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Determination of Flux Control Coefficients
from transient metabolite concentrations

Javier DELGADO and James C. LIAO*
Department of Chemical Engineering, Texas A&M University, College Station, TX 77843-3122, U.S.A.

Flux Control Coefficients have been used in the analysis of metabolic regulation for quantifying the effect of an enzyme
on the overall steady-state flux. However, the experimental determination of these coefficients is very time-consuming,
involving either determining the individual enzyme kinetics or perturbing the enzyme activity by genetic or other means.
We developed a methodology that enables the determination of the Flux Control Coefficients from transient metabolite
concentrations without knowing kinetic parameters. The transient states can be generated by changing the incubation
conditions or adding the initial substrate. This approach is suitable for investigating metabolic regulation in vivo or
multiple enzyme systems in vitro. It is particularly helpful if used in conjunction with n.m.r. measurements. The approach
is based on a relationship between transient metabolite concentrations and the Flux Control Coefficients. The
methodology has been improved from our previous results, and it is illustrated by three examples with simple pathway
topologies.

INTRODUCTION

The quantitative analysis of metabolic regulation requires
simultaneously considering most, if not all, of the variables
involved in the system. In this regard, the Flux Control Co-
efficients (Kacser & Burns, 1973; Heinrich & Rapoport, 1974)
provide a useful basis for quantifying metabolic regulations: the
higher the Flux Control Coefficient, the more controlling the
enzyme is to the steady-state flux. Although the Control Co-
efficients reveal only the effect of infinitesimal changes in para-
meters (such as enzyme concentrations or V..ax) on the overall
fluxes, they are conceptually useful in biochemical research. If all
the enzyme kinetics or the Elasticity Coefficients are available,
one can calculate the Flux Control Coefficients without much
difficulty (e.g. Groen et al., 1986; Fell & Snell, 1988). However,
in most cases, enzyme kinetics are not available, and determining
individual enzyme kinetics is very time-consuming.
On the other hand, direct experimental determination of Flux

Control Coefficients involves altering enzymic activity or kinetic
parameters by genetic means or by the use of inhibitors and
measuring the change in the steady-state flux. Several examples
ofthe experimental determination ofthe Flux Control Coefficients
have been reported (e.g. Flint et al., 1981; Groen et al., 1982;
Mazat et al., 1986; Salter et al., 1986; Torres et al., 1986, 1989;
Brand et al., 1988; Kruckeberg et al., 1989). However, these
approaches are not generally applicable to all the systems of
interest. As an alternative, we proposed using the transient
metabolite concentrations to calculate the Control Coefficients
(Delgado & Liao, 1991). This methodology provides a useful
tool to extract information from transient metabolic data, and
can simplify the experiments required to determine the Control
Coefficients. As measurement techniques such as n.m.r. in vivo
and h.p.l.c. become more accurate and user-friendly, it is possible
that the measurement of transient metabolite concentrations will
eventually become a routine task. Therefore the approach based
on the transient metabolic data is promising.

In this paper we present a refined version of the methodology,
which greatly improves the accuracy of the estimated Flux
Control Coefficients. For simplicity, we discuss only the linear
and branched pathways without substrate cycles or conserved

metabolites, and we assume that the metabolites are homo-
geneously distributed in the system. Extension to more complex
systems will need to be discussed elsewhere. The derivations of
the theory are presented in Appendixes, as they are not critical
for understanding the essence of the approach.

BACKGROUND

For definition purposes, let us consider the pathway depicted
in Fig. 1, where X1 and Xn+1 are extracellular substrate and
product respectively. Although several representations have been
used, the Flux Control Coefficient has been defined as (Burns
et al., 1985):

(1)
i[J (@ei)]Ss

where CJ is the steady-state Flux Control Coefficient of enzyme
i, J is the steady-state flux through the pathway and ei is the
concentration of enzyme i. If one is interested in the effect of
activity change in enzyme i then ei can be defined as Vkax. The
subscript 'ss' denotes that the coefficient is evaluated at the
steady state. This definition quantifies the fractional change in
the steady-state flux per unit fractional change in enzyme
concentration, if the latter change is infinitesimal. If the change
is large, it does not necessarily provide precise information
because of the non-linear nature of the kinetics.
Note that in order for the definition of Flux Control Co-

efficients to be meaningful, the internal metabolite concentrations
have to be able to reach a unique non-trivial stable steady or
quasi-steady state. Therefore it is commonly assumed that X1

E1 E2 E3 En_1 En

V, V2 V3 V V1 n+X

Fig. 1. Metabolic pathway for definition purposes

X1 and Xn+I are extracellular substrate and product respectively; vi
is the flux through reaction i catalysed by enzyme Ef.
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and Xn+1 are sufficiently buffered or that they do not affect the
intracellular enzyme kinetics. This assumption can be relaxed as
long as there is a non-trivial quasi-steady state for the internal
metabolite concentrations.

If the enzyme kinetics around the steady state are known, one
can calculate the Elasticity Coefficients, which are defined as:

Xk ( eVi (2)

where xk is the concentration of metabolite k and vi is the flux
through enzyme i. The Flux Control Coefficients can then be
obtained by solving a set of linear algebraic equations, known as
the Summation and Connectivity Theorems (e.g. Fell & Sauro,
1985; Westerhoff & Kell, 1987).

