outlined within this protocol as listed above. Consent will be sought for long-term storage at KEMRI-WTRP in Kenya, any future usage of these samples will seek the necessary approvals from CGMRC and KEMRI-SERU. Samples not consented for long-term storage are to be stored until study close out and thereafter disposed of following the local country requirements and regulations relating to the disposal of biological research samples.

10.7. Drug concentration measurements

Protocol number: CSC 182

733 *n/a*

734 **10.8.** Health economic measures

735 n/a

736737

739

740

741

742

743

11. ASSESSMENT OF SAFETY

738 11.1. Adverse Events (AEs)

This study is being conducted with a licensed product in other countries than Kenya (and administered using the same dose and regimen as in countries where it is licensed), and as such safety monitoring will therefore focus on detecting any suspected, unexpected, serious, adverse reactions, i.e. SUSARs. We will monitor for solicited adverse events.

11.2. Definitions and monitoring of AEs

Adverse event (AE)	Any untoward medical occurrence in a participant to whom a			
	medicinal product has been administered, including occurrences			
	which are not necessarily caused by or related to that product.			
Adverse reaction (AR)	An untoward and unintended response in a participant to an investigational medicinal product which is related to any dose			
	administered to that participant.			
	The phrase "response to an investigational medicinal product"			
	means that a causal relationship between a trial medication and an			
	AE is at least a reasonable possibility, i.e. the relationship cannot			
	be ruled out.			
	All cases judged by either the reporting medically qualified			
	professional or the Sponsor as having a reasonable suspected			
	causal relationship to the trial medication qualify as adverse			
	reactions.			
Serious Adverse Event	A serious adverse event is any untoward medical occurrence that:			
(SAE)	results in death			
	is life-threatening			
	requires inpatient hospitalisation or prolongation of			
	existing hospitalisation			
	results in persistent or significant disability/incapacity			

Protocol number: CSC 182

consists of a congenital anomaly or birth defect.		
Other 'important medical events' may also be considered serious if		
they jeopardise the participant or require an intervention to prevent		
one of the above consequences.		
NOTE: The term "life-threatening" in the definition of "serious"		
refers to an event in which the participant was at risk of death at		
the time of the event; it does not refer to an event which		
hypothetically might have caused death if it were more severe.		
An adverse event that is both serious and, in the opinion of the		
reporting Investigator, believed with reasonable probability to be		
due to one of the trial treatments, based on the information		
provided.		
A serious adverse reaction, the nature and severity of which is not		
consistent with the information about the medicinal product in		
question set out:		
• in the case of a product with a marketing authorisation, in		
the summary of product characteristics (SmPC) for that		
product		
• in the case of any other investigational medicinal product,		
in the investigator's brochure (IB) relating to the trial in		
question.		

744

745

746

747

748

NB: to avoid confusion or misunderstanding of the difference between the terms "serious" and "severe", the following note of clarification is provided: "Severe" is often used to describe intensity of a specific event, which may be of relatively minor medical significance. "Seriousness" is the regulatory definition supplied above.

749

750

11.3. Causality

- 751 The relationship of relevant serious adverse events to the trial medication must be determined by a
- medically qualified individual according to the following definitions:

- 753 **Related**: The adverse event follows a reasonable temporal sequence from trial medication
- administration. It cannot reasonably be attributed to any other cause.
- Not Related: The adverse event is probably produced by the participant's clinical state or by other
- modes of therapy administered to the participant.
- For the purpose of expedited safety reporting, all possibly, probably or definitely related AEs are
- 758 considered Investigational Medicinal Product-related AEs.
- 759 Details on AE definitions are provided below and in the SOM.

RELATIONSHIP	DESCRIPTION	
Unrelated	There is no evidence of any causal relationship	
Unlikely	There is little evidence to suggest that there is a causal relationship (for example the event did not occur within a reasonable time after administration of the trivaccination). There is another reasonable explanation for the event (for example patient's clinical condition, other concomitant treatment).	
Possible	There is some evidence to suggest a causal relationship (for example, because the event occurs within a reasonable time after administration of the trial vaccination). However, the influence of other factors may have contributed to the event (for example, the patient's clinical condition, other concomitant treatments).	
Probable	There is evidence to suggest a causal relationship and the influence of other factors is unlikely.	
Definitely	There is clear evidence to suggest a causal relationship and other possible contributing factors can be ruled out.	

760

761 762

763

764

770

11.4. Procedures for Recording Adverse Events

Documenting AEs

- AEs are observed by the Investigator or reported by the volunteer, will be recorded on the CRF,
- whether or not attributed to trial vaccination.
- 767 The following information will be recorded: description, date of onset and end date, severity, whether
- or not it is a serious adverse event, assessment of relatedness to investigational medicinal products and
- whether treatment was required. Follow-up information should be provided as necessary.

