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1-Methods 

1-1 Data: 

The age distributions of HCP[1] and UK-biobank[2] tfMRI data across sex are shown in S1 Fig. 

 
S1 Fig: Age distribution in a) HCP and b) UK biobank 

The list of UK-bio bank behavioral measures categories[2] is shown S1 Table. 

 
S1 Table: UK biobak non-imaging variable list 

 Non-imaging variables categories 

 Basic demographic 

 Cognitive phenotypes 

 Lifestyle environment alcohol 

 Lifestyle environment tobacco 

 Lifestyle environment general 

 Lifestyle environment exercise work 

 Mental health 

 Age, sex, site 

 
1-2 Model training: 
All the models were trained using NVIDIA P100 GPU, TensorFlow r2.8. The training time for HCP data 

with N=32K scans was approximately 11.5 minutes per epoch. The fine-tuning time for UKbiobank with 

N=15K was 2 minutes per epoch. The batch size was 10 for all the models.  
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1-3 Semi-Supervised AE 
The architecture of 3D semi-supervised AE is shown in S2 Fig. We used 2580 scans from HCP (N=30 

participants) for selecting the architecture and hyperparameters of the network. These scans never used 

again in the training and test phases.  

 

 

S2 Fig: Autoencoder architecture 

1-4 UMAP hyper-parameters 
We used the default parameters of UMAP for training. We tuned the number of neighbors 

(n_neighbor=15) and minimum distance of the points (min_dist=.1) in a cluster to maintain the balance 

between the global and local structure of data. Moreover, we selected Euclidean distance for computing 

the ambient space of data. These parameters provided robust results and better visual separation.  

 

1-5 Normative modeling 
Briefly, normative modeling presents a probabilistic interpretation of the deviations of the latent variables 

(UMAP projections) across all subjects.  To measure the deviations, we used the predicted UMAP 

projections of the normative model for each individual participant, and next converted each to a subject-

specific Z score as described previously[3]. 
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We applied Hierarchical Bayesian Regression (HBR) to perform normative modeling. Here, we modeled 

the posterior probability of the brain data, Y, given X, i.e. P(Y|X) using MCMC sampling. For the data 

likelihood, we used a sinh-arcsinh (SHASH) distribution (Jones and Pewsey, 2009[4]), which is derived from 

passing a Gaussian distributed random variable, x, through the transformation: sinh⁡((sinh−1(𝑥) +

𝛾)/𝜅)), where the parameters 𝛾 and 𝜅 govern shape of the underlying distribution. We and others have 

shown that this distribution is well-suited to modelling non-Gaussian data as it can model both platykurtic 

and leptokurtic distributions and positive and negative skew in the same distributionally family[4–6]. We 

used a specific reparameterization of this distribution, referred to as SHASHb, which breaks the 

dependency between shape parameters, such that 𝛾 and 𝜅 relate to the skew and kurtosis respectively 

(see de Boer et al 2022 for details). To model non-linearity in the mean, variance and skew, we used a 

cubic b-spline basis expansions with. 5 equally spaced knot points. To further increase the flexibility of the 

model, we added a random effect of sex to the mean, variance, skew parameters. 

So briefly, our model is given by: 

1.Likelihood probability with SHASHb distribution: 

P(Y|μ, σ², γ, κ) = SHASHb(Y; μ, σ², γ, κ) 

where: 

Y = observed data 

μ = mean 

σ² = variance 

γ = skew 

κ = kurtosis 

 

2.Regression model with B-spline basis expansion: 

μi = f(Xi) = ∑ Bj(Xi) * βj 

where: 

μi = mean for observation i 

f(Xi) = B-spline basis expansion of the regression 

Bj(Xi) = B-spline basis function j evaluated at Xi 

βj = regression coefficient for B-spline basis function j 
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3.Random-effects model for mean, variance, and skew parameters: 

μi = f(Xi) + ui 

σ²i = g(Xi) + vi  

γi = h(Xi) + wi  

where:  

ui ,vi ,wi = random effects for mean, variance, and skew parameters, respectively 

f(Xi), g(Xi), h(Xi) are B-spline basis expansions over age for mean, variance, and skew parameters, 

respectively 

Inference was performed using Markov chain Monte Carlo inference, using the no U-turn (NUTS) sampler 

implemented in the pymc3 python package. Note that these equations provide only a brief overview of 

the HBR model described above. The full details of this approach can be found in [de Boer 2022][5] and 

the HBR implementation is provided in the pcntoolkit package 

(https://github.com/amarquand/PCNtoolkit).  

