RESEARCH COMMUNICATION

Ins $(1,3,4,5)P_4$ promotes sustained activation of the Ca²⁺-dependent Cl⁻ current in isolated mouse lacrimal cells

Peter M. SMITH

Department of Physiology, University of Liverpool, Liverpool L69 3BX, U.K.

Infusion of 50 μ M-Ins(1,3,4,5) P_4 in addition to 500 μ M-Ins(1,4,5) P_3 into mouse lacrimal cells via a patch-clamp pipette promoted sustained activation of the Ca²⁺-dependent Cl⁻ current, which could not be achieved with 500 μ M-Ins(1,4,5) P_3 alone. It has been proposed that Ins(1,3,4,5) P_4 facilitates Ca²⁺ influx in the presence of Ins(1,4,5) P_3 [Morris, Gallacher, Irvine & Petersen (1987) Nature (London) **330**, 653–655], but a subsequent study in mouse lacrimal cells [Bird, Rossier, Hughes, Shears, Armstrong & Putney (1991) Nature (London) **352**, 162–165] showed that a high concentration of Ins(1,4,5) P_3 could mobilize both intra- and extra-cellular Ca²⁺ in the absence of Ins(1,3,4,5) P_4 . My data confirm these findings, but also show that Ins(1,3,4,5) P_4 can stimulate additional Ca²⁺ influx even when the Ins(1,4,5) P_3 -dependent intracellular Ca²⁺ pools have been depleted.

INTRODUCTION

Receptor-mediated activation of phospholipase C and cleavage of phosphatidylinositol 4,5-bisphosphate to give $Ins(1,4,5)P_3$ and diacylglycerol is the first step of the inositol phosphate cascade, which has been widely implicated in stimulus-secretion coupling. Of the 63 or so possible inositol phosphate derivatives [1], only $Ins(1,4,5)P_3$ has a clearly defined function, as a soluble second messenger communicating receptor activation to release of Ca²⁺ from intracellular Ca²⁺ pools by means of an $Ins(1,4,5)P_3$ dependent Ca²⁺ channel [2,3]. The role of Ins(1,3,4,5)P₄ in Ca²⁺ mobilization is less clear. Receptors for $Ins(1,3,4,5)P_{4}$ [4-7] have been identified, and there have been reports that $Ins(1,3,4,5)P_A$ is able to cause mobilization of intracellular Ca²⁺, either by acting in synergism with $Ins(1,4,5)P_3$, to release Ca^{2+} from Ca^{2+} stores which are inaccessible to $Ins(1,4,5)P_a$ alone [8,9], or by releasing Ca^{2+} directly by a mechanism independent of $Ins(1,4,5)P_3$ [10–12]. However, there are some cell types which mobilize Ca²⁺ without any $Ins(1,3,4,5)P_{4}$ involvement [13]. Previous work with mouse lacrimal cells revealed that they were unusually insensitive to Ins(1,4,5)P₃ and that 10–100 μ M-Ins(1,4,5)P₃ applied by internal perfusion via a patch-clamp recording pipette produced only small transient Ca²⁺ release [8,14]. In the same cells, $Ins(1,3,4,5)P_A$ together with $Ins(1,4,5)P_3$ allowed entry of extracellular Ca²⁺ under conditions where $Ins(1,4,5)P_3$ alone did not, and it was concluded that $Ins(1,3,4,5)P_4$ was necessary to gate the influx of extracellular Ca²⁺ in these cells. More recently Bird et al. [15] have suggested that complete Ca2+ mobilization may also be achieved in lacrimal cells without the assistance of $Ins(1,3,4,5)P_4$, by increasing the intracellular concentration of $Ins(1,4,5)P_{3}$ to 500 μ M. It is surprising that such a high concentration of $Ins(1,4,5)P_3$ was required for complete Ca²⁺ mobilization, as $Ins(1,4,5)P_a$ concentrations as low as 5 μ M have been found to be maximally effective in other exocrine cells [16], and in hepatocytes maximal binding of $Ins(1,4,5)P_3$ to the $Ins(1,4,5)P_3$ receptor under near physiological conditions is slightly less than 1 μ M [17]. It is clear, however, that the previous studies [8,14] did not apply $Ins(1,4,5)P_a$ at the sufficiently high concentration necessary to mobilize intra- and extra-cellular Ca²⁺ fully in this preparation. In the present study the patch-clamp whole-cell technique has been employed both to introduce inositol polyphosphates into the cell and to measure Ca²⁺-activated membrane currents, in order to assess Ca²⁺ mobilization caused by

high concentrations of $Ins(1,4,5)P_3$ and to determine whether or not $Ins(1,3,4,5)P_4$ is effective in Ca^{2+} mobilization when the $Ins(1,4,5)P_3$ concentration has been raised to a level at which it alone can stimulate entry of extracellular Ca^{2+} .

MATERIALS AND METHODS

Adult male outbred Swiss mice were killed by cervical dislocation and lacrimal cells were isolated by collagenase (Worthington Diagnostic, Freehold, NJ, U.S.A.) digestion [14]. Cells were allowed to attach to a plastic Petri dish and were viewed at $\times 400$ magnification. The whole-cell configuration [14] was achieved with single cells by using 2-5 M Ω patch-clamp pipettes pulled from Assistant haematocrit tubing. Access resistance through the patch pipette was approx. 3 times that of the pipette itself. Cells were voltage-clamped to -30 mV by using the List EPC7 (List Electronics, Darmstadt, Germany) patch-clamp amplifier. K⁺ and Cl⁻ currents were measured by pulsing to 0 mV and -80 mV respectively for 100 ms twice a second. Currents were digitized by using the CED 1401 interface (Cambridge Electronics Design, Cambridge, U.K.) and stored and analysed with an IBM AT compatible computer [18]. The mean steadystate current elicited in response to each voltage step was calculated and these values were then plotted against time. Fig. 1 shows data averaged over several experiments by using a spreadsheet program. The digitized currents from 5-15 experiments were averaged to give the mean and S.E.M. Values in the text show means \pm s.e.m. (n = number of experiments). Probabilities were calculated by Student's t test.