Reporting Serious Adverse Events (SAEs) and/or Unexpected AEs

KEMRI- Wellcome Trust Research Programme (KWTRP)

CONFIDENTIAL

Version 1.4 dated 6 November 2020

Protocol number: CSC 182

Should investigators become aware of a serious adverse event the following information will be	
recorded: description, date of onset and end date, severity, assessment of relatedness to trial	
medication, other suspect drug or device and action taken. Follow-up information should be provide	d
as necessary.	
The severity of events will be assessed on the following scale: 1 = mild, 2 = moderate, 3 = severe.	
SAEs considered related to the trial medication as judged by a medically qualified investigator or the	e
Sponsor will be followed either until resolution, or the event is considered stable.	
It will be left to the Investigator's clinical judgment to decide whether or not an AE is of sufficient	
severity to prevent the participant receiving a second dose of vaccine. A participant may also	
voluntarily withdraw from treatment due to what he or she perceives as an intolerable AE. If either of	of
these occurs, the participant will be given appropriate care under medical supervision until sympton	ns
cease, or the condition becomes stable, and may participate in immunogenicity assessments according	ng
to schedule.	
Reporting of SAEs	
Reporting of SAEs The period of recording SAEs will be from the time of taking informed consent to the last study visit	t
	t
The period of recording SAEs will be from the time of taking informed consent to the last study visit	t
The period of recording SAEs will be from the time of taking informed consent to the last study visit for that participant.	t
The period of recording SAEs will be from the time of taking informed consent to the last study visit for that participant. All SAEs must be reported on the SAE reporting form to SERU within 24 hours of the Site Study	t
The period of recording SAEs will be from the time of taking informed consent to the last study visit for that participant. All SAEs must be reported on the SAE reporting form to SERU within 24 hours of the Site Study Team becoming aware of the event, with the site Principal Investigator being included in this	
The period of recording SAEs will be from the time of taking informed consent to the last study visit for that participant. All SAEs must be reported on the SAE reporting form to SERU within 24 hours of the Site Study Team becoming aware of the event, with the site Principal Investigator being included in this correspondence.	
The period of recording SAEs will be from the time of taking informed consent to the last study visit for that participant. All SAEs must be reported on the SAE reporting form to SERU within 24 hours of the Site Study Team becoming aware of the event, with the site Principal Investigator being included in this correspondence. All SAE information must be recorded on an SAE form and faxed, or scanned and emailed, to SERU	
The period of recording SAEs will be from the time of taking informed consent to the last study visit for that participant. All SAEs must be reported on the SAE reporting form to SERU within 24 hours of the Site Study Team becoming aware of the event, with the site Principal Investigator being included in this correspondence. All SAE information must be recorded on an SAE form and faxed, or scanned and emailed, to SERU Additional and further requested information (follow-up or corrections to the original case) will be	
The period of recording SAEs will be from the time of taking informed consent to the last study visit for that participant. All SAEs must be reported on the SAE reporting form to SERU within 24 hours of the Site Study Team becoming aware of the event, with the site Principal Investigator being included in this correspondence. All SAE information must be recorded on an SAE form and faxed, or scanned and emailed, to SERU Additional and further requested information (follow-up or corrections to the original case) will be	IJ.

826

Protocol number: CSC 182

798	will be done no later than seven calendar days after the Sponsor or delegate is first aware of the
799	reaction or following timelines required in the individual countries, whichever one is more stringent.
800	Any additional relevant information will be reported within 8 calendar days of the initial report. All
801	other SUSARs will be reported within 15 calendar days.
802	
803	DSMB
804	An independent Data Safety and Monitoring Board (DSMB) will be set up consisting of qualified
805	volunteers with the necessary knowledge of clinical trials. The DSMB will receive summary reports,
806	prior to each meeting. All data reviewed by the DSMB will be in the strictest confidence. A DSMB
807	charter will outline its responsibilities, number of interim reports and how it will operate. Interim
808	reports will be prepared by the Trial data manager.
809	All DSMB recommendations will be communicated to the PI. The PI will be responsible for
810	submitting the written DSMB summary reports with recommendations as applicable to local/ national
811	ethics committees and other applicable groups.
812	11.5. Emergency Procedures
813	The KEMRI clinic in Malindihas an emergency trolley and staff is trained to offer emergency
814	procedures should anaphylactic shock arise following vaccination.
815	
816	11.3. Pregnancy
817	Any pregnancy which occurs during the clinical trial, and the outcome of the pregnancy, should be
818	recorded and followed up for congenital abnormality or birth defect, at which point it would fall
819	within the definition of "serious".
820	Procedures for reporting any protocol violation(s). Protocol violation (s) will be reported promptly to
821	the Ethics Committee and Regulatory Authority.
822	
823	
824	12. STATISTICS
825	12.1. Determination of sample size

The sample size is based on our experience of evaluating the humoral responses to Bexsero® in 50 healthy individuals from the UK with a low likelihood of previous exposure to Ng. In that study, we would not expect the vaccine to elicit memory responses, and considered the previous group as naïve. We assessed immune responses using protein microarrays which contain over 80 purified recombinant antigens that are present in the OMVs from the vaccine. This allowed us to detect IgG responses against a diverse array of antigens. We identified six antigens using the Nm microarrays which exhibited significant enhancement following vaccination in sera from these volunteers.

