PLOS ONE

The application of historic sample-specific variables in evaluating the biodiversity patterns of the South African azooxanthellate scleractinians (Cnidaria: Anthozoa). --Manuscript Draft--

Manuscript Number:	PONE-D-23-17495	
Article Type:	Research Article	
Full Title:	The application of historic sample-specific variables in evaluating the biodiversity patterns of the South African azooxanthellate scleractinians (Cnidaria: Anthozoa).	
Short Title:	Evaluating biodiversity patterns of South African azooxanthellate scleractinians.	
Corresponding Author:	ZOLEKA PATRICIA NONTLANTLA FILANDER, MSc Department of Environmental Affairs and Tourism: Republic of South Africa Department of Forestry Fisheries and the Environment Cape Town, Western Cape SOUTH AFRICA	
Keywords:	stony Cold-water corals, longitude, depth, gradients, distribution.	
Abstract:	A200xantheliate scleractinian corars, a group of species that lack a symbolic relationship with dinoflagellates, are influenced by environmental variables at various scales. As the global commitment to sustainably manage ocean ecosystems and resources rises, there is a growing need to describe biodiversity trends in previously unsampled areas. Benthic invertebrate research in South Africa is a developing field, and many taxa in deep water environments remain inadequately characterized. Recently, the South African azooxanthellate scleractinian fauna was taxonomically reviewed, but their distributional correlation with physical parameters have not been studied. Here we aim to understand the biodiversity gradients of the South African azooxanthellate coral fauna by analysing the environmental correlates of museum samples. The associated coordinate data were georeferenced and depth obtained from a national bathymetric dataset, prior to undertaking a multivariate analysis. Overall, our results confirmed two longitudinal groups (eastern margin [group A] vs southern and western margin [group B]) and 11 depths represented within two bathymetric zones (shallow [50-200 m] and deep [300-1000 m]). Both the longitudinal groups and depth zones partially explained coral distribution patterns, with depth highly correlated with species variation. Caryophylliids, flabellids, and dendrophylliids contributed the most towards distinguishing longitudinal and depth gradients. Data limitations within our data set resulted to unexplained variance, however, despite these limitations, the study demonstrates that historical museum samples provide a valuable data source that can fill research sampling gaps and improve our understanding of biodiversity patterns of	
Order of Authors:	ZOLEKA PATRICIA NONTLANTLA FILANDER, MSc	
	Kerry Jennifer Sink	
	Marcelo Visentini Kitahara	
	Stephen Cairns, Doctorate	
	Amanda L Lombard	
Additional Information:		
Question	Response	
Financial Disclosure Enter a financial disclosure statement that describes the sources of funding for the work included in this submission. Review the <u>submission guidelines</u> for detailed requirements. View published research articles from <i>PLOS ONE</i> for specific	The financial support for this research study was provided by the Department of Forestry, Fisheries, and Environment (DFFE).	

examples.

This statement is required for submission and **will appear in the published article** if the submission is accepted. Please make sure it is accurate.

Unfunded studies

Enter: The author(s) received no specific funding for this work.

Funded studies

Enter a statement with the following details: • Initials of the authors who received each

- award
- Grant numbers awarded to each author
- The full name of each funder
- URL of each funder website
- Did the sponsors or funders play any role in the study design, data collection and analysis, decision to publish, or preparation of the manuscript?
- NO Include this sentence at the end of your statement: The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
- YES Specify the role(s) played.

* typeset

Competing Interests

Use the instructions below to enter a competing interest statement for this submission. On behalf of all authors, disclose any <u>competing interests</u> that could be perceived to bias this work—acknowledging all financial support and any other relevant financial or non-financial competing interests.

This statement is **required** for submission and **will appear in the published article** if the submission is accepted. Please make sure it is accurate and that any funding sources listed in your Funding Information later in the submission form are also declared in your Financial Disclosure statement.

The authors have declared that no competing interests exist.

View published research articles from	
PLOS ONE for specific examples.	
NO authors have competing interests	
Enter: The authors have declared that no competing interests exist.	
Authors with competing interests	
Enter competing interest details beginning with this statement:	
I have read the journal's policy and the authors of this manuscript have the following competing interests: [insert competing interests here]	
* typeset	
Ethics Statement	N/A
Enter an ethics statement for this submission. This statement is required if the study involved:	
 Human participants Human specimens or tissue 	
Vertebrate animals or cephalopods	
Vertebrate embryos or tissuesField research	
Write "N/A" if the submission does not	
require an ethics statement.	
General guidance is provided below.	
Consult the submission guidelines for detailed instructions. Make sure that all	
information entered here is included in the	
Methods section of the manuscript.	

Format for specific study types

Human Subject Research (involving human participants and/or tissue)

- Give the name of the institutional review board or ethics committee that approved the study
- Include the approval number and/or a statement indicating approval of this research
- Indicate the form of consent obtained (written/oral) or the reason that consent was not obtained (e.g. the data were analyzed anonymously)

Animal Research (involving vertebrate

animals, embryos or tissues)

- Provide the name of the Institutional Animal Care and Use Committee (IACUC) or other relevant ethics board that reviewed the study protocol, and indicate whether they approved this research or granted a formal waiver of ethical approval
- Include an approval number if one was obtained
- If the study involved non-human primates, add additional details about animal welfare and steps taken to ameliorate suffering
- If anesthesia, euthanasia, or any kind of animal sacrifice is part of the study, include briefly which substances and/or methods were applied

Field Research

Include the following details if this study involves the collection of plant, animal, or other materials from a natural setting:

- Field permit number
- Name of the institution or relevant body that granted permission

Data Availability

Authors are required to make all data underlying the findings described fully available, without restriction, and from the time of publication. PLOS allows rare exceptions to address legal and ethical concerns. See the <u>PLOS Data Policy</u> and FAQ for detailed information.

Yes - all data are fully available without restriction

A su co ai ao	Data Availability Statement describing here the data can be found is required at ubmission. Your answers to this question onstitute the Data Availability Statement and will be published in the article , if accepted.
lr fr a th s	nportant: Stating 'data available on request om the author' is not sufficient. If your data re only available upon request, select 'No' for ne first question and explain your exceptional tuation in the text box.
D ui m re	o the authors confirm that all data nderlying the findings described in their anuscript are fully available without striction?
D fu sa w	escribe where the data may be found in Il sentences. If you are copying our ample text, replace any instances of XXX ith the appropriate details.
•	If the data are held or will be held in a public repository , include URLs, accession numbers or DOIs. If this information will only be available after acceptance, indicate this by ticking the box below. For example: <i>All XXX files</i> <i>are available from the XXX database</i> (accession number(s) XXX, XXX.). If the data are all contained within the
•	If the data are all contained within the manuscript and/or Supporting Information files , enter the following: <i>All relevant data are within the</i> <i>manuscript and its Supporting</i> <i>Information files.</i> If neither of these applies but you are
•	able to provide details of access elsewhere, with or without limitations, please do so. For example:
	Data cannot be shared publicly because of [XXX]. Data are available from the XXX Institutional Data Access / Ethics Committee (contact via XXX) for researchers who meet the criteria for access to confidential data.
	The data underlying the results presented in the study are available from (include the name of the third party

 and contact information or URL). This text is appropriate if the data are owned by a third party and authors do not have permission to share the data. * typeset 	
Additional data availability information:	Tick here if the URLs/accession numbers/DOIs will be available only after acceptance of the manuscript for publication so that we can ensure their inclusion before publication.

1	The application of historic sample-specific variables in evaluating the biodiversity patterns
2	of the South African azooxanthellate scleractinians (Cnidaria: Anthozoa).
3	
4	Zoleka N. Filander ^{1,2*} , Kerry J. Sink ^{3,4} , Marcelo V. Kitahara ^{5,6} , Stephen D. Cairns ⁶ , Amanda T.
5	Lombard ⁴ .
6	
7	1. Biodiversity and Coastal Research, Oceans and Coasts, Department of Forestry, Fisheries, and
8	Environment, Cape Town, South Africa. 2. Zoology Department, Nelson Mandela University, Port
9	Elizabeth, South Africa. 3. South African National Biodiversity Institute, Cape Town, South Africa. 4.
10	Institute for Coastal and Marine Research, Nelson Mandela University, Port Elizabeth, South Africa. 5.
11	Centro de Biologia Marinha, Universidade de São Paulo, São Sebastião, Brazil 6. Department of
12	Invertebrate Zoology, Smithsonian Institution, Washington DC, USA.
13	
14	Corresponding author <u>zfilander@gmail.com</u>
15	
16	Abstract
17	Azooxanthellate scleractinian corals, a group of species that lack a symbiotic relationship with
18	dinoflagellates, are influenced by environmental variables at various scales. As the global
19	commitment to sustainably manage ocean ecosystems and resources rises, there is a growing need
20	to describe biodiversity trends in previously unsampled areas. Benthic invertebrate research in
21	South Africa is a developing field, and many taxa in deep water environments remain inadequately
22	characterized. Recently, the South African azooxanthellate scleractinian fauna was taxonomically
23	reviewed, but their distributional correlation with physical parameters have not been studied. Here
24	we aim to understand the biodiversity gradients of the South African azooxanthellate coral fauna

25 by analysing the environmental correlates of museum samples. The associated coordinate data 26 were georeferenced and depth obtained from a national bathymetric dataset, prior to undertaking 27 a multivariate analysis. Overall, our results confirmed two longitudinal groups (eastern margin 28 [group A] vs southern and western margin [group B]) and 11 depths represented within two 29 bathymetric zones (shallow [50-200 m] and deep [300-1000 m]). Both the longitudinal groups and 30 depth zones partially explained coral distribution patterns, with depth highly correlated with 31 species variation. Caryophylliids, flabellids, and dendrophylliids contributed the most towards 32 distinguishing longitudinal and depth gradients. Data limitations within our data set resulted to 33 unexplained variance, however, despite these limitations, the study demonstrates that historical 34 museum samples provide a valuable data source that can fill research sampling gaps and improve 35 our understanding of biodiversity patterns of the coral fauna in under sampled marine ecosystems.