1-6 Comparison with mixed-PCA 

In addition to standard PCA, we perform an additional analysis that aimed to also include age and sex in 

the model to mimic a linear variant of the semi-supervised approach. This helps to understand the 

contributions of the nonlinear nature of the autoencoder and the inclusion of age and sex. To do so, we 

conducted a simple 2 stage PCA that accommodate for age and sex in the second stage of PCA. First, we 

applied PCA to the data, resulting in N components. Then, we added age and sex as separate components 

to the N PCA components and applied another PCA to reduce the dimensionality to M components (M<N). 

This process allowed us to mix the PCA components linearly with age and sex information.  

1-7 Comparison with ICA 

We applied sklearn’s FastICA to vectorized data with 100 components. Following this, we applied 

UMAP to the ICA components, and then used the transformed UMAP components to calculate 

the univariate correlation with non-imaging-derived phenotypes (nIDPs). 

1-8 Comparison with (Region of interests) ROIs 

The underlying assumption here is that ROIs are hand-crafted summaries of the data. Similar to the 

approach with ICA components, we applied UMAP and measured the univariate correlations. 
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2- Results  
 
2-1 Model selection: Hyper-parameters tuning 
S2 Table shows the performance of the models with different configurations and image normalization 

strategies in terms of normalized root mean square of reconstruction error (NRMSE), which is the root 

mean squared error scaled by the range of the input image.     

S2 Table: Comparison model performance for different parameters 

nmse optimizer dropout encoder_filters decoder_filters lr scaler_type dense_layer 