In the present study, we plan to enroll around twice the number of subjects from our cohort of sex workers who have high rates of exposure to Ng, and so are more likely to mount a serological and/or cellular response to the vaccine than the general population. This should provide sufficient lead

candidate antigens for vaccine development, including recombinant proteins and/or engineering

OMVs.

12.2. Statistical and analytical plans

We will use protein microarrays to identify antigens in *Neisseria gonorrhoeae* which are recognised by antibodies elicited by Bexsero. We have pioneered the development and use of protein microarrays, which enable the detection of cross-reactive antibody responses against multiple antigens in parallel. We have generated protein microarrays consisting of membrane/surface proteins of *N. meningitidis*, and evaluated responses in 50 healthy volunteers immunised with an OMV–based vaccine. [33]. More than 80% of participants displayed significant serological responses detected by the microarrays, with around 10 antigens identified by responses in most individuals. We predict that we will observe similar responses to Bexsero (which contains an OMV) in our study population which is highly exposed to Ng infection so might be immunologically primed, with a high degree of sequence conservation (>90% identify) between Ng and meningococcal antigens. Therefore, we have chosen to use a similar number of volunteers for the current study as in our previous work.

13. Access to Data

Direct access will be granted to authorised representatives from the Sponsor, host institution and the regulatory authorities to permit trial-related monitoring, audits and inspections.

	KEMRI- Wellcome	Trust Research Programme	(KWTRP)
--	-----------------	--------------------------	---------

CONFIDENTIAL

Version 1.4 dated 6 November 2020

Protocol number: CSC 182

14. Data Recording and Record Keeping
Source documents are the documents where data are first recorded, and from which volunteers' CRF
data are obtained. These include, but are not limited to, hospital records (from which medical history
and previous and concurrent medication may be summarised into the CRF), clinical charts, and
laboratory and pharmacy records.
CRF entries will be considered source data if the CRF is the site of the original recording (e.g. there is
no other written or electronic record of data). All documents will be stored safely in confidential
conditions. On all trial-specific documents, other than the signed consent, the volunteer will be referred
to by the trial volunteer number/code, not by name.
to by the trial volunteer number/code, not by nume.
All trial data will be entered in the clinical trial database, which are maintained through Standard
Operating Procedures.
The volunteer will be identified by a unique trial specific number and/or code in any database. The
name and any other identifying detail will NOT be included in any trial data electronic file.
15. Data entry at study site
The data collected at the site will be recorded onto the source documents by the study staff and
entered into the clinical trial database.
15.1.1. Planned statistical methods
A detailed statistical analysis plan will be developed by prior to database lock and final analysis.
Demographics and baseline characteristics. We will collect demographics and baseline
characteristics from existing databases (as participants derive from well-characterized cohort studies),
including number of sexual partners in the past month, sexual role taking, sex work, and detection of
any prior Gc infection, or Gc infection during the study. These data will be captured in the two existing
KEMRI protocols in which participants will remain enrolled.
For the mimory analysis, we will conserve the difference in total L.C. was a sectional at
For the primary analysis, we will compare the difference in total IgG sero-reactivity between human
pre-vaccination (week 0) and post-vaccination sera (week 10 and week 24). To determine the increase

CONFIDENTIAL

Version 1.4 dated 6 November 2020

Protocol number: CSC 182

in IgG reactivity for a particular antigen at week 10 or week 24, the value obtained from serum collected before immunization will be subtracted from the same value obtained from serum after immunization at week 10 or week 24. A two-tailed T-test will be used to calculate p-values and test for significance between doses per protein.

For the ELISPOT analysis, we will determine the proportion of IFNg secreting T cells per 1 million PBMCs in samples tested 10 weeks post vaccination (week 10). To account for background responses, spot forming units (SFUs) detected at baseline (week 0) samples prior to vaccination, and the average SFUs identified in wells with mock peptides (negative control; at week 0) will be subtracted from responses at week 10. The proportions antigen-specific IFNg secreting T cells will be compared using non-parametric tests between the different peptide pools used for stimulation, between vaccinees to identify the peptide pool yielding highest activation (pre-vaccination (week 0) and post-vaccination sera (week 10)), and between vaccinees with the highest T cell responses.

Missing data. There will be no imputation of missing data.

895	15.1.1.1.	Efficacy population n/a
896	15.1.1.2.	Safety population n/a
897	15.1.1.3.	Interim analysis n/a
898	15.1.1.4.	Efficacy analyses n/a
899	15.1.1.5.	Safety analyses n/a
900	15.1.1.6.	Amendments to statistical analysis n/a

15.1.1.7.

16. DIRECT ACCESS TO SOURCE DATA/DOCUMENTS

Direct access will be granted to authorised representatives from the Sponsor, host institution and the regulatory authorities to permit trial-related monitoring, audits and inspections. Ultimately any gonococcal genome sequence data deriving from any Ng isolates, without participant identifying information, will be made available publicly.