36

37 **Keywords:** stony Cold-water corals, longitude, depth, gradients, distribution.

38

1. Introduction

40 The distribution of azooxanthellate corals, a group of scleractinian species that lack a symbiotic 41 relationship with photosynthetic dinoflagellates, is influenced by environmental variables at 42 various scales (Guinotte et al., 2006; Hovland, 2008; Roberts et al., 2009; Davies and Guinotte, 43 2011; Angeletti et al., 2020). Physical and chemical oceanographic factors, as well as 44 geomorphologic settings affect food supply and, consequently, benthopelagic coupling (Roberts 45 et al., 2009). Overall, depth might be used as a variable linked to several oceanographic factors 46 that influence species distributions. For example, coral species have preferred thermal ranges 47 (Davies and Guinotte, 2011), and a global azooxanthellate coral richness trend has been 48 documented between 200 and 1000 m deep. This depth range often coincides with shelf and slope 49 features, which may provide suitable substrate for larval settlement and habitats for 50 azooxanthellate coral species to colonise (Cairns, 2007; Roberts et al., 2009). Furthermore, long-51 term environmental stability appears to also be important for the occurrence/distribution of deep 52 water stony coral species. In addition to the temporal and spatial stability of an environment, it is 53 well established that life history patterns, including reproduction strategies and relationship to 54 substrate, are of utmost importance for a species' distribution (Oakham, 2009). For instance, 55 attached deep water scleractinians require consolidated substrates to survive, whilst unattached 56 forms are found on or in unconsolidated substrates (Roberts et al., 2009; Hovland, 2008).

57

Given the difficulty of sampling in deep-water marine systems, the mapping and classification of 58 59 biodiversity into spatial units (which then act as surrogates for unmapped biodiversity) is a 60 common approach in spatial planning (Waters, 2008; Costello, 2009; Reygondeau and Dunn, 61 2018; Reygondeau 2019; Richter et al., 2022). Considering the growing concern regarding 62 declining ocean health, voluntary commitments to reach a national 30 % area protection by 2030, 63 and the United Nations call for better ocean governance (United Nations, 2018; 2019; 2020), such 64 spatial classifications are powerful tools to guide conservation and management strategies to support the achievement of the United Nations 14th Sustainable Development Goals (SDGs). 65 Although ocean basins have been mapped at broad scales (Sayre et al., 2017) and several global 66 and regional bioregionalisations exist (Ekman, 1953; Briggs, 1974; Spalding et al., 2007; Grant et 67 al., 2006; Cedras et al., 2020; McQuaid et al., 2023), few studies have used species data to describe 68 69 biological patterns in areas deeper than 200 m (Zezina, 1997; O'Hara et al., 2011; Watling et al., 70 2013; Cedras et al., 2020; Summers and Watling, 2021; Watling and Lapointe, 2022), particularly within benthic ecosystems (O'Hara et al., 2011; Summers and Watling, 2021; Watling and Lapointe, 2022). Developing nations, such as South Africa, particularly lack specialised resources to survey deeper waters, further constraining *in situ* research (Bell et al., 2022). Consequently, samples housed in scientific collections may be a valuable source of biological data to evaluate distribution patterns (Spalding et al., 2007; Thandar et al., 1989; Woolley et al., 2020) but should be interpreted with caution.

77

78 Despite the fact that the first marine collections along South Africa's shores dates back to the 79 1700s (Day, 1977; Griffiths et al., 2010), ocean resource management is still constrained by the 80 poor state of knowledge of key invertebrate species (Sink et al., 2019). Endeavouring to address 81 such species data gaps, local research advancements have recently been initiated by examining 82 natural history collections (Biccard 2012; Laird 2013; Filander, 2014; Olbers 2016; Boonzaaier, 83 2017; Landschoff 2011). Some of these studies have been integrated into the ecosystem map 84 developed by Sink et al. (2019; 2023) for the National Biodiversity Assessment (NBA). The NBA 85 used pelagic and benthic data, including biological available information (i.e., macrofauna, 86 epifauna, and fish) to produce an expert-driven ecosystem type map for national reporting 87 frameworks. It comprises four hierarchical levels that represent six ecoregions (two deep ocean 88 and four confined to the continental shelf), five depth zones (shore, shelf, slope, plateau, and 89 abyss), and different substrate types. Absent, however, from this national spatial classification map 90 is a holistic consideration of the South African azooxanthellate scleractinian fauna, given that this 91 taxonomic group was only recently reviewed (Filander et al., 2021), and its distribution patterns 92 had not yet been investigated. The NBA does however report on some distribution records of potential Vulnerable Marine Ecosystem indicator taxa, which includes records of two reef-building
azooxanthellate coral taxa (i.e., Dendrophylliidae Gray, 1847 and Caryophylliidae Dana, 1846).

95

96 Earlier international studies (Cairns, 2007) have grouped the available literature on 97 azooxanthellate Scleractinia into broad geographic regions. Although not a biodiversity analysis, 98 Cairns (2007) produced an output that served as a starting point for emerging taxonomists in the 99 field. Cairns and Keller (1993) did, nonetheless, summarise depth affiliations within the southwest 100 Indian Ocean, in which South African taxa reported off the eastern and southern margins were 101 represented. Apart from these two publications (Cairns and Keller, 1993; Cairns, 2007), the South 102 African azooxanthellate Scleractinia distribution pattern have not been investigated in light of its 103 relationship to physical variables. Therefore, this paper aims to examines the diversity measures of the South African azooxanthellate coral fauna, with respect to sample-specific environmental 104 105 gradients.

106

107 **2. Material and Methods**

108 Data considered for this study were based primarily on a subset of species distribution records for 109 the South African azooxanthellate scleractinian fauna recently reported by Filander et al. (2021). 110 The subset was compiled by including those occurrence data with coordinate information and a 111 sample number, resulting in 761 occurrence records (**Figure 1** and **Appendix A**: Occurrence data). 112 These coral occurrence data were predominately collected during six historical dredge surveys 113 undertaken between 1898 and 1990 (i.e., RV Anton Bruun, Benguela IV, RV Meiring Naude, RV 114 Pieter Faure, Sardinops, and University of Cape Town Ecological Surveys). The recent surveys undertaken in the 21st century are represented by two trawl (NANSEN and Department of 115

116	Environment, Forestry and Fisheries/South African Environmental Observation Network demersal			
117	surveys) and three dredge research surveys (ACEP: Deep-Secrets and IMIDA surveys,			
118	Department of Environment, Forestry and Fisheries) (see Filander et al., 2021).			
119				
120	Figure 1. Study domain and spatial coverage of the coral records forming the basis of the analysis.			
121				
122	It is worth noting that the historical data sets had a varying degree of reliability in terms of			
123	associated data and, therefore, required data validation. Consequently, all the occurrence records			
124	were first geo-referenced using ArcGIS 10.1. This step involved overlaying the coral point data on			
125	the National Biodiversity Assessment (Sink et al., 2019; 2023) marine ecosystem types map.			
120=	Records that were recovered on the coastline were moved to the closest polygon boundary of the			
127	ecosystem types with the near command in ArcGIS 10.1. This process was particularly beneficial			
128	for the Pieter Faure stations, which had positions in degrees magnetic North (not true North);			
129	whereby land bearings were used as a reference. In the next step, the spatial join tool was used to			
130	assign depth in relation to the most recent national bathymetric dataset (de Wet and Compton,			
131	2021) to each of the coral records, irrespective of whether depths were present in the coral archive			
132	data set or not. Depth contours started at 50 m and continued every 100 m isobath intervals to a			
133	maximum of 1000 m. The resulting data set consisted of 95 of the total 108 azooxanthellate			
134	scleractinian species known from South Africa (Filander et al., 2021).			