0.028 RMSprop 0.2 [32, 16, 8] [8, 16, 32] 0.001 Sandard_Feature-wise 50 

0.033 RMSprop 0 [32, 16, 8] [8, 16, 32] 0.001 MinMax_Feature-wise 10 

0.027 RMSprop 0.2 [32, 16, 8] [8, 16, 32] 0.001 Sandard_Feature-wise 100 

0.031 RMSprop 0 [32, 16, 8] [8, 16, 32] 0.001 MinMax_Feature-wise 50 

0.033 RMSprop 0 [32, 16, 8] [8, 16, 32] 0.001 Sandard_Feature-wise 10 

0.030 RMSprop 0 [32, 16, 8] [8, 16, 32] 0.001 Sandard_sample-wise 10 

0.032 RMSprop 0 [32, 16, 8] [8, 16, 32] 0.001 Sandard_Feature-wise 50 

0.028 RMSprop 0 [32, 16, 8] [8, 16, 32] 0.001 Sandard_Feature-wise 100 

0.030 RMSprop 0.2 [32, 16, 8] [8, 16, 32] 0.001 Sandard_Feature-wise 10 

0.031 RMSprop 0 [32, 16, 8] [8, 16, 32] 0.001 MinMax_Feature-wise 100 

0.035 RMSprop 0 [32, 16, 8] [8, 16, 32] 0.001 Sandard_sample-wise 50 

0.032 RMSprop 0.2 [32, 16, 8] [8, 16, 32] 0.001 MinMax_Feature-wise 10 

0.036 RMSprop 0 [32, 16, 8] [8, 16, 32] 0.001 Sandard_sample-wise 100 

0.031 RMSprop 0.2 [32, 16, 8] [8, 16, 32] 0.001 MinMax_Feature-wise 50 

0.034 RMSprop 0.2 [32, 16, 8] [8, 16, 32] 0.001 Sandard_sample-wise 10 

0.030 RMSprop 0.2 [32, 16, 8] [8, 16, 32] 0.001 MinMax_Feature-wise 100 

0.039 RMSprop 0.2 [32, 16, 8] [8, 16, 32] 0.001 Sandard_sample-wise 50 

0.042 RMSprop 0.2 [32, 16, 8] [8, 16, 32] 0.001 Sandard_sample-wise 100 

0.032 RMSprop 0 [8, 16, 32] [32, 16, 8] 0.001 Sandard_sample-wise 10 

0.037 RMSprop 0 [8, 16, 32] [32, 16, 8] 0.001 Sandard_sample-wise 50 

0.038 RMSprop 0 [8, 16, 32] [32, 16, 8] 0.001 Sandard_sample-wise 100 

0.033 RMSprop 0 [8, 16, 32] [32, 16, 8] 0.001 MinMax_Feature-wise 10 

0.037 RMSprop 0.2 [8, 16, 32] [32, 16, 8] 0.001 Sandard_sample-wise 10 

0.032 RMSprop 0 [8, 16, 32] [32, 16, 8] 0.001 MinMax_Feature-wise 50 

0.036 RMSprop 0.2 [8, 16, 32] [32, 16, 8] 0.001 Sandard_sample-wise 50 

0.031 RMSprop 0 [8, 16, 32] [32, 16, 8] 0.001 MinMax_Feature-wise 100 

0.036 RMSprop 0.2 [8, 16, 32] [32, 16, 8] 0.001 Sandard_sample-wise 100 

0.032 RMSprop 0.2 [8, 16, 32] [32, 16, 8] 0.001 MinMax_Feature-wise 10 

0.140 RMSprop 0 [32, 16, 8] [8, 16, 32] 0.001 MinMax_sample-wise 10 

0.031 RMSprop 0.2 [8, 16, 32] [32, 16, 8] 0.001 MinMax_Feature-wise 50 

0.162 RMSprop 0 [32, 16, 8] [8, 16, 32] 0.001 MinMax_sample-wise 50 
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0.065 RMSprop 0 [32, 16, 8] [8, 16, 32] 0.001 MinMax_sample-wise 100 

0.104 RMSprop 0.2 [32, 16, 8] [8, 16, 32] 0.001 MinMax_sample-wise 10 

0.031 RMSprop 0.2 [8, 16, 32] [32, 16, 8] 0.001 MinMax_Feature-wise 100 

0.188 RMSprop 0.2 [32, 16, 8] [8, 16, 32] 0.001 MinMax_sample-wise 50 

0.165 RMSprop 0.2 [32, 16, 8] [8, 16, 32] 0.001 MinMax_sample-wise 100 

0.084 RMSprop 0 [8, 16, 32] [32, 16, 8] 0.001 MinMax_sample-wise 10 

0.063 RMSprop 0 [8, 16, 32] [32, 16, 8] 0.001 MinMax_sample-wise 50 

0.029 RMSprop 0 [8, 16, 32] [32, 16, 8] 0.001 Sandard_Feature-wise 10 

0.083 RMSprop 0 [8, 16, 32] [32, 16, 8] 0.001 MinMax_sample-wise 100 

0.116 RMSprop 0.2 [8, 16, 32] [32, 16, 8] 0.001 MinMax_sample-wise 10 

0.070 RMSprop 0.2 [8, 16, 32] [32, 16, 8] 0.001 MinMax_sample-wise 50 

0.080 RMSprop 0.2 [8, 16, 32] [32, 16, 8] 0.001 MinMax_sample-wise 100 

0.028 RMSprop 0 [8, 16, 32] [32, 16, 8] 0.001 Sandard_Feature-wise 50 

0.028 RMSprop 0 [8, 16, 32] [32, 16, 8] 0.001 Sandard_Feature-wise 100 

0.030 RMSprop 0.2 [8, 16, 32] [32, 16, 8] 0.001 Sandard_Feature-wise 10 

0.028 RMSprop 0.2 [8, 16, 32] [32, 16, 8] 0.001 Sandard_Feature-wise 50 

0.027 RMSprop 0.2 [8, 16, 32] [32, 16, 8] 0.001 Sandard_Feature-wise 100 

0.029 RMSprop 0 [32, 16, 8] [8, 16, 32] 0.01 Sandard_Feature-wise 100 

0.032 RMSprop 0 [32, 16, 8] [8, 16, 32] 0.005 Sandard_Feature-wise 100 

0.034 RMSprop 0 [32, 16, 8] [8, 16, 32] 0.0001 Sandard_Feature-wise 100 

0.029 Adam 0 [32, 16, 8] [8, 16, 32] 0.01 Sandard_Feature-wise 100 

0.028 Adam 0 [32, 16, 8] [8, 16, 32] 0.001 Sandard_Feature-wise 100 

0.052 Adam 0 [32, 16, 8] [8, 16, 32] 0.0001 Sandard_Feature-wise 100 

2-2 The impact of supervised loss coefficient 𝝀 on latent 
To selection, we trained the model with different values of 𝝀. S3 Table indicates the impact of 𝝀 on 

unsupervised and supervised loss in the small held-out test data set of HCP. As expected, 𝝀 = 1 fails to 

predict age and sex. By increasing the supervised loss impact and decreasing 𝝀 , however, the 

reconstruction loss increases. 