Stopping criteria for termination of trial n/a

17. QUALITY CONTROL AND QUALITY ASSURANCE

To ensure the quality and reliability of the data collected and generated and the ethical conduct of this study, a Study Operations Manual will be developed. All deviations will be reported and

investigated. The Study Operations Manual describes reporting and deviation documentation

requirements and procedures. Regular monitoring will be performed according to ICH-GCP as

indicated in Section 17.2. An independent audit of the study and study sites may be performed

by the Sponsor or designee to establish the status of applicable quality systems. Inspection by

regulatory authorities may also occur. By signing the protocol, the Principal Investigators agree

to facilitate study related monitoring, audits, IEC/IRB review and regulatory inspection(s) and

direct access to source documents. Such information will be treated as strictly confidential and

under no circumstances be made publicly available.

against the closely-related pathogen, N. meningitidis.

17.1. Choice of investigators. Investigators in Kenya have extensive experience with key population cohort studies (from which participants for the Gc vaccine study will derive), as well as immunogenicity testing of vaccines at the KWTRP lab's in Kilifi. Collaborators in the UK (Chris Tang and Jeremy Derrick), and USA (Ann Jerse) are leading researchers in the Gc-field, and have extensive experience in the design, development, and post-implementation analysis of vaccine

926

927

928

929

930

931

932

933

934

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

17.2. Monitors and monitoring plan

Study monitoring will be conducted by the KWTRP. Monitoring will be conducted to ensure that: the rights and wellbeing of volunteers are protected; the reported data are accurate, complete and verifiable from source documents; and that study conduct complies with the currently approved protocol, standard operating procedures, Good Clinical Practice (GCP) and other applicable regulatory requirements.

Study monitors will visit the study sites to review all trial documents including volunteer screening and enrolment logs, informed consent forms, source documents, CRFs, laboratory

935 and
936 exis
937 the p
938 SUS
939 docu
940 orig
941 5) to
942 regul
943 Stud
944 sour
945 inve

and medical records. The specific objectives of a monitoring visit will be 1). to verify the existence of adequately signed informed consent forms for each enrolled volunteer; 2) to verify the prompt, complete and accurate recording of data, and prompt reporting of all SAEs and SUSARs; 3) to verify the quality and accuracy of data by validation of CRFs against the source documents such as volunteers' medical records, laboratory reports, and any other relevant original data; 4) to verify adequate IMP supply, storage, management, and accountability; and 5) to ensure protection of study volunteers, and investigators' compliance with the protocol, regulatory requirements and applicable guidelines.

Study investigators and volunteers agree that the study monitor may review study facilities and source records, and observe the performance of study procedures. Additionally, study investigators will permit inspection or audit of the study facilities and all study-related records by relevant regulatory authorities, SERU, and/or representatives of the Sponsor. All information collected during monitoring or audit visits will be treated as strictly confidential and will under no circumstances be made publicly available.

949

950

951

952

953

946

947

948

18. INTELLECTUAL PROPERTY

Any intellectual property rights that arise from the work will be safeguarded according to the current KEMRI guidelines and the Industrial Property Act of 2001, sections 32, 58 and 80. The scientific and intellectual contributions of all persons involved in the research will be appropriately acknowledged in all publications and presentations arising from the work.

955

954

956957

958

959

960

Protocol number: CSC 182

19. TIME FRAME/DURATION OF THE TRIAL

Activity	Q3-4, 2019	Q1-2, 2020	Q3-4, 2020	2021-22
Consortium	✓			
meeting				
Cohort	✓	✓	✓	
preparations				
Clinical Trial			√ 1	√
Clinical			✓	✓
Immunology				
Dissemination			✓	✓
&				
communication				

1). Screening may start in December 2020

963964

965

966

962

20. ETHICS

- Ethical approval will be sought from KEMRI Scientific & Ethics Review Unit (SERU), and the Oxford
- 967 Tropical Research Ethics Committee (OXTREC).

968

969

20.1. Human Subjects

- The study involves human subjects and the principles below will be observed.
- 971 "First, do no harm."
- The study staff will make every effort to protect participants' privacy and confidentiality.
- However, it is possible that others may learn a participant is taking part in a study and make
- assumptions about his health or sexuality. All participants are known by a number, we will not
- include names or other identifying information on participants' records. All study documents
- will be stored on a password-protected computer only accessible by authorized staff.

977

978

- Participation in this study is voluntary. Participants are free to decide if they want to take part
- or not, which they will be informed about before obtaining consent. If participants do agree to
- participate they can change their mind at any time without any consequences.