In most cases, however, the enzyme kinetics or the Elasticity
Coefficients are not readily available, or not accurate enough.
This situation is one of the major difficulties in determining Flux
Control Coefficients in practical systems.

THEORY

We proposed a methodology using the transient metabolite
concentrations to calculate the Flux Control Coefficients without
using the Elasticity Coefficients (Delgado & Liao, 1991). The
methodology requires measuring the metabolite concentrations
in a transient state, and it is derived with the use of four
assumptions: (1) as in other metabolic control analyses, the
external (pool) metabolites do not affect the pathway kinetics or
these metabolites are buffered; (2) the kinetic rate laws are
sufficiently linear around the steady state of interest; (3) the
calculation of the transient fluxes from the measurement of
metabolite concentrations for every reaction in the pathway
must be theoretically possible; (4) the metabolites are homo-
geneously distributed in the system. The first assumption makes
the definition of the Control Coefficients mathematically mean-
ingful. These conditions enable the internal metabolite concentra-
tions to reach a unique non-trivial stable steady or quasi-steady
state. The second assumption is in effect equivalent to the use of
Elasticity Coefficients evaluated at the steady state. Although
most of the enzyme kinetics are non-linear, the approximation by
the above equation is satisfactory for practical purposes. The
third assumption is necessary because the methodology implicitly
converts the transient metabolite concentrations into the tran-
sient flux through each enzyme. Such conversion will not be
possible if the number of metabolites is less than the number of
enzymes. The fourth assumption is necessary because the cases of
enzyme-enzyme complex and substrate channelling are not in-
vestigated in the present paper. If there are any enzyme-enzyme
complexes, each of them is treated as a single step.

Using these assumptions, we derived a relationship between
the Flux Control Coefficients and the transient flux through each
enzyme (Delgado & Laio, 1991):

E Ce V7() = 1 (3)
i- Ii J

where vi(t) and Ji are the transient and steady-state fluxes
through enzyme i respectively. Although the original derivation
of eqn. (3) was based on simple pathways, it is applicable to any
pathway topology as long as the assumptions stated above are
valid. A derivation based on the approach developed by Reder
(1988) for an arbitrary pathway configuration is presented in
Appendix A.
Note that, although the Flux Control Coefficient has been de-

fined for the steady state, transient reaction rates or fluxes are used

in the above equation. This equation states that the ratios between
the transient and the steady-state fluxes through each reaction are
related to each other by the Flux Control Coefficients. Therefore
the reactions with larger Flux Control Coefficients have more
significant effects on the other reactions, even in the transient
state. The reactions with small Flux Control Coefficients can
fluctuate significantly during the transient state without affecting
others, whereas reactions with large Flux Control Coefficients
must be held relatively constant. This can be seen in the computer
simulation of human erythrocyte glycolysis (Schauer et al.,
1981): the fluxes through controlling enzymes, hexokinase,
phosphofructokinase and pyruvate kinase, stay relatively con-
stant, whereas the fluxes through the 'fast-equilibrium' enzymes
can adjust very rapidly (within a few seconds) to dissipate the
free energy.
The direct application of eqn. (3) has been illustrated (Delgado

& Liao, 1991). However, the calculation of the transient fluxes
involves differentiation of the transient metabolite concentra-
tions, and is highly sensitive to experimental error. Here we
present an integral form of eqn. (3), where transient metabolite
concentrations are used directly to calculate the Flux Control
Coefficients without differentiation. The derivation is shown in
Appendix B. The reader who is more interested in the applications
does not have to attend to the detailed derivations. Rather, the
results in the following should be emphasized.
The integral form of eqn. (3) is:

n+l
E ai[xi(t) - xi(O)] = t
i-i

(4)

where ax are coefficients to be determined. Note that both
internal and external metabolites are considered in eqn. (4). This
equation states that the transient metabolite concentrations are
not completely independent: they are related by a linear con-
straint. The coefficients in the constraint are related to the Flux
Control Coefficients, steady-state fluxes and the stoichiometric
coefficients [Appendix B, eqn. (B-9)]. Note that the stoichiometric
coefficients of the pathway are usually known and that the
steady-state fluxes can be measured experimentally. In practice,
we first determine ai from the transient metabolite concentrations,
and then calculate the Flux Control Coefficients as discussed
below.

It is interesting to note that, even if one deletes some of the
metabolite concentrations, there still exists a constraint in the
form of eqn. (4). This is because metabolite concentrations are
used implicitly to calculate the flux through each enzyme. In
pathways without direct substrate cycling, such calculation is
possible if the number of measured metabolites is greater than or
equal to the number ofenzymes. Therefore, for pathways without
cycling, n+ 1 metabolites can be deleted if there are n branch
points. We take advantage of this result in the examples.