136 **2.1. Assumptions and sampling biases**

Over 80% of the resulting data is of historical origin, and therefore poses some limitations. One of these limitations is sampling coverage bias, given that past national marine surveys focused mainly on nearshore areas due to their accessibility, whilst sampling in areas beyond the continental shell

relied on international surveys (the Pieter Faure expeditions being an exception) (Griffiths et al., 140 141 2010). Nevertheless, these historical surveys represent decades of sampling effort but were not 142 systematic and provide presence-only data. Secondly, depth and co-ordinate information are the 143 only two variables commonly associated with such datasets, but may be unreliable in some 144 instances (i.e., the *Pieter Faure* collection). Thus, the use of the occurrence data in the multi-145 variate analysis required three assumptions that may not necessarily be a true reflection of the data 146 attributes. These include presenting the data as presence-absence, inferring the occurrence of the 147 historical records to the modern day, and applying longitude and depth as a proxy for ocean basin 148 and water mass properties; respectively. The above-mentioned two-part data geo-referencing 149 methodology was therefore also undertaken to standardize the associated collection specific 150 parameters for the application of longitude and depth data as abiotic variables.

151

152 Furthermore, the data preparation methodology does not follow the interpolation of the presenceabsence matrix (i.e., if species occur between two extreme points, then occurrence is assumed in 153 154 between) as conducted in preceding marine benthic invertebrate studies based on museum 155 specimens (Filander, 2014; Olbers, 2016; Boonzaaier, 2017). This approach would have yielded 156 unrealistic conclusions in the absence of fine-scale substrate data sources- as substrate type is one 157 of the primary drivers of coral settlement. Whereas the 2018 NBA (Sink et al., 2019) sub-divided 158 substrate into ecosystem types, the multibeam data represented less than 1% of the South African 159 seabed. Cawthra et al. (2021) review on existing South African core samples collected from areas 160 deeper that 130 m highlights the importance of high resolution hydroacoustic surveys to better 161 contextualize published core localities. It is for this reason that the substrate level was not 162 considered to support interpolation techniques.

Lastly, the average taxonomic distinctiveness (ATD) diversity measure was based on the 163 164 established phylogenetic clades (Kitahara et al., 2010; Stolarski et al., 2011). However, owing to 165 limited resolution regarding species relationships below family level, phylogenetic scores were 166 not assigned to taxonomic levels lower than family. Additionally, the existing phylogenetic 167 reconstructions still lack sufficient representation of azooxanthellate coral species occurring in 168 South Africa. For instance, less than 20% of South African coral species have been sequenced and 169 included in existing molecular trees (Kitahara et al., 2010; Stolarski et al., 2011). It is important to 170 note that ATD is a diversity calculation method that considers the distance between each species 171 and its closest relative outside the group. This calculation is then divided by the number of species 172 within the group being evaluated. The resulting ATD value provides an estimation of the group's 173 evolutionary uniqueness, with higher values indicating greater distinctiveness. Consequently, an 174 alphabetically arranged method would yield inaccurate results.

175

176 **2.2. Data analysis**

177 A presence-absence matrix (Appendix A: presence-absence) of the coral occurrence data was 178 compiled and all analyses were undertaken using the PRIMER 7 software package (Clarke and 179 Warwick, 2001; Clarke et al., 2014), with the PERMANOVA+ add on (Anderson et al., 2008). 180 The matrix, consisting of 488 columns (stations/samples) and 95 rows (species), was converted to 181 a resemblance matrix. The associated higher taxonomic classifications of these resulting species 182 identifications were thereafter extracted from the World Register of Marine Species batch match 183 online function (WoRMS Editorial Board, 2021) (Appendix A: Taxonomic attributes). Owing to 184 the patchy nature of the data set, in which 30 species were represented by only one sample and 22 185 species by less than ten samples (Appendix A: Number of records per species), the Gamma+

=

dissimilarity matrix was selected (Clark and Warwick, 1999; Clark et al., 2006). This measure
used the cophenetic distances derived from the phylogeny established in Kitahara et al. (2010) and
Stolarski et al. (2011) (e.g. "Basal", "Complex", and "Robust") (Appendix A: Taxonomic
attributes). Such a procedure allowed for biotic distances among samples to be quantified even
when they had zero or very few species in common.

191

192 The sample-specific data also required data preparation, which followed the biological data 193 assessment. Longitude and depth are the two sample-specific variables considered to determine 194 the environmental settings of the South African maritime domain (Appendix A: Sample-specific 195 abiotic data). For instance if a sample was recorded at a 31° longitude, then it was collected in the 196 Indian Ocean and influenced by the Agulhas Current. Additionally, water mass temperature (T) 197 and salinity (S) properties can be confirmed by depth, in which upper layer waters were identified 198 between the surface and 500 m deep, intermediate between 500 and 1500 m, and abyss greater that 199 1500 m (Emery, 2003). Each abiotic parameter was firstly classified accordingly (see below), prior 200 to running an one-way (unordered) similarity analysis (ANOSIM) test to evaluate variation of 201 corals species within the longitudinal and depth groups (Appendix A: Sample-specific abiotic 202 data). The ANOSIM test requires groupings and measures the mean of ranked dissimilarities 203 between groups to the mean of ranked dissimilarities within groups. A standard approach was 204 undertaken to investigate change in species attributes along the longitudinal and depth gradient, 205 whereby a SIMPER analysis was run to evaluate contributing taxa.

206

To classify the longitudinal data as a factor to be tested on the biological data, an auto select k-R cluster mean analysis was run on the normalized longitudinal data. A draftsman's plot was

210 present (Appendix B: Figure 2). The depth classification starts at a 50 m isobath and progresses 211 at 100 m increments. These depth readings were further classified according to zone, i.e., shallow 212 (50-200 m) vs deep (300-1000 m). The depth values and subsequent depth zones were also added 213 as a factor for testing. Similarity percentage (SIMPER) tests were run independently to distinguish 214 coral species contributing to the longitudinal groups identified by the k-R mean analysis and depth 215 groups. Sampling effort (i.e., denoted by N), species richness (denoted by S), Shannon index 216 (denoted by H'log^e), and taxonomic distinctiveness (denoted by delta+) across the longitudinal 217 and depth groups was quantified. The former was investigated by assigning coral records to 50x50218 km grids created with the fishnet ArcGis function, whereby the grid size was guided by the

produced to identify the number of longitudinal groups present and validate the cluster groups

219 boundary breaks of the k-R mean cluster groups.

220

209

221 Subsequently, a RELATE routine was undertaken to evaluate if the combined longitude and depth 222 spatial gradients correspond with those inferred from the coral species patterns. Here we used the 223 Gamma + matrix in relation to the associated depth and longitude information, which was 224 normalised into a Euclidean distance resemblance matrix. The RELATE technique calculated a 225 Spearman's p rank correlation coefficient between all elements of the coral assemblage and 226 environmental variable resemblance matrices, followed by a permutation test. Following this, a 227 biota and/or environment matching (BEST) test was conducted to confirm which variable 228 contributed the most to sample statistic given by the RELATE results. A species accumulation 229 model was lastly produced to assess how well the current observed azooxanthellate stony coral 230 data represents South Africa's predicted coral diversity.

232 **3. Results**

233 **3.1. Longitudinal gradient**

234 The k-R (non-hierarchal) cluster analysis yielded two longitudinal groups (R = 0.94), whereby 235 group A encompasses samples from the eastern margin of South Africa and group B are samples 236 from the southern and western margins (Figure 3). The SIMPER results suggested that biological 237 samples represented by each of the two longitudinal clusters had an overall low average similarity 238 in species composition (Appendix C: Long group SIMPER spp results). Communities in group 239 A, with an average similarity of 3.4 %, were characterised by a total of 11 species from five 240 families (i.e., Dendrophylliidae, Caryophylliidae, Micrabaciidae Vaughan, 1905, Turbinoliidae 241 Milne-Edwards & Haime, 1848, and Flabellidae Bourne, 1905). Group B had a total of eight 242 species contributing to the group identity with a slightly higher average similarity (4.6%), whereby 243 only two families (i.e., Dendrophylliidae and Caryophylliidae) were represented.

244

Figure 3. The 50x50 km gridded cells with samples in relation to the longitudinal groups defined by the k-R cluster analysis. Group A represents samples collected off the eastern margin and group B are samples collected off the southern and western margins.

248

Furthermore, there was a distinction between families contributing the most to the cluster identities. Three dendrophylliids (*Balanophyllia capensis* Verrill, 1865), *Pourtalopsammia togata* (van der Horst, 1927), and *Heteropsammia cochlea* (Spengler, 1781) contributed the most to the similarity within group A; and the caryophylliids (*Trochocyathus* sp. 2 sensu Filander et al. (2021), *Caryophyllia stellula* Cairns, 1998, and *Desmophyllum dianthus* (Esper, 1794)) defined group B. When comparing the two groups, a 98% average dissimilarity was observed when investigating species contributing to a minimum cut off of 70%, whereby different species influenced group

256 distinction. Heteropsammia cochlea, Letepsammia franki (Owens, 1994), Flabellum pavoninum 257 (Lesson, 1831), and Labyrinthocyathus delicatus (Marenzeller, 1904) were represented only in 258 group A. Among these species, L. delicatus is restricted to the Indian Ocean, whilst L. franki, F. 259 pavoninum and H. cochlea are widely distributed in the Indo-Pacific. Four species contributed the 260 most to group B, of which two are restricted to South African waters (Ednapsammia 261 columnapravia Filander, 2021 and Dendrophyllia sp. 1 sensu Filander et al. (2021)), one 262 considered cosmopolitan (Desmophyllum pertusum (Linnaeus, 1758)), and the remaining reported 263 from the Atlantic and Indian ocean basins (*Enallopsammia pusilla* (Alcock, 1902)) (Appendix C: 264 Long Group SIMPER spp results).