982	Participants will be recruited from four KEMRI cohorts studies (SERU No. 894, 3520, 3778
983	and 1224) in Mtwapa or Malindi. The KEMRI cohort studies follow both HIV uninfected and
984	infected individuals at-risk for Ng infection, including male and female sex workers, and MSM
985	For this study, we will screen participants aged 18-25 years. At present, over 100 HIV-negative
986	participants (100 MSM, 5 FSW), and 29 HIV-positive participants (25 MSM and 4 FSW) aged 18-25
987	years are eligible for screening.
988 989	Prospective participants will be invited to attend an individual information session in which the
990	purpose of the Gc vaccine study will be discussed, and questions can be asked.
991	We will ensure that participants understand all aspects of the study, including which samples
992	will be collected (i.e. blood, and throat, vaginal/rectal swab samples, and urine) and what
993	volumes will be collected.
994	
995	We will explain that the aim of the study is to assess how the immune system responds to a
996	licensed Meningococcal B vaccine (Bexsero®). Over 17 million doses of the vaccine have
997	been given worldwide, but the vaccine is not licensed in Kenya (as meningococcal B infection
998	is not common). Meningococcal B vaccine (Bexsero®) prevents only against the
999	meningococcal B strain which is common in Europe, Australia, and the Unites States.
1000	
1001	Due to genetic similarities between the two organisms causing gonorrhoea and
1002	meningococcal B disease, the vaccination with Bexsero® may be effective against
1003	gonorrhoea.
1004 1005	The KEMRI cohort studies in Mtwapa and Malindi are supported by a 'key populations
1006	study' community advisory board (CAB). The CAB consists of stakeholders from LGBTQ-

organizations, business leaders, bar owners, religious leaders, community security, chiefs,

police, village elders, as well as lawyers, human -rights activists, and leaders from several LGBTQ CBOs along the Kenyan coast.

The CAB is an integral part of KEMRI's HIV and STI engagements; building and fostering partnerships between researchers and local study communities, helping to strengthen local trust and mutual understanding of research issues; and ensuring that values and cultural differences among participants are respected. KEMRI organises quarterly engagement meetings with the CAB during which planned studies will be shared. The CAB will be informed about the Gc-vaccine study, and we will ensure that CAB members can ask questions about study. We will also inform Kilifi County Health Department, Malindi stake holder's forum, and members of the Kilifi Community Representatives in ongoing quarterly engagements.

Prospective participants who consider participation in the Gc vaccine study may want to consult CAB members. The CAB will also be informed about study progress, and when summary data will become available from the study.

20.2. Community Considerations

While the study does not offer direct benefits (i.e. participants will receive the same research services as in the KEMRI cohorts that they participate in already), researchers will get new insights from immune responses to the Meningococcal B vaccine (Bexsero®) and if any component of that vaccine can be improved upon in the future to make a better vaccine against gonorrhoea.

While the immunological analysis of the study will likely take up to two years before results can be disseminated, our community dissemination plan will include updates on study start and completion for participants, and share information with community stakeholders on any

KEMRI- Wellcome	Trust Research Progra	amme (KWTRP)

CONFIDENTIAL

Version 1.4 dated 6 November 2020

Protocol number: CSC 182

further information concerning 'Bexsero vaccination studies' that may be conducted elsewhere.

20.3. Informed Consent

Written informed consent will be obtained from all study participants by the research

counsellor. Informed consent document (ICD) will be available in English and Kiswahili.

During screening, we will provide information to prospective participants and summarise key sections of the ICD. We will ensure sufficient time to provide information and allow for questions. Counsellors and clinicians will adhere to standard operating procedures in obtaining

1043 consent.

20.4. Compensation

The Meningococcal B vaccine (Bexsero®), and study related tests and visits will be free of charge. Participants will be given Ksh500 at the screening visit, and Ksh1000 at the 4 follow up visits to cover the cost of transportation. The Ksh1000 per study visit for participation in a vaccine study is similar to a previous vaccine study (Yellow Fever fractional doses) conducted at the KEMRI clinic in Malindi during 2019-20, and to a planned HIV vaccine study to be conducted in 2020. Participants who will travel from Mtwapa to Malindi will receive additional travel compensation of public transport costs.

20.5. Patient Data Protection/Confidentiality

Study information will be kept confidential by storing paper copies in locked cabinets and electronic copies in password-protected computers that will be only accessible to study staff. Identifying information will be destroyed after study completion according to KEMRI policy.

20.6. Data Sharing

The knowledge gained from this research will be shared and published in summary form, without revealing identity of participants. In future, information collected during this study may be used to support new research by other researchers. In all cases, we will only share information with other researchers in ways that do not reveal identity of participants. Any future research must first be approved by a county or national expert committee to make sure that the interests of participants and their communities are protected.

Publications from this study are required to comply with the Wellcome Trust Open Access policy: https://wellcome.ac.uk/funding/guidance/guidance-wellcome-trust-centres-and-major-overseas-programmes, and the policy on data, software and materials management and sharing: https://wellcome.ac.uk/funding/guidance/policy-data-software-materials-

management-and-sharing.

Upon completion of the study, participants will be invited for a study findings dissemination session. We will also share study findings with the CAB.

20.7. Safety

Upon completion of the Gonoccocal vaccine study, participants may continue in the KEMRI cohorts at the KEMRI clinic in Mtwapa or Malindi as appropriate.