𝝀 = 0.05 shows the better performance in terms of sex and age prediction and reconstruction error, so 

we use this value for all the main analyses reported in the main text.  

S3 Table: model performance in terms of loss values for different values of λ 

𝝀 Reconstruction error Balanced accuracy Mean Absolute Error 
[years] 

Total loss 

1 0,120 0,551 29,075 29,884 

0,995 0,125 0,966 1,275 1,564 

0,95 0,128 0,996 0,963 1,101 

0,5 0,188 0,996 0,995 1,190 

0,05 0,193 1,000 0,820 1,016 

0,005 0,191 1,000 1,013 1,207 

0,0005 0,192 0,994 0,833 1,043 
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S3 Fig Shows how the change of 𝜆 reflects on latent space in UKB. 

 

S3 Fig: change of latent space representation by changing λ 

2-3 Autoencoder learning curve 
The learning curve of semi-supervised AE is shown in S4 Fig. 

 

S4 Fig: The mean learning curve of semi-supervised AE using UKB 
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2-4 Autoencoder learns different level features in each layer 
S5 Fig shows the weight of kernel in several layers.  This shows that the autoencoder learns complex 

features of the data (and not just the identity function). 

 
S5 Fig: Kernels's weights for selected layers 

 
2-5 Comparison with PCA with age and sex: 
We extend the PCA comparison to emphasis that behavioral and cognitive properties are not reflected in 

linear representation and evaluated different number of components. S4 Table shows the mean absolute 

error of reconstruction among the PCAs models. N and M are the number of first and second PCA 

components, respectively. ( M<N ) 

S4 Table: :PCA model performance for UKB 

N (M) PCA components Mean Square Error (MSE) 

4(2) 0.67 

7(5) 0.56 

12(10) 0.52 

102(100) 0.41 

502(500) 0.32 

1002(1000) 0.26 
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2-6 Projection the latent representations to brain images for UKB 

 
 

 

S6 Fig: The projection of centroid of UMAP in the latent space to the input image space. 
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2-7 HBR normative modelling performance 

 
S7 Fig: normative UMPAs and qqplot of z-value of normative model 
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2-8 Association of the latent representation with non-imaging variables in UKB  
S8 Fig shows the effect size of correlation of nIDPs and latent representation index for semi-supervised 

autoencoder and PCA. 

 
S8 Fig: Effect size of univariate correlation of non-imaging measures with the individualized deviations from normative UMAPs 
of latent space (latent representation index) 
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S9 Fig shows -10log(p_value) of correlation of latent representation of autoencoder with nIDPs. Here, 

there is highly level of association with age/sex information and other cognitive and behavioral measures. 

Hence, it shows the necessity of removing the confounding effect of age/sex from the latent variables. 

S10 and S11 Figs indicate that compared to standard PCA, the end results of mixed PCA hardly improved 

over standard PCA. 

Moreover, similar analysis for ICAs and Sub-Cortical ROIs barely show significant associations. 

 

 

 
S9 Fig: Manhattan plot of -10log(p-value) of univariate correlation of non-imaging measures and UMAPs of latent 
representations of autoencoder. The black line is Bonferroni-corrected p-value threshold. 
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S10 Fig: Manhattan plot of -10log(p-value) of univariate correlation of non-imaging measures UMAPs of latent variables of 
vanilla-PCA with nIDPs . The black line is Bonferroni-corrected p-value threshold. 

 

 
S11 Fig: Manhattan plot of -10log(p-value) of univariate correlation of non-imaging measures UMAPs of latent variables of 
mixed-PCA with nIDPs for 102(100). The black line is Bonferroni-corrected p-value threshold. 
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S12 Fig: Manhattan plot of -10log(p-value) of univariate correlation of non-imaging measures and UMAPs of ICAs. The black line 
is Bonferroni-corrected p-value threshold. 

 
S13 Fig: Manhattan plot of -10log(p-value) of univariate correlation of non-imaging measures and UMAPs of sub-cortical ROIs. 
The black line is Bonferroni-corrected p-value threshold. 
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