Linear pathways
To determine the Flux Control Coefficients experimentally,

one first measures the metabolite concentrations xi(t) in a
transient state. The transient state can be generated by shifting
incubation conditions for the whole cell, or adding initial
substrate to the pathway reconstituted in vitro. These transient
metabolite data are then regressed to obtain the coefficients ai.
Knowing ai, the stoichiometric coefficients and the steady-state
fluxes, one can then calculate the Flux Control Coefficients with:

tCJ, Cj,2 ... Cj'] = [al a2 *-.* a.+] AJ (5)
where J is the steady-state flux through the pathway and A is the
stoichiometric matrix of the pathway. The element ofA in the ith
row and jth column is the stoichiometric coefficient of metabolite
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i in reactionj. It is defined such that the stoichiometric coefficient
is negative for reactants and positive for products. Of course, if
metabolite i is not present in reaction j, its stoichiometric
coefficient is zero. Illustrations of the stoichiometric matrix are
shown in the examples. Note that the methodology may appear
to be mathematically complicated, but linear regression and
matrix operations are suitable for computerization.
The major difficulty, however, residues in the estimation of cci

by linear regression, because the system has more than one
constraint (multicollinearity). For example, the mass-balance
equation: n+1

z [xi(t) -xi(0)] = 0 (6)
i-l

holds for any accurate data point. The regression results may be
any linear combination of eqns. (4) and (6). Fortunately, the
mass-balance equation presents no serious problem because it
will be automatically filtered out by eqn. (5) (see Appendix C for
proof). Similarly, other stoichiometric constraints, if they exist,
will also be filtered out by eqn. (5). However, in order to avoid
unnecessary complications in the regression, it is advisable to
delete one of the metabolites so that the mass-balance equation
fails while eqn. (4) still holds. If a variable is deleted in the
regression, one needs to delete the corresponding row in the
stoichiometric matrix used in eqn. (5).
Another collinearity is caused by missing the fast transient of

the system. If some of the reactions respond faster than one can
measure, the data will contain additional collinearities (mode
relaxation). One way to solve this problem is to lump the
substrates and products of the fast reactions into common pools,
so that the fast transient in the individual pools does not have to
be measured. By doing so, one loses the information about the
Flux Control Coefficients of the fast reactions. However, these
reactions are not rate-controlling and their Flux Control Co-
efficients are very close to zero. If lumping is used, the rows
corresponding to the metabolites in a pool must be combined
(added up) as a single row, and the columns corresponding to the
reactions in the common pool must be deleted. This situation is
illustrated in Example 2 below.
Example 1. Consider the linear pathway with feedback in-

hibition depicted in Fig. 2. The stoichiometric matrix is given by:

-1I

A = 0
00

- 0

0 0 0 0

-1 0 0 0
1-1 0 0
0 1-1 0
0 0 1-1
0 0 0 1

041
xi X2 *-'X X4 -- 5 -*-- 0 x6V1 V2 V3 V4 V5

Fig. 2. Unbranched pathway with feedback inhibition used in Example 1

or the Elasticity Coefficients. We therefore measure the metab-
olite concentrations as a function of time. This is done here by
computer simulations, and we take ten points (with three
significant digits) before the system reaches the quasi-steady state
(Fig. 3).

In this example, eqn. (4) takes the following form:

6

E ci[Xi(t) -Xi(O)] = t
i-I

(10)

We then determine ai from these simulated data. Here one may be
tempted to use xi(t) - xi(0) as regressors and t as the dependent
variable and apply linear-regression techniques to estimate ai.
However, one has to be extremely careful because linear-
regression techniques assume that the regressors are independent.
In fact, the regressors here are not independent: they are related
by the mass-balance equation as discussed above. Although the
mass-balance equation will not cause a problem in most cases, it
is advisable to avoid this additional collinearity by deleting one
variable from the equation. One usual way to select the best
variables to be deleted from the set of regressors is to choose those
with large standard errors or large variance inflation factors
(Myers, 1990). Another possibility is to use the variance-de-
composition proportions matrix discussed by Belsley et al.
(1980). In may cases, however, a few trial deletions will yield
satisfactory results. In this case, we delete X1, and use X2 to X6
as regressors. The resulting constraint is:

t = 6.66[x2(t)-x2(0)] + 10.92[x3(t) -x3(0)] + 19.25[x4(t) - x4(0)]
+ 26.95[x5(t) - x5(0)] + 41.38[X6(t) -x6(0)] (1)

The coefficients of the above equations are the values of a2, a3,
a4, a. and a6 respectively. The first coefficient, a1, is equal to zero
since the variable xl(t) -xl(0) does not appear in the above
equation. The steady-state flux, J, can be calculated from the
steady-state accumulation of the product, X6. In this case,
J = 0.0242. Using eqn. (5) and the stoichiometric matrix, one
obtains:

[Ce C;2 CeC: C'5] = [0.16 0.10 0.20 0.19 0.35] (12)
(7)

The kinetic rate laws are approximated by:

V = -0.4x2+0.1
V2 =0.5x2-0.8x3-0.3x5 + 0.01
V3 =0.6x3 -0.2x4 + 0.01
V4= 0. 15x4 -0.12x5+0.01
V5 = 0.2x5+0.01

(8a)
(8b)
(8c)
(8d)
(8e)

Knowing the above equations, one can calculate the steady-
state concentrations for all the metabolites and all the Elasticity
Coefficients. We can then use the Summation and Connectivity
Theorems to calculate the Flux Control Coefficients (Fell &
Sauro, 1985; Westerhoff & Kell, 1987). The results are:

[Ce' C cyc']-= [0.16 0.13 0.17 0.22 0.32] (9)

Note that this calculation is possible only if we know the
kinetic rate laws or the Elasticity Coefficients.