20.8. Material Transfer Agreement (if applicable)

The study will store samples at the KWTRP laboratories in Kilifi, and share a portion of the samples with collaborators in the UK, and USA. Material transfer agreements with collaborators in the UK, and USA will be made where appropriate, and specify shipment of samples as described in the methods.

21. ARCHIVING AND RECORD RETENTION

Electronic data bases and source documents will be stored for a minimum of 10 years and follow programme policies on archiving and data storage.

22. FINANCING AND INSURANCE

The study will be funded primarily by a collaborative grant from the Wellcome Trust.

22.1. Budget

Item	US\$	Ksh
Staff	176000	17,600000
Laboratory assays and cohort support	32750^{1}	$3,275000^{1}$
Bexsero Vaccine, GSK, UK	12000	1,200000
Immunology assays, including shipment	39975	3,972500
Meeting attendance	5000	500000
Total	265,725	26,572500

1). Inclusive of up to 15 viral load assays.

Budget justification

Personnel. Personnel includes support for a clinical officer, pharmacy technologist, counsellors, data staff, community engagement staff, field workers, and house-keeping staff. **Laboratory assays, cohort support, and clinic visits** at the KEMRI clinic include X-pert CT/NG testing (US\$ \$ 22.5 per assay; 3 anatomical sites per visit; 3 visits). Cohort support includes community engagement activities, tracing, information session and community advisory board training. **Clinic visits** include a screening visit (Ks500) and 4 follow up visits (1000Ksh per visit).

Meningococcal B vaccine (Bexsero®) @ 120US\$ per dose (2 doses, 50 participants).

Immunological assays. Fresh T-cell Elispot, possible B-cell cloning and cell sorting on site; shipment of cells, and serum to Oxford, Manchester (UK), and Bethesda, USA.

1	1	09

22.2. Insurance

11111112

1113

1114

1115

1116

1110

The University of Oxford has a specialist insurance policy in place which would operate in the

event of any volunteer suffering harm as a result of their involvement in the research (Newline

Underwriting Management Ltd, at Lloyd's of London).

Indemnity

KWTRP have professional indemnity cover for KEMRI staff.

1117

1118

1119

1120

1121

1124

1125

1126

1127

1128

1129

If any volunteer is harmed as a result of this trial, medical care will be provided. The sponsor will provide care until complete cure or stabilization of a research related injury. The injured

research volunteer will be given the best care available within the country for the research

related injury. Research volunteers shall not be required to waive their legal rights for redress

in courts of law.

1123 Negligent Harm

Indemnity and/or compensation for negligent harm arising specifically from an accidental

injury for which the University is legally liable as the Research Sponsor will be covered by the

University of Oxford.

Non-Negligent Harm

Indemnity and/or compensation for harm arising specifically from an accidental injury, and

occurring as a consequence of the Research volunteers' participation in the trial for which the

University is the Research Sponsor will be covered by the University of Oxford.

CONFIDENTIAL

Version 1.4 dated 6 November 2020

Protocol number: CSC 182

1132

1133

1134

1142

1149

23. TRIAL MANAGEMENT

- The trial will be registered through ClinicalTrials.gov. The Principal Investigator will be
- responsible for all aspects of the study at the study site.

1136 **Study Supervision**

- The Principal Investigator will work closely with his/her study team to implement the study,
- address issues in a timely manner, assure consistent documentation, and compile and provide
- study progress reports to the medical monitor. Accrual and retention rates, safety of study
- volunteers, and other relevant parameters will be closely monitored by the study team, Principal
- 1141 Investigator, and Medical Monitor.

Investigator's Records

- 1143 Study records include administrative documentation, including reports and correspondence
- relating to the study, as well as documentation related to each volunteer screened for and/or
- enrolled in the study (e.g., screening and enrolment logs, locator information forms, informed
- 1146 consent forms, laboratory reports, case report forms, and all other source documents). The
- Principal Investigator will maintain and store, in a secure manner, complete, accurate, and
- current study records for a minimum of 2 years.

24. REPORTING, DISSEMINATION AND NOTIFICATION OF RESULTS

- An initial descriptive manuscript on key population participation in a Bexsero trial in Kenya will be
- prepared promptly after data analysis is completed using mutually accepted Publication Guidelines. A
- primary manuscript assessing if immunisation of individuals at risk for gonococcal infection with
- 4CMenB (Bexsero) will elicit humoral and T cell cross-reactive responses against Ng immune responses
- will be prepared when all available data is analysed. Authorship criteria will be based on
- 1155 contributions to the design, work, analysis and writing of the study report. A summary of the

Protocol number: CSC 182

1156 main findings will be developed that will be in non-technical language and shared with stake

1157 holders, and the CAB.