265

Overall, the number of samples between the two groups varied, whereby group A (eastern margin) had over two times more samples than group B (southern and eastern margin) (**Table 1**). Contrary to this, the related area (i.e., number of grids) representing these samples was larger in group B than in group A (**Table 1**). Diversity followed the same pattern of higher measures in group A as compared with group B.

271

272

Table 1. Summary of sampling effort in relation to longitudinal gradient

k-R cluster group	Number of samples	Number of 50x50 km grids	Species richness	Shannon's Index	Delta +
A (eastern margin)	569	37	86	3.964	90.907
B (southern & western margin)	192	43	37	3.249	89.289

273

274 **3.2. Depth gradients**

275 A direct relationship between the number of samples (N), species richness (S), and depth was 276 observed (Figure 4). The highest number of samples and observed species richness occurred 277 between depths of 50 and 200 m, with the greatest species richness and sample count recorded at 278 a depth of 50 m. The same two measures (S and N) fluctuated at the deep bathymetric zone (i.e., 279 300-1000 m). Within this deep zone, the highest coral diversity measures (S and N) were recorded 280 at 1000 m and the lowest at 800 m. The overall pattern suggests that species richness is influenced 281 by depth and sampling effort, but other factors may also play a role in shaping patterns of species 282 diversity across different depths. Average taxonomic distinctiveness (denoted by delta +), which 283 takes into account species phylogeny, did not show a clear pattern in coral diversity with depth 284 and species diversity was relatively constant from 50 to 200 m. However, according to this 285 measure, coral diversity was slightly higher at 1000 m despite the usage of a smaller number of 286 samples from this depth (42 samples compared to 269 samples at 50 m). In other words, eight 287 taxonomic families were recorded at 1000 m, while only seven were recorded at 50 m. In contrast, 288 however, the conservative Shannon diversity index mirrored the pattern of species richness with 289 depth (Figure 4).

290

Figure 4. The relationship between number of coral samples (N) and species richness (S) in conjunction with the average taxonomic distinctiveness (delta+) and Shannon diversity (H'log^e) index measures across depth gradients. The x-axis shows samples represented in depth values in metres and the y-axis shows values that represent diversity measures in arbitrary units. The inset shows the Shannon diversity (H'log^e) index repeated on a Y axis of 1-4.

295

The SIMPER results of the coral species data according to family suggested that the caryophylliids, dendrophylliids, and flabellids were the main contributing taxa towards both the shallow (50-200 m) and deep (300-1000m) stations. Whilst all three families collectively contributed towards the 299 zone comparison (i.e., shallow *vs* deep) at a 70% cut, the Caryophylliidae representatives were 300 more abundant in the deep stations compared with the Dendrophylliidae and the Flabellidae in the 301 shallow stations (**Appendix C**: Depth zones SIMPER family results).

302

When comparing the two bathymetric zones at lower taxonomical rankings, three species were exclusively recorded in the shallower zone (*Rhizopsammia compacta* Sheppard & Sheppard, 1991, *Truncatoflabellum inconstans* (Marenzeller, 1904), and *Dendrophyllia cornigera* (Lamarck, 1816)), whereas the deeper zones were characterized by three of the four species restricted to the longitudinal group B: *E. columnapravia, Dendrophyllia* sp. 1, and *E. pusilla*.

308

309 3.2. The correlation of sample-specific variables (longitude and depth groups) to coral 310 distribution patterns

311 The one-way ANOSIM results, which evaluated the rank differences in the coral pattern that may 312 be explained by the longitudinal k-R clusters and depth groupings independently, showed that the 313 two longitudinal clusters (R=0.05, p = 0.001), and the eleven depth groupings (R = 0.072, p =314 0.001) of the biological assemblages differed significantly from one another (Appendix D: Figure 315 5). Depth also showed significant differences (R = 0.105, p = 0.001) when grouped as shallow (50-316 200 m) and deep zones (300-500 m) (Appendix D: Figure 6). Nonetheless, even though some 317 overlap was observed in the coral structure when testing longitude and depth; the null hypothesis 318 (of no differences in rank groups) can be rejected.

320 The RELATE results showed a marginal correlation (Rho-value = 0.087) but a significant 321 difference (p-value = 0.001) when comparing the coral patterns modelled by the Gamma+

resemblance matrix to that of the Euclidean distance matrix (i.e., environmental variables longitude and depth; **Figure 7**). It is important to note that the null hypothesis in the RELATE function is that there is no correlation. Thus, although the correlation is closer to zero (unexplained variance), the p-value confirms that longitude and depth are good predictors for the coral distribution patterns. The BEST results further confirmed that depth had an independent correlation value of 0.094, whilst both environmental parameters (longitude and depth) accounted for a correlation value of 0.097.

329

Figure 7. Simulated distribution/histogram of the test statistic Rho under the null hypothesis that there is no

331 correlation between the modelled coral patterns and that of the environmental variables Rho = 0.041.

332

The majority of the species accumulation curves, which show how the number of species detected (i.e., observed or sampled) increases with increasing sampling effort (i.e., the number of individuals or samples collected), did not reach a plateau (**Figure 8**). All seven estimated curves, along with the observed or sampled species, started with a steep slope and indicated a rapid increase in the number of species observed with increasing sampling effort. Only two (MM and UGE) of the seven estimator curves followed the species observed pattern (Sobs), which appears to be levelling off as the sampling effort increases (**Figure 8**).

340

341 **Figure 8**. Species richness accumulation curve showing the species observed (Sobs= blue upright triangle) in

342 relation to five estimators (Chao 1= red downward triangle, Chao 2= green square, Jacknife 1= pink diamond,

Jacknife 2= blue circle, Bootstrap= grey cross). Two pairs of curves overlap, whereby the UGE estimator curve

follows the same pattern as the Sobs and the Chao1 has the same pattern as Chao 2.

345

346 **4. DISCUSSION**

347 The multivariate analyses suggests that the sample-specific associated data (e.g., longitude and 348 depth) are significant predictor variables for azooxanthellate Scleractinia coral diversity. 349 Nonetheless, unexplained variance exists. Diversity measures were assessed, in which the number 350 of samples showed an inversely proportional relationship with species richness. Contrary to this 351 observation, taxonomic distinctiveness (a diversity measure independent of the number of 352 samples) revealed an opposing pattern to that of the univariate Shannon index measure. Thus, 353 taxonomic distinctiveness accounted for the uneven species distribution across the South African 354 continental maritime domain.

355

356 An increasing species turnover along the west to east gradient was observed in our analysis. Such 357 distributional patterns have long been reported for other South African marine invertebrates (e.g., 358 Lang, 2012; Filander, 2014; Boonzaaier, 2017), suggesting that different oceanographic conditions 359 are influencing the South African marine fauna. The accompanying current regimes may also 360 govern these contrasting species profiles across the region. Thus, although the two longitudinal 361 boundaries (Group A = eastern margin vs Group B= western margin) established by the k-R mean 362 cluster analysis do not conform to the previously proposed oceanographic boundaries (Longhurst, 363 2007; Spalding et al., 2012;), the ANOSIM suggested a species pattern that may be explained by 364 the two longitudinal groups. These margins correspond to varying oceanographic variables and 365 currents, whereby the eastern margin (group A) is situated within the oligotrophic waters of the 366 Indian oceanic basin and influenced by the western boundary Agulhas current. Interestingly, group B encompasses the southern and western margins located in both the Indian and Atlantic basins 367 368 respectively. At the southern margin, the Agulhas current retroflects, moving away from the shelf,

and introduces Indo-Pacific waters into the Atlantic Ocean, the latter being regulated by thenorthward flowing Benguela current (Shannon, 1985).