In practice, however, one does not have the kinetic rate laws

1.2

1.0

0.8

< 0.6

<0.4

0.2

0
0 10 20 30 40 50

Time

Fig. 3. Metabolite concentration profiles for Example 1

Vertical axis is Ax/Ax,, where Ax = x-xinitial and Axf =
Xfinal-xinitial' Symbols represent hypothetical experimental data
points: *, X1; La, X2; A, X3; A, X4;Q,0 X5; *, X6.
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which is in good agreement with the true values [eqn. (9)]
calculated from the known enzyme kinetics. For practical
purposes, the differences between the estimates and the true
values are negligible. In this case, if one did not measure the
steady-state flux, J= 1 can be used in eqn. (5). The resulting
coefficients are then normalized so that their summation is unity.
Note that, if the original method proposed by Delgado & Liao

(1991) were used, the Flux Control Coefficients determined
would be

[Ce Ce' Cj Cj CJ] = [-10.9 41.1 -38.6 21.7 -12.3] (13)
which are not satisfactory compared with the theoretical values.
The poor performance of the original method is due to the
differentiation of the transient metabolite concentrations, which
requires much more information (in the form of more data
points and more significant digits) to be successful. Here we used
only ten data points in the transient state, and three significant
digits for the estimation.
Example 2. In this case we consider again the pathway shown

in Fig. 2, but now assume that one knows a priori that reactions
3 and 4 are fast-equilibrium reactions and that they are not rate-
controlling. It is shown below how one can incorporate this
additional information into the analysis.
The reaction rates are approximated by:

V =-l. 1x2 +0.01
v2 =0.5x2-0.8x3-0.3x5 + 0.00001
v3 = 6.0x3- 2.0X4+0.0001
V4 = 10.0x4-7.0x5 + 0.00001
V5 = 0.6x5+ 0.00001

(14a)
(14b)
(14c)
(14d)
(14e)

The Flux Control Coefficients calculated from the above rate
laws are:

[CelCe CeeC Cj] = [0.19 0.41 0.06 0.01 0.33]

Xl X2 P X6
V1 V2 V5

Fig. 5. Lumped form of the pathway shown in Fig. 2 and used in Example
2

P represents X.3, X4 and X5 combined into a common pool.

regressors, there will be three collinearities present among the
transient metabolite concentrations: a mass-balance constraint
and two others due to the quasi-equilibrium of reactions 3 and 4.
Regression using all the variables or even deleting one variable
will still encounter difficulties. To solve this problem, we take
advantage of the known fact that the reactions 3 and 4 are
mediated by fast-equilibrium enzymes, and postulate that the
transients between X3, X4 and X5 are not important. Therefore,
we can lump X3, X4 and X5 into a common pool, which is
denoted by P. The lumped pathway then is shown in Fig. 5.
One can now treat this case as in Example 1: use X25

P (= X3+X4 +X5) and X6 as regressors, and obtain:

t = 103.3 1 [x2(t) -x2(0)] + 331.41 [p -p(O)] + 537.4[x6(t) -x6(0)]
(16)

Note that X1 was deleted in order to avoid collinearity due to
the mass balance. Moreover, because of the lumping the stoi-
chiometric matrix A is now:

-1I 0 0
A= I -1 0
A= 0 1_ (17)

(15)

Now assume that the kinetic parameters are unknown, but it
is known that enzymes 3 and 4 are not rate-controlling so that
the Flux Control Coefficients are close to zero compared with the
others. To determine the Flux Control Coefficients for the other
enzymes, we measure the metabolite concentrations in a transient
state. Again, this is done by using computer simulation, and the
data are shown in Fig. 4. It has to be noted that this time we used
only two significant digits in the simulation, and again ten data
points.

Since reactions 3 and 4 are fast, they reach quasi-equilibrium
before the first measurement. Therefore if we use X1 to X6 as

1.2

1.0

0.8

< 0.6

a 0.4

0.2

0
0 5 10 15 20 25

Time
Fig. 4. Metabolite concentration profiles for Example 2

Vertical axis is Ax/Axp, where Ax = x-xinitial and Axf =
Xfinal -xinitial' Symbols represent hypothetical experimental data
points: *, X1; El, X2; 0, P; 0, X6.

The Flux Control Coefficients for enzymes 1, 2 and 5 can now
be calculated by using eqn. (5):

[CCUC, ] = [0.19 0.43 0.39] (18)

which are very good estimations for practical purposes. Note
that CJ and CJ are determined to be zero, reflecting the
assumptions made a priori. The estimation would deteriorate
as the values of CJ and CJ differ from zero.
The way metabofites 3, 4 and 5 were lumped is no coincidence.

It has been shown that the presence of non-controlling enzymes
in metabolic pathways is related to the characteristic reaction
path and that lumping has to be done in a stoichiometric fashion
(Liao & Lightfoot, 1988). Non-controlling enzymes result in the
relaxation of modes of the system. If these non-controlling
enzymes are not identified a priori (i.e. they are not lumped) an
increased number of linear dependencies will appear among the
transient metabolite concentrations, and this situation would
complicate the regression analysis.

Branched pathways
Consider now the branched pathway shown in Fig. 6. There

are three sets of Flux Control Coefficients, one for each of the
three branches:

Cjl, = ei @( K = A, B CCeK JKOi. (19)

where the index K denotes on which branch the Flux Control
Coefficients are based.