1158 25. APPENDICES

- 1159 1. Appendix A
- 2. CV of Prof Chris Tang 1160
- 3. Ethics certificates of investigators 1161

1162 1163

25.1. Roles of Investigators

Chris Tang	Chief investigator Gonococcal Vaccine Initiative, study design	
Eduard Sanders	clinical trial principal investigator, study design, study oversight	
	Bexsero trial, medically qualified and on-site	
Philip Bejon	Protocol development, study design, immunology study oversight	
Clara Agutu	Protocol development, clinical trial investigator, medically qualified and	
	on-site	
Eunice Nduati	B-cell immunologist	
Susan Graham	Protocol development, clinical trial investigator	

1164

1165 1166

REFERENCES

- 1168 1. DALYs GBD, Collaborators H, Murray CJ, Barber RM, Foreman KJ, Abbasoglu Ozgoren A, et al. Global,
- 1169 regional, and national disability-adjusted life years (DALYs) for 306 diseases and injuries and healthy life
- 1170 expectancy (HALE) for 188 countries, 1990-2013: quantifying the epidemiological transition. Lancet 2015;
- 1171 386(10009):2145-2191.
- 1172 2. Brunham RC, Gottlieb SL, Paavonen J. Pelvic inflammatory disease. N Engl J Med 2015; 372(21):2039-
- 1173
- 3. Vincent LR, Jerse AE. Biological feasibility and importance of a gonorrhea vaccine for global public 1174
- 1175 health. Vaccine 2018.
- 4. Mlisana K, Naicker N, Werner L, Roberts L, van Loggerenberg F, Baxter C, et al. Symptomatic vaginal 1176
- discharge is a poor predictor of sexually transmitted infections and genital tract inflammation in high-risk 1177 1178 women in South Africa. J Infect Dis 2012; 206(1):6-14.
- 5. Rowley J. Vander Hoorn S. Korenromp E. Low N. Unemo M. Abu-Raddad LJ, et al. Chlamydia. 1179
- 1180 gonorrhoea, trichomoniasis and syphilis: global prevalence and incidence estimates, 2016. Bulletin of the
- World Health Organization 2019; 97(8):548-562P. 1181
- 1182 6. Unemo M, Bradshaw CS, Hocking JS, de Vries HJC, Francis SC, Mabey D, et al. Sexually transmitted
- infections: challenges ahead. Lancet Infect Dis 2017; 17(8):e235-e279. 1183
- 7. Wi T, Lahra MM, Ndowa F, Bala M, Dillon JR, Ramon-Pardo P, et al. Antimicrobial resistance in Neisseria 1184
- 1185 gonorrhoeae: Global surveillance and a call for international collaborative action. PLoS Med 2017;
- 14(7):e1002344. 1186
- 8. Whitney CG, Farley MM, Hadler J, Harrison LH, Bennett NM, Lynfield R, et al. Decline in invasive 1187
- 1188 pneumococcal disease after the introduction of protein-polysaccharide conjugate vaccine. N Engl J Med
- 1189 2003; 348(18):1737-1746.
- 1190 9. Jerse AE, Bash MC, Russell MW. Vaccines against gonorrhea: current status and future challenges.
- 1191 Vaccine 2014; 32(14):1579-1587.