371

372 The SIMPER results detailed a clear taxonomic/ family and species distinctions within these two 373 longitudinal groups. Dendrophylliids contributed the most to Group A samples and caryophylliids 374 to Group B. Additionally, the exclusivity in species found between Group A (H. cochlea, L. franki, 375 F. pavinonum, and L. delicatus) and Group B (E. columnapravia, Dendrophyllia sp. 1, D. 376 *pertusum*, and *E. pusilla*) (see longitudinal gradient results) corroborates with the proposal that 377 species have a temperature threshold (Roberts et al., 2009; Cairns, 2007). The physiological 378 characteristics of azooxanthellate coral species are indeed influenced by the properties of ambient 379 water temperature (Gori et al., 2016; Castellan et al., 2019). For example, an *ex-situ* experiment 380 undertaken on the reef-building corals D. pertusum and Madropora oculata revealed that they 381 respond differently when exposed to three temperatures (12, 9.0, and 6.0 °C; Naumann et al., 382 2014). The respiration response rates varied; M. oculata declined whereas D. pertusum was not 383 affected by temperatures being lowered. Two other physiological responses (i.e., calcification and 384 dissolved organic carbon) were measured, and neither showed a consistent trend when comparing 385 the two species. Thus, species belonging to different families or even congeners are expected to 386 exhibit varying thermal tolerance.

387

The recovered species longitudinal pattern of low sampling effort in Group A (eastern margin) but higher number of records and diversity observed herein, was particularly surprising as the western margin (which contributes to Group B) has a higher historic sampling effort (Griffiths et al., 2010). The greater presence of coral species in the eastern Agulhas region (Group A) may be explained

392 by the heterogenous seabed substrate types provided by the increased abundance of mesophotic 393 reefs, submarine canyons, and mosaic ecosystem types (Sink et al., 2019). Whilst the incising 394 submarine canyons along the eastern continental margin (Green et al., 2007; Green, 2008; 2009; 395 Green, 2011) may also give rise to a heterogenous environment, localised canyon substrate type 396 studies need to be undertaken to confirm such hypothesis (Filander et al., 2022). Even though the 397 Benguela Current in the South Atlantic (influencing the western passive margin) is unique in its 398 interactions with the western boundary Agulhas current (Longhurst, 2007), this region has 399 substrate predominately unconsolidated, resulting in a more homogenous environment 400 (Dingle, 1979; Cawthra et al., 2021; Filander et al., 2022). Additionally, dissolved oxygen levels 401 have been proposed to affect scleractinian growth (Hanz et al., 2019) and the Southern Benguela 402 Upwelling region does include a low-oxygen area/cell off St Helena Bay (Lamont et al., 2015). 403 Though nearshore, such cells are reported to show spatial variability and may modify offshore 404 upwelling water masses. These oxygen parameters superimposed with unconsolidated bottom 405 types and a slow current (< 3 m/s) may be a constraint for coral presence. The presence of coral is 406 however influenced by multiple factors operating at different scales, and it is crucial to consider 407 species-specific regional adaptation abilities to environmental gradients (i.e., dissolved oxygen) -408 even for cosmopolitan species (Orejas et al., 2021). Nonetheless, the prominence of anthropogenic 409 activities that interact with the seabed in the Southern Benguela Upwelling area (Atkinson et al., 410 2011; Majiedt et al., 2019) cannot be overlooked and may also influence the low number of species 411 records in the area.

412

413 The southern margin, which contributes to Group B, is a unique area that exhibits minimal 414 interaction with other landmasses and, as such, high endemism has been noted (Griffiths et al., 415 2010). In this region, the Agulhas current injects Indo-Pacific waters into the Atlantic, down to 416 depths of 2000 m in the form of anticyclonic rings (Beal et al., 2011), before retroflecting 417 eastwards towards the Southern Indian Ocean Gyre and the Antarctic circumpolar current 418 (Spalding et al., 2012). Schouten et al. (2000) noted that the location of the retroflection loop is 419 variable, but still within the southern region. Nonetheless, the Agulhas transport is estimated to increase from 65 Sv (1Sv - 10⁶ m ³s⁻¹) at 32°S to 95 Sv at the southern tip of South Africa, as it 420 421 breaks away from the shelf (Gordon et al., 1992; Duncombe Rae, 1991). Thus, the unpredictable 422 behaviour and velocity of the Agulhas current make this area challenging for sampling and, 423 therefore, the low number of records here may be attributed to limited sampling effort.

424

425 The analysis of depth gradients allowed patterns of species richness in relation to the depth to be 426 better understood. These results complement the longitudinal gradients whereby the univariant 427 biodiversity measures peaked at 50 m, which corresponds to the accessible eastern margin of the 428 South African maritime domain. In addition to the shelf being shallower (~ 50-150 m) and more 429 accessible, the western boundary Agulhas current (characteristic of this area) has been linked to 430 the highly diverse biological properties in the Southwest Indian Ocean, where eddies can trap and 431 transport material over long distances (Halo et al., 2014). These complex oceanographic eddies 432 can upwell deep nutrient-rich waters through surface divergence mechanisms (Halo et al., 2014), 433 creating environments that favour the continuous inflow of potential food sources. Thus, these 434 observations may provide grounds for a hypothesis to explain why azooxanthellate corals have a 435 higher presence within this area.

437 The multivariate taxonomic average distinctiveness measure (denoted by delta +) showed diversity 438 to be highest at 1000 m, in which eight of the eleven known South African coral families are 439 represented. This result aligns with the knowledge that the global azooxanthellate stony coral 440 pattern (Cairns, 2007) has overall higher species diversity between the 200 and 1000 m. 441 Irrespective, the SIMPER analysis distinguished three major families to contribute to bathymetric 442 zone delineation. The deeper depths (300-1000 m) were characterized by caryophylliids and 443 flabellids, and the shallow zone (50-200 m) by dendrophyllids. These results conforms with the 444 known depth affiliations of these families, in which Dendrophylliidae species occurrence is 445 reported to peak at shallower depths (50 to 300 m) (Cairns, 2001) and extant species of 446 Caryophylliidae and Flabellidae are more prominent in the deeper waters (more than 200 m) 447 (Kitahara, 2011).

448

449 The two sample-specific (i.e., depth and longitude) data sets were applied in combination to 450 extrapolate ocean basin properties (nutrient content, salinity, temperature, etc.), which characterise 451 the oceanographic settings influencing South African marine fauna (i.e., the colder Benguela 452 current along the western margin, and the warmer Agulhas current along the southern and eastern 453 margin). In this context, the permutation models (ANOSIM and RELATE) imply that longitude 454 and depth are good predictors for coral distribution patterns. However, the close to zero R-values 455 (R<0.5) suggests a non-linear relationship even though significant variability is evident in the 456 species composition within the factorial groups. Whilst depth is noted to be one of the main drivers 457 for coral distribution (as shown by BEST results), it is important to recognize that this parameter 458 encompasses several other properties, such as the Aragonite Saturation Horizon (ASH) that is the 459 depth below which calcium carbonate becomes unstable and tends to dissolve (Jiang et al., 2015;

460 Guinotte et al., 2006). Such a zone has been estimated at 700-1500 m depth range south of $\sim 20^{\circ}$ S 461 (Jiang et al., 2015). Eight of the eleven known South African coral families are recorded within 462 this depth range, suggesting these species are surviving within an aragonite saturation state. 463 Interestingly, coral species have been previously reported to withstand saturating conditions. For 464 example, a study undertaken in the Caribbean basin showed the depth of the aragonite saturation 465 horizon to be strongly related to coral assemblage variation, whereby *M. oculata* and *S. variabilis* 466 occur in patchy distributions at or above the saturation zone (Auscavitch et al., 2020). The response 467 of coral species to water properties, such as the ASH, are in no way consistent, highlighting the 468 need for further research to comprehend the underlying environmental drivers of coral distribution.

469

470 Although the azooxanthellate coral data reported herein represent an accumulation of samples over 471 30 years and are the best available representation of the South African fauna, all species richness 472 estimator models did not plateau, demonstrating that the area is still not well sampled and may be 473 much more diverse than currently known. The shape and slope of the curve typically provides 474 information on the species richness, evenness, and heterogeneity of the community being sampled, 475 as well as the adequacy of the sampling effort. In other words, if the species accumulation curve 476 keeps increasing with additional sampling effort then full extent of species diversity within the 477 study area has not yet been captured. Without a doubt, additional sampling coverage will provide 478 clearer conclusions on national coral diversity trends.

479

480 **4.** Conclusion and recommendations

This study examined the best available data for the South African azooxanthellate coral fauna and
presented a pre-processing methodology that caters for historical samples. Differences in

483 azooxanthellate coral species across South Africa's diverse and dynamic oceanographic conditions 484 were revealed, whereby species turnover increased on a west to east axis. A species depth gradient 485 was additionally observed, in which the multivariate diversity measure complemented the existing 486 knowledge on taxa trends. These patterns were evident despite the data limitations related to 487 museum samples. Whilst the lack of museum associated abiotic data still exists, the methodology 488 to standardize co-ordinate information and depth may be considered in other data sets with similar 489 attributes to inform further research to elucidate diversity patterns. In general, historical collections 490 (which represent years of sampling effort) provide a valuable biological data source but require 491 thorough validation. Despite the sparsity and unbalanced nature of the data, knowledge has been 492 advanced and sampling gaps identified. A purposeful application for this existing coral data set 493 will be its integration into multi-taxa biogeography analyses that will support ecosystem 494 description and delineation. The data set will also be valuable for spatial prioritisation and marine 495 spatial planning, particularly alongside taxa that share similar abiotic requirements.