Since the derivation of eqn. (5) is not restricted to any of the
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Flux Control Coefficients, one can write an equation for each of
them:

6

, Xa,[xi(t)-xi(O)] = t
ili-i

6

E at [x(t) -xi(0)] = t
i-I

(20a)

(20b)

(20c)
6

E ac[xi(t) -xi(O)] = t

where aA, ac and a' are coefficients leading to the Flux Control
Coefficients of branches A, B and C respectively.

However, only two of these three constraints are linearly
independent, as one can show that:

JA Ce JBCJB+J Cec

where JA JB and JC are the steady-state fluxes through bra
A, B and C respectively.

Therefore, if we use all the variables in the pathwa
regressors and t as the independent variable to estima'
coefficients CeJA, CJBand CJc, one will find three collineari
mass-balance constraint and two out of eqns. (20a) to (204
avoid the problem caused by the multicollinearities, one

delete variables in the regression. If the Flux Control Coeffi
based on branch A are to be calculated, one possibility
delete the terminal metabolites in the other two branches, n

X5 and X6. If branch B is of interest, one deletes X1 an
Similarly, if one wants to estimate the coefficients bas
branch C, X1 and X5 are to be deleted. The procedi
illustrated in Example 3 below and the reasons why
particular deletions yield the desired Flux Control Coeffi
are shown in Appendix D.
Once the coefficients in eqns. (20a) to (20c) are determine

corresponding Flux Control Coefficients can be determined
the following equations:

[C.'A C'A C'A Ce'A C'A] = [aA LA aAcXA0 0]AJ

[C,B CQB'B CB CJB] = [OCBaaBXB azB0]AJ

[Cjc CeC CC C'C CJc] = [O ac c ac o ac]AJ
In this case, since the steady-state fluxes in different branch
different, J is now a diagonal matrix:

[Jj 00 00]

0 J2 ° 0

J= 0 0 J3 0 0
0 0 0 JA 0
0 0 0 0 J5

(21)

X6 Branch C

V1 V2
-

Xl X2 - X3
Branch A V3

X4 Branch B

V4\
X5

Fig. 6. Branched pathway

Xi is an extracellular substrate and X. and X6 are extracellular
products.

and the reaction rate laws are approximated by:

Vi = -0.8x2+0.1
V2 = X2-X3 + 0.001
V3 = O.AX3-0.15x4+0.001
V4 = O.1X4+0.001
V5= 0. 18x3 +0.001

(25a)
(25b)
(25c)
(25d)
(25e)

The theoretical values for the Flux Control Coefficients are:

[CJA CeA CeA CJA CJA] = [0.18 0.15 0.06 0.09 0.53] (26a)

[Ces CesBCes Ces Ce-]= [0.16 0.13 0.38 0.56 -0.22] (26b)

[CeJc CJc CJc CeJc CJc] = [0.19 0.15 -0.03 -0.04 0.73] (26c)

To estimate these Flux Control Coefficients without knowing
the kinetic parameters, one again measures the metabolite
concentrations in a transient state. The computer-simulated data
are shown in Fig. 7. The steady-state fluxes in the three branches
are: JA = 0.0199, JB = 0.00425 and JC = 0.0156, so the steady-
state flux matrix J is given by:

0.0199 0
0 0.0199

J= 0 0
O 0

00 00

0

0

0.00425
0

0

0

0

0

0.00425
0

0
0
° (27)
0

0.0156J
(22b) We first use X1 to X4 as regressors and obtain:

(22c) t = 50.29[x1(t) - xj(0)] -41.38[x2(t) -x2(0)]
ies are -33.13[x3(t) -X3(0)]-20.12[x4(t) -x4(0)] (28)

Substituting these coefficients into eqn. (22a) yields:

[CJA CJA CJACAC-A]= [0.18 0.16 0.06 0.09 0.52] (29)

(23)
1.2

where J, is the steady-state flux though reaction i.
Note that, when one calculates the Flux Control Coefficients

based on branch A, CXA = aA = 0 since X5 and X6 were deleted for
the regression analysis. The same argument holds when one

calculates the Flux Control Coefficients based on branches B and
C.
Example 3. Consider the branched pathway shown in Fig. 6.

The stoichiometric matrix is:

I 0 0
1-1 0

0
A= 0 0 1A-100O
_[°00

(24)

1.0

0.8

xZ
< 0.6

< 0.4

0.2

0

0 5 10 15 20 25
lime

Fig. 7. Metabolite concentration profiles for Example 3

Vertical axis is Ax/Axp where Ax = x-xinitial and Ax, =
Xfinal -xinitial' Symbols represent hypothetical experimental data
points: *, X1; [1, X2; A, X3; A, X4; O, X5; *, X6.
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Similarly, we use X2 to X5 as the regressors to obtain:

t = 7.54[x2(t) -x2(0)] + 14.93[x3(t)-x3(0)]
+ 100.67[x4(t)-x4(O)] + 235.68[x5(t)-x5(O)] (30)

Substituting these values into eqn. (22b) gives:

[Ces BCes Ces Ce Bs = [0.15 0.15 0.36 0.57 -0.23] (31)

If the Flux Control Coefficients for branch C are to be
calculated, one uses X2, X3, X4 and X6 as the regressors to
obtain:

t = 9.56[x2(t) -x2(0)] + 1 7.38[x3(t)-X3(0)]

+ 10.91 [x4(t)-X4(0)] + 63.96[x5(t) - x5(0)] (32)

and the Flux Control Coefficients for branch C can be calculated
from eqn. (22c) as:

[C,Jc CJc CJc CJc CJc] - [0.19 0.16 -0.03 -0.05 0.73] (33)

Note that the estimated Control Coefficients are very close to
the theoretical values.