Protocol number: CSC 182

- 1192 10. Liu Y, Islam EA, Jarvis GA, Gray-Owen SD, Russell MW. Neisseria gonorrhoeae selectively suppresses
- the development of Th1 and Th2 cells, and enhances Th17 cell responses, through TGF-beta-dependent
- 1194 **mechanisms**. *Mucosal immunology* 2012; 5(3):320-331.
- 1195 11. Liu Y, Liu W, Russell MW. Suppression of host adaptive immune responses by Neisseria gonorrhoeae:
- role of interleukin 10 and type 1 regulatory T cells. Mucosal immunology 2014; 7(1):165-176.
- 1197 12. Greenberg L, Diena BB, Ashton FA, Wallace R, Kenny CP, Znamirowski R, et al. Gonococcal vaccine
- 1198 **studies in Inuvik**. Can J Public Health 1974; 65(1):29-33.
- 1199 13. Boslego JW, Tramont EC, Chung RC, McChesney DG, Ciak J, Sadoff JC, et al. Efficacy trial of a
- parenteral gonococcal pilus vaccine in men. Vaccine 1991; 9(3):154-162.
- 1201 14. Ram S, McQuillen DP, Gulati S, Elkins C, Pangburn MK, Rice PA. Binding of complement factor H to
- 1202 loop 5 of porin protein 1A: a molecular mechanism of serum resistance of nonsialylated Neisseria
- gonorrhoeae. The Journal of experimental medicine 1998; 188(4):671-680.
- 1204 15. Schneider MC, Prosser BE, Caesar JJ, Kugelberg E, Li S, Zhang Q, et al. Neisseria meningitidis recruits
- factor H using protein mimicry of host carbohydrates. *Nature* 2009; 458(7240):890-893.
- 1206 16. Lewis LA, Gulati S, Burrowes E, Zheng B, Ram S, Rice PA. alpha-2,3-sialyltransferase expression level
- impacts the kinetics of lipooligosaccharide sialylation, complement resistance, and the ability of Neisseria
- gonorrhoeae to colonize the murine genital tract. MBio 2015; 6(1).
- 1209 17. Ram S, Cullinane M, Blom AM, Gulati S, McQuillen DP, Monks BG, et al. Binding of C4b-binding
- protein to porin: a molecular mechanism of serum resistance of Neisseria gonorrhoeae. *The Journal of*
- 1211 experimental medicine 2001; 193(3):281-295.
- 1212 18. Deo P, Chow SH, Hay ID, Kleifeld O, Costin A, Elgass KD, et al. **Outer membrane vesicles from**
- 1213 Neisseria gonorrhoeae target PorB to mitochondria and induce apoptosis. PLoS Pathog 2018;
- 1214 14(3):e1006945.
- 12.15 19. Plummer FA, Chubb H, Simonsen JN, Bosire M, Slaney L, Maclean I, et al. Antibody to Rmp (outer
- membrane protein 3) increases susceptibility to gonococcal infection. The Journal of clinical investigation
- 1217 1993; 91(1):339-343.
- 1218 20. Rice PA, Vayo HE, Tam MR, Blake MS. Immunoglobulin G antibodies directed against protein III
- 1219 block killing of serum-resistant Neisseria gonorrhoeae by immune serum. The Journal of experimental
- 1220 *medicine* 1986; 164(5):1735-1748.
- 21. Feavers IM, Maiden MCJ. Recent Progress in the Prevention of Serogroup B Meningococcal Disease.
- 1222 Clinical and vaccine immunology: CVI 2017; 24(5).
- 22. Petousis-Harris H, Paynter J, Morgan J, Saxton P, McArdle B, Goodyear-Smith F, et al. Effectiveness of a
- 1224 group B outer membrane vesicle meningococcal vaccine against gonorrhoea in New Zealand: a
- retrospective case-control study. *Lancet* 2017; 390(10102):1603-1610.
- 1226 23. Ladhani SN, Campbell H, Parikh SR, Saliba V, Borrow R, Ramsay M. The introduction of the
- meningococcal B (MenB) vaccine (Bexsero(R)) into the national infant immunisation programme--New
- 1228 **challenges for public health**. *J Infect* 2015; 71(6):611-614.
- 1229 24. Plummer FA, Simonsen JN, Chubb H, Slaney L, Kimata J, Bosire M, et al. **Epidemiologic evidence for the**
- development of serovar-specific immunity after gonococcal infection. The Journal of clinical investigation
- 1231 1989; 83(5):1472-1476.
- 1232 25. Semchenko EA, Tan A, Borrow R, Seib KL. The serogroup B meningococcal vaccine Bexsero elicits
- antibodies to Neisseria gonorrhoeae. Clin Infect Dis 2018.
- 26. Perrett KP, McVernon J, Richmond PC, Marshall H, Nissen M, August A, et al. Immune responses to a
- recombinant, four-component, meningococcal serogroup B vaccine (4CMenB) in adolescents: a phase III,
- randomized, multicentre, lot-to-lot consistency study. Vaccine 2015; 33(39):5217-5224.
- 27. McNeil MM, Weintraub ES, Duffy J, Sukumaran L, Jacobsen SJ, Klein NP, et al. Risk of anaphylaxis after
- vaccination in children and adults. J Allergy Clin Immunol 2016; 137(3):868-878.
- 28. Rollier CS, Dold C, Marsay L, Sadarangani M, Pollard AJ. The capsular group B meningococcal vaccine,
- 1240 **4CMenB:** clinical experience and potential efficacy. Expert Opin Biol Ther 2015; 15(1):131-142.
- 29. Oviedo-Orta E, Ahmed S, Rappuoli R, Black S. Prevention and control of meningococcal outbreaks: The
- emerging role of serogroup B meningococcal vaccines. Vaccine 2015; 33(31):3628-3635.
- 30. Newman L, Rowley J, Vander Hoorn S, Wijesooriya NS, Unemo M, Low N, et al. Global Estimates of the
- 1244 Prevalence and Incidence of Four Curable Sexually Transmitted Infections in 2012 Based on Systematic
- 1245 **Review and Global Reporting**. *PLoS One* 2015; 10(12):e0143304.
- 1246 31. Galvin SR, Cohen MS. The role of sexually transmitted diseases in HIV transmission. Nat Rev Microbiol
- 1247 2004; 2(1):33-42.
- 1248 32. Wi T, Lahra MM, Ndowa F, Bala M, Dillon JR, Ramon-Pardo P, et al. Antimicrobial resistance in
- 1249 Neisseria gonorrhoeae: Global surveillance and a call for international collaborative action. PLoS Med
- 1250 2017; 14(7):e1002344.

KEMRI- Wellcome Trust Research Programme (KWTRP)	Protocol number: CSC 182
CONFIDENTIAL	

33. Awanye AM, Chang CM, Wheeler JX, Chan H, Marsay L, Dold C, et al. Immunogenicity profiling of protein antigens from capsular group B Neisseria meningitidis . <i>Scientific reports</i> 2019; 9(1):6843.