496

497 Acknowledgements

A sincere acknowledgement goes to Dr David Herbert (Department of Natural Sciences, National Museum Wales) who assisted with associated station data for the *Meiring Naude* and *Sardinops* collections. Dr Carl Palmer (Alliance of Collaboration in Climate and Earth System Science) is thanked for proof-reading the first manuscript draft, and Dr Victoria Goodall (Nelson Mandela University) for reviewing the data analysis section. Mr Ashley Johnson and Dr Lauren Williams (Department of Fisheries, Forestry, and the Environment) provided words of encouragement and ArcGIS technical support; respectively.

506	References
507	1. Alcock A. Diagnoses and descriptions of new species of corals from the "Siboga-
508	Expedition". Tijdschrift der Nederlandsche Dierkundige Vereeniging. 1902; 7(2): 89-115.
509	
510	2. Angeletti L, Castellan G, Montagna P, Remia A, Taviani M. The "Corsica Channel Cold-
511	Water Coral Province" (Mediterranean Sea). Front Mar Sci. 2020; p.661.
512	https://doi.org/10.3389/fmars.2020.00661
513	
514	3. Anderson MJ, Gorley RN, Clarke KR. PERMANOVA+ for PRIMER: guide to software
515	and statistical methods. Plymouth, UK: PRIMER-E; 2008.
516	
510	
517	4. Atkinson LJ, Field JG, Hutchings L. Effects of demersal trawling
518	along the west coast of southern Africa: multivariate analysis of benthic assemblages. Mar Ecol
519	Prog Ser. 2011; 430, 241–255. doi: 10.3354/meps08956
520	
521	5. Auscavitch SR, Lunden JJ, Barkman A, Quattrini AM, Demopoulos AW, Cordes EE.
522	Distribution of deep-water scleractinian and stylasterid corals across abiotic environmental
523	gradients on three seamounts in the Anegada Passage. PeerJ. 2020; 8, p.e9523.
524	
525	6. Beal L, De Ruijter W, Biastoch A, Zahn R, SCOR/WCRP/IAPSO Working group. On the
526	role of the Agulhas system in ocean circulation and climate Nature $2011 \cdot 472$ $429-436$
520	1 = 1 = 1 = 1 = 1 = 1 = 2 = 2 = 2 = 2 =
527	https://doi.org/10.1038/nature09983

529	7. Bell KLC, Quinzin MC, Poulton S, Hope A, Amon, D. (Eds.). Global Deep-Sea Capacity		
530	Assessment. Ocean Discovery League, Saunderstown, USA; 2022.		
531	http://doi.org/10.21428/cbd17b20.48af7fcb		
532			
533	8. Biccard A. Taxonomy, systematics and biogeography of South African Cirripedia		
534	(Thoracica). M.Sc. Thesis, University of Cape Town. 2012. Available from:		
535	http://hdl.handle.net/11427/10163		
536			
537	9. Boonzaaier MK. Diversity and Zoogeography of South African Bryozoa. Doctoral thesis,		
538	University of Western Cape. 2017. Available from: http://hdl.handle.net/11394/6308		
539			
540	10. Bourne GC. Report on the solitary corals collected by Professor Herdman, at Ceylon, in		
541	1902. Report to the Government of Ceylon on the Pearl Oyster Fisheries of the Gulf of Manaar.		
542	1905; 4: 187-241, pls. 1-4.		
543			
544	11. Briggs JC. Operation of zoogeographic barriers. Syst Biol. 1974 Jun 1;23(2):248-56.		
545			
546	12. Cairns S. Azooxanthellate Scleractinia (Cnidaria: Anthozoa) of western Australia.		
547	Records of the Western Australian Museum. 1998; 18: 361–417.		
548	https://repository.si.edu/handle/10088/2465		
549			

550	13. Cairns SD. Deep-water corals: an overview with special reference to diversity and
551	distribution of deep-water scleractinian corals. Bull Mar Sci. 2007 Nov 1;81(3):311-
552	22.https://repository.si.edu/handle/10088/7536
553	
554	14. Cairns S. A generic revision and phylogenetic analysis of the Dendrophylliidae (Cnidaria:
555	Scleractinia). 2001. https://doi.org/10.5479/si.00810282.615
556	
557	15. Cairns S, Keller N. New taxa distributional records of azooxanthellate Scleractinia
558	(Cnidaria, Anthozoa) from the tropical southwest Indian Ocean, with comments on their
559	zoogeography and ecology. Ann S Afr. Mus. 1993; 103, 213–292.
560	
561	16. Castellan G, Angeletti L, Taviani M, Montagna P. The yellow coral Dendrophyllia
562	cornigera in a warming ocean. Front Mar Sci 2019; 6, p.692.
563	
564	17. Cawthra HC, Bergh EW, Wiles EA, Compton JS. Late Quaternary deep marine sediment
565	records off southern Africa. S Afr J Geol. 2021; 124(4), pp.1007-1032.
566	
567	18. Cedras R, Halo I, Gibbons M. Biogeography of pelagic calanoid copepods in the Western
568	Indian Ocean. Deep Sea Res. 2020; 179, 104740. https://doi.org/10.1016/j.dsr2.2020.104740
569	
570	19. Clarke K, Warwick R. The taxonomic distinctness measure of biodiversity: weighting of
571	step lengths between hierarchical levels. Mar Ecol Prog Ser. 1999; 184, pp.21-29.
572	

573	20. Clarke K, Somerfield P, Chapman M. On resemblance measures for ecological studies,
574	including taxonomic dissimilarities and a zero-adjusted Bray-Curtis coefficient for denuded
575	assemblages. J Exp Mar BioL and Ecology. 2006; 330(1), pp.55-80.
576	
577	21. Clarke K, Gorley R, Somerfield P, Warwick R. Change in marine communities: an
578	approach to statistical analysis and interpretation. Primer-E Ltd. 2014.
579	
580	22. Costello M. Distinguishing marine habitat classification concepts for ecological data
581	management. Mar Ecol Prog Ser. 2009; 397, 253–268. https://doi.org/10.3354/meps08317
582	
583	23. Dana J. Zoophytes. Volume VII of the United States Exploring Expedition during the
584	years 1838, 1839, 1840, 1841, 1842, under the command of Charles Wilkes, USN. Lea &
585	Blanchard, Philadelphia, 740 pp. 1846. Available from: https://doi.org/10.5962/bhl.title.70845
586	
587	24. Davies A, Guinotte J. Global habitat suitability for framework-forming cold-water
588	corals. PloS one. 2011; 6(4), p.e18483. <u>https://doi.org/10.1371/journal.pone.0018483</u>
589	
590	25. Day JH. Marine biology in South Africa. In: Brown AC, editor. A history of scientific
591	endeavour in South Africa. Cape Town: Royal Society of South Africa. pp. 86–108. 1997
592	
593	26. de Wet WM, Compton JS. Bathymetry of the South African continental shelf. Geo-
594	Marine Letters. 2021 Sep;41(3):40.

5	n	5
Э	У	Э

596	27. Dingle RV.Sedimentary basins and basement structures on the continental margin of
597	southern Africa. Bull Geol Surv S Afr. 1979; 63, 29-43.
598	
599	28. Duncombe Rae C. Agulhas retroflection rings in the South Atlantic Ocean: an
600	overview. S Afri J Mar Sci. 1991; 11(1), pp.327-344.
601	https://doi.org/10.2989/025776191784287574
602	
603	29. Ekman S. Zoogeography of the sea: Sidgwick and Jackson. Ltd, London. 1953.
604	
605	30. Emery WJ. Water types and water masses. Encyclopedia of ocean sciences. 2001; 6,
606	pp.3179-3187.
607	
608	31. Esper E. Fortsetzungen der Pflanzenthiere. vol. 1, parts 1–2. Nürnberg, 64 pp. 1794.
609	
610	32. Filander Z. Systematics and biodiversity of South African sea urchins. M.Sc. Thesis
611	University of Cape Town. 2014.
612	
613	33. Filander Z, Kitahara M, Cairns S, Sink K, Lombard A. Azooxanthellate Scleractinia
614	(Cnidaria, Anthozoa) from South Africa.ZooKeys. 2021.
615	https://doi.org/10.3897/zookeys.1066.69697
616	

617	34. Filander Z, Smith AN, Cawthra HC, Lamont T. Benthic species patterns in and around
618	the Cape Canyon: A large submarine canyon off the western passive margin of South Africa.
619	Front Mar Sci. 2022; 9. https://doi.org/10.3389/fmars.2022.1025113
620	
621	35. Gordon A, Weiss R, Smethie Jr W, Warner M. Thermocline and intermediate water
622	communication between the South Atlantic and Indian Oceans. J Geophys Res. 1992; 97(C5),
623	pp.7223-7240. https://doi.org/10.1029/92JC00485
624	
625	36. Gori A, Ferrier-Pagès C, Hennige SJ, Murray F, Rottier C, Wicks LC, Roberts JM.
626	Physiological response of the cold-water coral Desmophyllum dianthus to thermal stress and
627	ocean acidification. PeerJ. 2016; 4:e1606https://doi.org/10.7717/peerj.1606
628	
629	37. Grant S, Constable A, Raymond B, Doust S. Bioregionalisation of the Southern Ocean.
630	Report of an expert workshop, Hobart, Australia, September 2006. World Wildlife Fund-
631	Australia and Antartic Climate and Ecosystems Cooperative Research Centre. 2006.
632	
633	38. Gray J An outline of an arrangement of stony corals. Ann Mag Nat Hist. 1847; (1)19:
634	120-128. https://doi.org/10.1080/037454809496460
635	
636	39. Green AN, Goff JA, Uken R. Geomorphological evidence for upslope canyon-forming
637	processes on the northern KwaZulu-Natal shelf, SW Indian Ocean, South Africa. Geo-Mar Lett.
638	2007; 27(6), pp.399-409.