DISCUSSION

The Flux Control Coefficient is a useful index for determining
the rate-controlling capacity of an enzyme in a pathway. In
theory, it quantifies the change in the steady-state flux caused by
an infinitesimal change in enzyme concentration or related kinetic
parameter. However, no practical method exists to change
enzyme concentration or kinetic parameter infinitesimally.
Existing approaches for determining this coefficient can be
roughly classified into the following categories: (1) direct per-
turbation of enzyme activity or concentration and measuring the
change in the steady-state flux (e.g. Flint et al., 1981; Groen
et al., 1982; Mazat et al., 1986; Salter et al., 1986; Torres et al.,
1986, 1989; Brand et al., 1988; Kruckeberg et al., 1989), and (2)
calculation from the Elasticity Coefficients, which in turn require
comprehensive information on individual enzyme kinetics (e.g.
Groen et al., 1986; Fell & Snell, 1988). We have now presented
a methodology that enables one to determine the Flux Control
Coefficients from transient metabolite concentrations. This ap-
proach can potentially reduce the amount of experimentation by
an order of magnitude, if it is used in conjunction with n.m.r.
measurements. Although the accuracy of the methodology has
been greatly improved from our previous results, this approach
still requires relatively accurate measurements (about 5-10%
maximum error).
The central concept of our approach is that the transient

metabolite concentrations are determined by the enzyme kinetics,
and that the transient state contains much more information
than the steady state. It is therefore possible, in principle at least,
to extract kinetic information from the transient state. However,
such practice is so sensitive to measurement noise that it becomes
almost impossible to extract all the kinetic parameters from the
transient data. Instead of estimating all the kinetic parameters,
here we limit the scope to extract some useful information,
namely the Flux Control Coefficients, from the transient
metabolite data.
The theoretical basis of our approach is presented by eqns. (3)

and (4), which can be applied to pathways of any topology as
long as (1) the internal metabolite concentrations are able to
reach a unique and stable steady or quasi-steady state, (2) the
calculation of the transient fluxes through each reaction from the
transient metabolite concentration data must be theoretically
possible, and (3) the metabolites are homogeneously distributed
in the system. The first assumption makes the definition of the

steady-state Flux Control Coefficients meaningful. The second
assumption is necessary as the methodology implicitly converts
the transient metabolite concentrations into transient fluxes.
This is usually possible if the number of metabolites is greater
than the number of enzymes. The third assumption avoids the
sometimes justifiable complexity of enzyme-enzyme complexes,
which will need to be treated elsewhere.
We also stated previously that the derivation of eqns. (3) and

(4) is based on a linear approximation of the enzyme kinetics
around the steady state. In principle, eqn. (4) is strictly true for
systems described by linear kinetics. In practice, however, the
regression process based on this equation to estimate the ac is
somewhat equivalent to the linearization process, which has been
justifiably used in the definition of the Control Coefficients and
the Elasticity Coefficients. In other words, the linearization
process is applied directly to the transient-state data, instead of
linearizing the kinetic rate laws, which may be unknown.
Therefore this approach can be applied to systems with non-
linear kinetics, and the resulting Flux Control Coefficients will be
defined for the vicinity of the steady state under investigation.
The derivation of the equations used here is obtained by using

an approach reported by Reder (1988) and is presented in the
Appendixes. It has to be noted that the Flux Control Coefficients
determined by our method are general in the sense that they do
not rely on the assumption that the velocity of every isolated step
is proportional to the enzyme concentration. Rather, the deri-
vation is based on the generalized Flux Control Coefficients
defined in Appendix A [eqn. (A-19)], which will reduce to the
conventional definition [eqn. (1)] if the, enzyme activity is
proportional to the enzyme concentration. Thus eqns. (3) and (4)
yield Flux Control Coefficients defined as in eqn. (1) if the above
condition is met. In case the enzyme activity is not proportional
to the enzyme concentration, the Flux Control Coefficients
determined by the present method are the ones defined in eqn.
(A- 19), which are related to the conventional ones by the elasticity
of the velocity of the enzyme (v,) with respect to its concentration
(ei) (e.g. Kacser et al., 1990; Melendez-Hevia et al., 1990). All of
the above are consequence of the use of Reder's (1988) approach
in the derivation of eqns. (3) and (4).
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APPENDIX A
This Appendix presents the derivation of eqn. (3) based on

previous results reported by Reder (1988). The complete deri-
vation of the fundamental equations is rather technical and
mathematically intensive. Therefore only a brief summary useful
for our derivation and to define the nomenclature is presented.
Complete details of the basic equations can be found in the
original paper (Reder, 1988).