640	40. Green A, Uken, R. Submarine landsliding and canyon evolution on the northern
641	KwaZulu-Natal continental shelf, South Africa, SW Indian Ocean. Mar Geol. 2008; 254(3-4),
642	pp.152-170.
643	
644	41. Green A. Sediment dynamics on the narrow, canyon-incised and current-swept shelf of
645	the northern KwaZulu-Natal continental shelf, South Africa. Geo-Mar Lett. 2009; 29(4), pp.201-
646	219.
647	
648	42. Green A. Submarine canyons associated with alternating sediment starvation and shelf-
649	edge wedge development: Northern KwaZulu-Natal continental margin, South Africa. Mar Geol.
650	2011; 284(1-4), pp.114-126.
651	
652	43. Griffiths C, Robinson T, Lange L, Mead A. Marine biodiversity in South Africa: an
653	evaluation of current states of knowledge. PloS one. 2010; 5(8), p.e12008.
654	
655	44. Guinotte J, Orr J, Cairns S, Freiwald A, Morgan L, George R. Will human- induced
656	changes in seawater chemistry alter the distribution of deep- sea scleractinian corals?. Front Ecol
657	Environ. 2006; 4(3), pp.141-146. <u>https://doi.org/10.1890/1540-</u>
658	<u>9295(2006)004[0141:WHCISC]2.0.CO;2</u>
659	

660	45. Halo I, Penven P, Backeberg B, Ansorge I, Shillington F, Roman R. Mesoscale eddy
661	variability in the southern extension of the East M Madagascar Current: Seasonal cycle, energy
662	conversion terms, and eddy mean properties. J Geophys Res. 2014; 119(10), pp.7324-7356.
663	
664	46. Hanz U, Wienberg C, Hebbeln D, Duineveld G, Lavaleye M, Juva K, Dullo WC,
665	Freiwald A, Tamborrino L, Reichart G.J, Flögel, S. Environmental factors influencing benthic
666	communities in the oxygen minimum zones on the Angolan and Namibian margins.
667	Biogeosciences. 2019; 16(22), pp.4337-4356.
668	
669	47. Horst van der C. Eupsammid corals from South Africa. Union of South Africa Fisheries
670	and Marine Biological Survey Report 5 (special reports). 1927; 1, 2: 1-7.
671	
672	48. Hovland M Deep-water coral reefs: Unique biodiversity hot-spots Springer Science &
673	Business Media. 2008.
674	
675	49. Jiang L, Feely R, Carter B, Greeley D, Gledhill D, Arzayus K. Climatological
676	distribution of aragonite saturation state in the global oceans. Glob Biogeochem Cycles. 2015;
677	29(10), pp.1656-1673. https://doi.org/10.1002/2015GB005198
678	
679	50. Kitahara VM. Morphological and molecular systematics of scleractinian corals (Cnidaria,
680	Anthozoa), with emphasis on deep-water species. PhD. Thesis James Cook University. 2011.

001

682	51. Laird M. Taxonomy, systematics and biogeography of South African actiniaria and
683	corallimorpharian. PhD. Thesis. University of Cape Town, South Africa, 236 pp. 2013.
684	Availanle from: <u>http://hdl.handle.net/11427/6117</u>
685	
686	52. Lamarck JB. M. de. Histoire naturelle des animaux sans vertèbres. Tome second. Paris:
687	Verdière, 568 pp. 1816. Available online at http://www.biodiversitylibrary.org/item/47698
688	
689	53. Lamont T, Hutchings L, van den Berg MA, Goschen WS, Barlow RG. Hydrographic
690	variability in the St. Helena B ay region of the southern Benguela ecosystem. J Geophys Res.
691	2015; 120(4), pp.2920-2944.
692	
693	54. Landschoff J. Contributions to the taxonomy of South African hermit crabs (Crustacea:
694	Decapoda: Paguroidea) – integrating microCT scanning and barcoding. PhD. Thesis. University
695	of Cape Town, South Africa, 242 pp. 2018. Available from: http://hdl.handle.net/11427/28431
696	
697	55. Lange L. Use of demersal bycatch data to determine the distribution of soft-bottom
698	assemblages off the West and south coasts of South Africa. PhD. Thesis. University of Cape
699	Town). 2012. Available from: http://hdl.handle.net/11427/10899
700	
701	56. Lesson R.Illustrations de Zoologie. Arthus Bertrand, Paris, 3 pp. 1831. Available from:
702	http://www.biodiversitylibrary.org/item/91260

704	57. Linnaeus C. Systema Naturae per Regna Tria Naturae, Secundum Classes, Ordines,
705	Genera, Species, Cum Characteribus, Differentiis, Synonymis, Locis. Edition Decima,
706	Reformata. Laurentius Salvius: Holmiae, ii, 824 pp. 1758. Available from:
707	https://doi.org/10.5962/bhl.title.542
708	
709	58. Longhurst A. Ecological Geography of the Sea, seconded. Academic Press. 2007.
710	
711	59. Majiedt PA, Holness S, Sink KJ, Reed J, Franken M, van der Bank MG, Harris LR,
712	Adams L, Perschke M, Miza SA, Currie J, Dunga LV. Chapter 4: Pressures on Marine
713	Biodiversity. In: Sink KJ, van der Bank MG, Majiedt PA, Harris LR, Atkinson LJ, Kirkman SP,
714	Karenyi N (eds). 2019. South African National Biodiversity Assessment 2018 Technical Report
715	Volume 4: Marine Realm. South African National Biodiversity Institute, Pretoria. South Africa.
716	2019. Available from: http://hdl.handle.net/20.500.12143/6372
717	
718	60. Marenzeller von E. Steinkorallen. Wissenschaftliche Ergebnisse der Deutschen Tiefsee-
719	Expedition auf dem Dampfer Valdivia. 1904; 1898–1899 7(3): 261–318.
720	
721	61. McQuaid KA, Bridges AEH, Howell KL, Gandra TBR, de Souza V, Currie JC, Hogg
722	OT, Pearman TRR, Bell JB, Atkinson LJ, Baum D, Bonetti J, Carranza A, Defeo O, Furey T,
723	Gasalla MA., Golding N, Hampton SL, Horta S, Jones DOB, Lombard AT, Manca E, Marin Y,
724	Martin S, Mortensen P, Passadore C, Piechaud N, Sink KJ, Yool A. Broad-scale benthic habitat

725	classification of the South Atlantic. Progress in oceanography. 2023; 103016.
726	https://doi.org/10.1016/j.pocean.2023.103016
727	
728	62. Milne-Edwards, H, Haime J. Recherches sur les Polypiers, deuxième mémoire:
729	Monographie des Turbinolides. Ann Sci Nat Zool. 1848a; 3(9): 211–344.
730	
731	63. Naumann MS, Orejas C, Ferrier-Pagès C. Species-specific physiological response by the
732	cold-water corals Lophelia pertusa and Madrepora oculata to variations within their natural
733	temperature range. Deep Sea Res Part II: Top Stud Oceanogr. 2014; 99, pp.36-41.
734	
735	64. Oakham V. Deep-Sea Coral Reefs: Distribution, Ecology and Anthropogenic Impacts.
736	2009.
737	
738	65. O'Hara TD, Rowden AA, Bax NJ. A southern hemisphere bathyal fauna is distributed in
739	latitudinal bands. Current Biology. 2011; 21(3):226-30.
740	
741	66. Olbers JM. Taxonomy, biodiversity and biogeography of the brittle stars (Echinodermata:
742	Ophiuroidea) of South Africa. PhD. Thesis. University of Cape Town. 2016. Available from:
743	http://hdl.handle.net/11427/22906

745	67. Orejas C, Wienberg C, Titschack J, Tamborrino L, Freiwald A, Hebbeln D. Madrepora
746	oculata forms large frameworks in hypoxic waters off Angola (SE Atlantic). Scientific Reports.
747	2021;11(1):15170.
748	
749	68. Owens J. Letepsammia franki, a new species of deep-sea coral
750	(Coelenterata: Scleractinia: Micrabaciidae). Proc Biol Soc. 1994; 107(4): 586-590.
751	
752	69. Reygondeau G. Current and future biogeography of exploited marine exploited groups
753	under climate change. In Predicting Future Oceans: Sustainability of Ocean and Human Systems
754	Amidst Global Environmental Change. Elsevier Inc. 2019. https://doi.org/10.1016/B978-0-12-
755	817945-1.00009-5
756	
757	70. Reygondeau G, Dunn D. Pelagic biogeography. Encyclopedia of Ocean Sciences. 2018;
758	588-598. https://doi.org/10.1016/B978-0-12-409548-9.11633-1
759	
760	71. Roberts J, Wheeler A, Freiwald A. Cairns S. Cold-water corals: the biology and geology
761	of deep-sea coral habitats. Cambridge University Press. 2009.
762	
763	72. Richter DJ, Watteaux R, Vannier T, Leconte J, Frémont P, Reygondeau G, Maillet N,
764	Henry N, Benoit G, Da Silva O, Delmont TO. Genomic evidence for global ocean plankton
765	biogeography shaped by large-scale current systems. Elife. 2022;11:e78129.
766	

767	73. Sayre R, Wright D, Breyer S, Butler K, Van Graafeiland K, Costello M, Harris PT,
768	Goodin K, Guinotte J, Basher Z, Kavanaugh M, Halpin P, Monaco M, Cressie N, Aniello P, Frye
769	C, Stephens D. A three-dimensional mapping of the ocean based on environmental data.
770	Oceanography. 2017; 30(1), 90–103. https://doi.org/10.5670/oceanog.2017.116
771	
772	74. Schouten M, de Ruijter W, Van Leeuwen P, Lutjeharms J. Translation, decay and
773	splitting of Agulhas rings in the southeastern Atlantic Ocean. J Geophys Res. 2000; 105(C9),
774	21913-21925p. https://doi.org/10.1029/1999JC000046
775	
776	75. Shannon LV. The Benguela ecosystem. I: Evolution of the Benguela physical features
777	and processes. Oceanogr Mar Biol. 1985; 23, pp.105-182.
778	
779	76. Sheppard CRC, Sheppard ALS. Corals and coral communities of Saudi Arabia. Fauna of
780	Saudi Arabia. 12: 1-170. 1991.
781	
782	77. Sink K, van der Bank M, Majiedt P, Harris L, Atkinson L, Kirkman S, Karenyi N (eds).
783	In: South African National Biodiversity Assessment 2018 Technical Report Volume 4: Marine
784	Realm. South African National Biodiversity Institute, Pretoria. South Africa. 2019. Available
785	from: <u>http://hdl.handle.net/20.500.12143/6372</u>
786	
787	78. Sink KJ, Adams LA, Franken M-L, Harris LR, Currie J, Karenyi N, Dayaram A, Porter
788	S, Kirkman S, Pfaff M, van Niekerk L, Atkinson LJ, Bernard A, Bessinger M, Cawthra H, de

789	Wet W, Dunga L, Filander Z, Green A, Herbert D, Holness S, Lamberth S, Livingstone T, Lück-
790	Vogel M, Mackay F, Makwela M, Palmer R, Van Zyl W, Skowno A. Iterative mapping of
791	marine ecosystems for spatial status assessment, prioritization, and decision support. Front. Ecol.
792	Evol. 2023; 11:1108118. doi: 10.3389/fevo.2023.1108118
793	
794	79. Spalding M, Fox H, Allen G, Davidson N, Ferdaña Z, Finlayson M, Halpern BS, Jorge
795	M, Lombana A, Lourie S, Martin, K, Mcmanus E, Molnar J, Recchia C, Robertson J. Marine
796	Ecoregions of the World: A Bioregionalization of Coastal and Shelf Areas. BioScience. 2007;
797	57(7), 573–583. <u>https://doi.org/10.1641/B570707</u> .
798	
799	80. Spengler L. Beskrivelse over et ganske besynderligt Corall-product, hvilket man, indtil
800	dets Sloegt noermere bestemmes, kunde kalde en Snekke-Madrepore (Madrepora cochlea). Nye
801	Saml. Danske Videnskebernes Selskab Skrifter 1: 240–248. 1781.
802	
803	81. Summers N, Watling L. Upper Bathyal Pacific Ocean biogeographic provinces from
804	octocoral distributions. Progr Oceanogr 2021; 191, 102509.
805	https://doi.org/10.1016/j.pocean.2020.102509
806	
807	82. Thandar S. Zoogeography of the southern African echinoderm fauna. S Afric J Zool.
808	1989; 24(4), 311–318. https://doi.org/10.1111/j.1365-2699.2004.01144.x
809	
810	83. United Nations. Revised Roadmap for the UN Decade of Ocean Science for Sustainable
811	Development. 2018. Available online at: <u>http://www.fao.org/3/CA0463EN/ca0463en.pdf</u>

813	84. United Nations. Revised draft text of an agreement under the United Nations Convention
814	on the Law of the Sea on the conservation and sustainable use of marine biological diversity of
815	areas beyond national jurisdiction, Intergovernmental conference on an international legally
816	binding instrument under the United Nations Convention on the Law of the Sea on the
817	conservation and sustainable use of marine biological diversity of areas beyond national
818	jurisdiction (fourth session, New York, 23 March-3 April 2020). UNGA: New York. 2019.
819	
820	85. United Nations Environment Program Convention on Biological Diversity. Zero draft of
821	the post-2020 global biodiversity framework. 2020. Available online at:
822	https://www.cbd.int/doc/c/efb0/1f84/a892b98d2982a829962b6371/wg2020-02-03-en.pdf
823	
824	86. Vaughan T. A critical review of the literature on the simple genera of the Madreporaria
825	Fungida, with a tentative classification. Proc U S Natl Mus. 1905; 28(1401): 371-424.
826	https://doi.org/10.5479/si.00963801.1401.371
827	
828	87. Verrill A. Classification of polyps (extract condensed from Synopsis of the Polyps and
829	Corals of the North Pacific Exploring Expedition under Commodore C. Ringgold and Captain
830	John Rodgers, U.S.N.). Communications of the Essex Institute 4: 145–152. 1865. Avaiable
831	from: https://www.biodiversitylibrary.org/page/34752272.

833	88. Waters J. Driven by the West Wind Drift? A synthesis of southern temperate marine
834	biogeography, with new directions for dispersalism. J Biogeogr. 2008; 35(3), 417-427.
835	https://doi.org/10.1111/j.1365-2699.2007.01724.x
836	
837	89. Watling L, Guinotte J, Clark MR, Smith CR. A proposed biogeography of the deep ocean
838	floor. Progress in Oceanography. 2013;111:91-112.
839	
840	90. Watling L, Lapointe A. Global biogeography of the lower bathyal (700–3000 m) as
841	determined from the distributions of cnidarian anthozoans. Deep Sea Res Part I: Oceanogr Res
842	Pap. 2022; p.103703. https://doi.org/10.1016/j.dsr.2022.103703
843	
844	91. Woolley S, Foster S, Bax N, Currie J, Dunn D, Hansen C, Hill N, O'Hara T, Ovaskainen
845	O, Sayre R, Vanhatalo J, Dunstan P. Bioregions in Marine Environments: Combining Biological
846	and Environmental Data for Management and Scientific Understanding. BioScience. 2020;
847	70(1), 48–59. <u>https://doi.org/10.1093/biosci/biz133</u>
848	
849	92. WoRMS Editorial Board. World Register of Marine Species. Available from
850	https://www.marinespecies.org at VLIZ. 2023. Accessed 2023-02-17. doi:10.14284/170
851	
852	93. Zezina ON. Biogeography of the bathyal zone. In Advances in Marine Biology 1997
853	(Vol. 32, pp. 389-426). Academic Press.
854	

855	
856	Supporting information
857	Appendix A: Excel
858	
859	Appendix B: Draftsman's plot.
860	Figure 2. Draftsman's plot showing the interrelations between depth and the longitudinal groups identified at by the
861	k-R cluster mean analysis.
862	
863	Appendix C: Excel
864	
865	Appendix D: Histograms
866	Figure 5. Simulated distribution/histogram of the test statistic R under the null hypothesis that there are "no
867	differences" in coral patterns within each condition: TOP. krLong groups with observed data at R=0.05 and p=
868	0.001; BOTTOM . z-level (depth) with observed data at $R = 0.072$ and $p = 0.001$.
869	
870	Figure 6: Simulated distribution/histogram of the test statistic R under the null hypothesis that there are "no
871	differences" in coral patterns within depth zones ($R = 0.105$, $p = 0.001$).

Click here to access/download Supporting Information Appendix D_Figure 5. TOP.tif

Click here to access/download Supporting Information Appendix D_Figure 5. Bottom.tif

Click here to access/download **Supporting Information** Appendix B_Figure 2.tif

Click here to access/download **Supporting Information** Appendix D_Figure 6.tif Click here to access/download Supporting Information Appendix A_biopaper_plos paper.xlsx Click here to access/download Supporting Information Appendix C_biopaper_plos paper.xlsx