Consider a biochemical system with m internal metabolites
and r reactions described by:

dyd= Nv (A- I)

purpose. J/ is the steady-state flux through enzyme i and vi is the
velocity through enzyme i (note that Z was denoted as C by
Reder, 1988). The relation between the Z matrix and the
conventional Flux Control Coefficients is shown later below. The
element of the ith row and jth column of Dyv is given by:

[D v]ij = (A-7)

where the derivative is evaluated at the steady state.
Combining eqns. (A-1), (A-2) and (A-3) and partitioning the

metabolite concentration vector y accordingly, one obtains:

where y is an m x 1 column vector containing the internal
metabolite concentrations, N is the m x r stoichiometric matrix
where the element in the ith row and jth column is the
stoichiometric coefficient of internal metabolite i in reaction j,
and v is an r x 1 column vector containing the rates of reaction
of fluxes for each reaction of the system under analysis. Note that
the stoichiometric matrix N is different from the full stoi-
chiometric matrix A used in the main text, as A contains
additional rows that include the external (pool) metabolites.
The stoichiometric matrix N can be decomposed as:

N = LNR (A-2)

dy =d ~yR= [I.,]
dt- dt[YR] =[L ]NRV

where YR 1S mO x I and YR' is (m-mO) x 1.
It can be shown that (Theorem 1 of Reder, 1988):

d (YR - LOYR) = 0

Integrating between two arbitrary time points, one gets:

AYR' = LOAYR
where NR is an mo x r matrix formed by the first mo rows ofN that
constitute a basis for its row space. L is an m x mo matrix that has
the form:

[Lo]
(A-3)

where Im is the mo x MO identity matrix and Lo is (mi-iMO) x MOn.
It has been shown that the following relation is satisfied

(Theorem 5 of Reder, 1988):

Eqn. (A-9) or eqn. (A-10) describes all the m-mo structural
conservation relationships existing among the internal metabolite
concentrations.

Multiplying eqn. (A-4) by AYR:
ZDYvLAYR = O

Using the partitioned form of L {eqn. (A-3)]:

ZD [ AYR ]

(A-lI)

ZDYvL = 0 (A-4)

Z is defined as the r x r simple steady-state flux-control matrix
that satisfies (Proposition 4 of Reder, 1988):

DAJ = ZDIV

where DAJ and DAv are defined as:

[D ]= ei.Ai eaA
and

(A-5)

(A-6a)

(A-6b)[D -]j OviII
:

OA.

The parameter A, may represent any external parameter (such as

a fixed extracellular substrate or enzyme concentration). Note

that A, cannot normally be an internal variable for any useful

Vol. 282

By eqn. (A-10):

or

(A- 12)

(A-13)ZDv [AYR ] 0

ZDyvAy = 0 (A-14)

The first-order approximation of the kinetic rate laws around
the steady state is:

Av = E Ayj i=. 1, 2,..., r
J 1 oYi

or in matrix form:
Av = DyvAy

(A-1S)

(A-16)

Note that in eqn. (A-IS) it has been assumed that the fluxes vi
do not depend on the external (pool) metabolites. Otherwise, the

(A-8)

(A-9)

(A-10)
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external metabolites that do not comply with this assumption
have to be kept constant during the transient state.
One can substitute the term DyvAy by Av in eqn. (A-14) and

obtain:
ZAv = 0 (A- 17)

Eqn. (A- 17) is the generalized version of eqn. (3). The
significance of the elements of Z and their relation to the
conventional Flux Control Coefficients defined in eqn. (1) can be
seen if some simplifying assumptions are made. First, assume
there are r parameters A, that act specifically on the rates vj. Then,
Z can be normalized as:

C=J-ZJ (A-18)

where J is the steady-state flux diagonal matrix and C is the Flux
Control Coefficients matrix, in which the elements are:

[IC =- ) i= 1,2.r;j= 1,2,...r (A-19)

Substituting eqn. (A-18) into eqn. (A-17):
ZAv -JCJ-'Av = 0

APPENDIX B
This Appendix presents the derivation of eqns. (4), (20a), (20b)

and (20c), the integral versions of eqn. (3). Substituting Av =
v - vss into eqn. (A-1 7) yields:

Zv = Zvs (B-l)

or
CJ-lAv = 0 (A-20)

which is the matrix version of eqn. (3). Note that in a linear
(unbranched) pathway Jj = J2= ... = J, and all the rows in the
matrix C are the same, Eqn. (A-20) becomes a single equation,
reducing to eqn. (3). Eqns. (A-17) and (A-20) are valid for any
pathway configuration as long as the system under analysis
possesses a unique stable steady or quasi-steady state for the
internal metabolite concentrations. This condition is usually
fulfilled if the pathway kinetics do not depend on the external
(pool) metabolite concentrations, or, if they do, these concentra-
tions are buffered.

Finally, if A, denotes enzyme concentration, A, = e, and v, is
proportional to ej, then the generalized Flux Control Coefficient
defined in eqn. (A-19) reduces to the conventional Flux Control
Coefficient defined in eqn. (1).

REFERENCE

Reder, C. (1988) J. Theor. Biol. 135, 175-201

Eqn. (B-6) is the generalized matrix version of eqn. (4). It can be
expressed in terms of the normalized Flux Control Coefficients if
the assumptions stated in the Appendix A about Z hold. Using
eqn. (A-18), the above equation becomes:

where vs. is the r x I steady-state flux vector.
The fluxes v can be expressed in terms of the metabolite

concentrations (internal and external) by using the pseudo-
inverse of the (full) stoichiometric matrix A:

v = Al dx
dt

(B-2)

Here the concentration vector x includes both internal and
external (pool) metabolites as they are needed to obtain the
transient fluxes v. Matrix A' denotes the pseudo-inverse of A.
Eqn. (B-2) is also known as the least-squares solution for v. For
general p x q matrix A, the pseudo-inverse A+ is the q xp matrix
whose ]th column aj is the unique minimum-length solution of
the least-squares problem Ax, - ej, where ej, is the.jth column of
the identity matrix Ip. Further details can be found in Lawson &
Hanson (1974).

Substituting eqn. (B-2) into eqn. (B- 1):

dx
ZA+ - = Zv (B-3)dt (Bs3

Since vss belongs to the kernel of the (reduced) stoichiometric
matrix N (defined in Appendix A), one can write (Reder, 1988):

Zvss = vss (B-4)
Thus:

dx
ZA+ dx = vs (B-5)dt (Bs5

Eqn. (B-5) can now be integrated between an initial instant to
- 0 and any arbitrary time point t to give:

ZA+Ax = vst (B-6)

CJ-'A+Ax =

1I_

t (B-7)

If one considers a single row of the steady-state flux-control
matrix, eqn. (B-7) can be written as:

[alx2 *... X]Ax= t
where

[al a2 ... a.] = CKJ-LA+
or

[al C2 .... a.] AJ = CK

(B-8)

(B-9)

(B-10)

Here CK is a row vector whose elements are CJy. Eqn. (B-8) is the
matrix version of eqns. (4), (20a), (20b) and (20c) in the main
paper. Also, from eqns. (B-9) and (B-10) one can see that the
coefficients in eqn. (B-8) are related to the stoichiometric
coefficients, the steady-state fluxes and the Flux Control Co-
efficients. Thus eqns. (5), (22a), (22b) and (22c) can be readily
seen.
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APPENDIX C
In this Appendix we show how the mass balance or other

stoichiometric constraints vanish from the constraints among the
transient metabolite concentrations after post-multiplying by the
(full) stoichiometric matrix A. Assuming A has dimension n x r,

where r is the total number of reactions in the pathway and n is
the total number of metabolites (internal plus external), we

follow the same approach as in Appendix A and decompose A
as:

A = LAR

where AR is an no x r matrix formed by the first no rows of i
constitute a basis for its row space, and L is an n x no matri:
has the form:

L = [
LLoJ

where Lo is (n-no) x no and In is the no x no identity matr
With these definitions, one can easily show that a

structural conservation relationships among all metaboliti
be expressed by:

[Lo-Ii-o]Ax = 0

(C-l)

will be a linear combination of eqns. (B-6) and (C-3). Then one
can write:

where
BAx = vsst

B = ZA+ +# [Lo -in-DO]

(C-4)

(C-5)

and , is an arbitrary constant.
To determine the Flux Control Coefficients and according to

eqn. (B-10) one has to post-multiply the coefficients in the
constraint [eqn. (C-5)] by the full stoichiometric matrix A:

BA = ZA+A +± [Lo -I-] A
By eqn. (C-l):

BA = Z +f,[Lo -In-no] LAR

(C-6)

(C-7)

(C-2) Using the partitioned form of L [eqn. (C-2)]:

ix. BA = Z+8[L0 - L-no]L ] AR
11 the °
es can Multiplying the partitioned matrices:

(C-3)

where the n x 1 concentration change vector Ax includes all
external and internal metabolites.

All constraints among the transient metabolite concentrations

or
(C-9)BA = Z + p [Lo* -in-noLo] AR

BA = Z+I,[Lo-Lo]AR = Z (C-10)

and the structural or stoichiometric conservation equations
vanish when one post-multiplies by A.

APPENDIX D
As shown in eqn. (B-10), the Flux Control Coefficients are

given by:

[CJK CK CK .. CK] -= [a a *...a]AJ

It can be shown that the following relation among the Flux
Control Coefficients holds (e.g. Fell & Sauro, 1985):

(D-l) J(CA+ CA) = J C'AC e4 Ce (D-3)

where the K denotes the branch on which the Flux Control
Coefficients are based.

In linear (unbranched) pathways there art no 'special
relationships among the Flux Control Coefficients. On the other
hand, in branched pathways some relationships can be extracted
and their number and form will depend on the topology of the
reaction network. For the configuration depicted in Fig. 6, the
stoichiometric matrix A is given by eqn. (24). In this case eqn.
(D- 1) can be explicitly written as:

[CJK CQK CJK CJK CJK] = [(2K -z)-(K -K K)j2 (cXKX)-

Substituting C'A, CJA and CJA using eqn. (D-2) we obtain:

(D-4)

Thus the coefficients of [x5(t) -X5(0)] and [x6(t) -x6(0)] in eqn.
(20a) must be the same. Since we must delete variables so that the
mass-balance constraint fails, deletion of [x5(t) -x5(0)] {or
[x6(t) -x6(0)]} leads to aC' = a' = 0. Following the same argu-
ment, one can show that deletion of X1 and X6 (al = aB = 0)
leads to the calculation of C"JB, and that deletion of X1 and X5
(ac = c = 0) leads to the calculation of CJeC.

(aK _-a4)J, (cxj - cx4)J,] (D-2) REFERENCE

where J1 = J2 = JA' J3 = J4= J'B and J. = J, Fell, D. A. & Sauro, M. (1985) Eur. J. Biochem. 148, 555-561
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