Lacrimal cells have both Cl⁻ channels and non-selective channels which, in the standard intra- and extra-cellular bathing solutions used in these experiments, could contribute to the inward current measured at -80 mV. A series of experiments were performed in which the outward current was blocked by 10 mM-tetraethylammonium and the Cl⁻ and non-selective currents were separated by lowering the extracellular Na⁺ concentration (Na⁺ was replaced by *N*-methyl-D-glucamine). With this protocol, the inward current induced by acetylcholine and Ins(1,4,5)P₃ or Ins(1,4,5)P₃/Ins(1,3,4,5)P₄ was observed to be a Cl⁻ current which could be clearly distinguished from current through the non-selective channel activated by ATP [19] (results not shown).

Ins $(1,3,4,5)P_4$ was used at 50 μ M throughout this study, as preliminary experiments showed this concentration to be slightly

Fig. 1. Averaged outward K⁺ currents measured at 0 mV and inward Cl⁻ currents measured at −80 mV in acutely isolated mouse lacrimal cells over 2.5 min immediately after establishing the whole-cell configuration (shown by the bar)

The broken line indicates the zero current level. The s.E.M. is shown at 10 s intervals. Panel (a) shows the average of 15 controls in which the patch pipette contained no inositol polyphosphates. In (b) the cells were preincubated for 3-5 min in a Ca²⁺-free solution containing 0.5 mM-EGTA. EGTA was present for the duration of the experiment and the patch-clamp pipette contained 500 μ M-Ins(1,4,5)P₃ (n = 5). Panel (c) shows the response to 100 μ M-Ins(1,4,5)P₃ alone in the patch pipette (n = 5) and (d) the response to 500 μ M-Ins(1,4,5)P₃ (n = 14). In (e) and (f) the patch pipette contained 50 μ M-Ins(1,3,4,5)P₄ in addition to 100 μ M- (n = 5) and 500 μ M-Ins(1,4,5)P₃ (n = 11) respectively.

more effective than $10 \,\mu\text{M}$ and no less effective than $100 \,\mu\text{M}$. However, no systematic attempt was made to determine the maximally effective $\text{Ins}(1,3,4,5)P_4$ concentration (results not shown).

The patch-clamp pipette contained (in mM) 140 KCl, 1.13 MgCl₂, 10 glucose, 0.5 EGTA and 1 ATP, buffered to pH 7.2 with 10 mM-Hepes. The external bathing solution contained (in mM) 140 NaCl, 4.7 KCl, 1.13 MgCl₂, 1.2 CaCl₂ and 10 glucose buffered to pH 7.2 with 10 mM-Hepes. Cells were superfused continuously at 0.5 ml/min from one of several parallel superfusion pipettes. The solution bathing the cell could be changed in 1-2 s. All experiments were carried out at 24 ± 2 °C.

RESULTS AND DISCUSSION

In lacrimal cells both the K⁺ and the Cl⁻ channels are Ca²⁺dependent, but the K⁺ channel is sensitive to Ca²⁺ in a lower range than the Cl⁻ current [20,21]. Therefore it is possible to see small changes in [Ca²⁺]_i reflected in the K⁺ current, and elevation of [Ca²⁺]_i past the point where the K⁺ current is maximally activated is manifest as changes in the Cl⁻ current. Fig. 1(*a*) shows that in the absence of any inositol polyphosphate both the K⁺ and Cl⁻ currents stabilized within 2–3 s of establishing the whole-cell configuration, and stable currents were maintained over the experimental period. Inclusion of 50 μ M-Ins(1,3,4,5)P₄ in the patch-clamp pipette did not alter either the K⁺ or Cl⁻ currents from those seen under control conditions (results not shown). The data in Fig. 1(b) were obtained in the absence of extracellular Ca²⁺ and confirm that $Ins(1,4,5)P_3$ mobilizes intracellular Ca²⁺. Following a lag of 0.5-1 s after establishment of the whole cell, which is probably the time required for the $Ins(1,4,5)P_3$ to diffuse into the cell, the K⁺ current rose rapidly and stabilized in 20-30 s. The Cl⁻ current also increased rapidly and reached a peak in 2-3 s. Activation of both the K⁺ and the Cl⁻ currents was transient, and both currents declined to control values within 2 min. In the presence of 1.2 mm extracellular Ca²⁺ both 100 μ M- and 500 μ M-Ins(1,4,5)P₃ induced a small sustained K⁺-current component in addition to the transient activation of both the K^+ and Cl^- currents. The mean K^+ current measured after 2.5 min was 156.1 ± 24 pA (n = 15) under control conditions, 98.8 ± 41 pA (n = 5) after stimulation by 500 μ M-Ins(1,4,5) P_3 in the absence of extracellular Ca²⁺ and 335.1 ± 63 pA (n = 14) after stimulation by 500 μ M-Ins $(1,4,5)P_3$ in the presence of extracellular Ca²⁺. The K⁺ current was significantly (P < 0.01) elevated above control values after 2.5 min and remained elevated on average for 4-5 min and on some occasions for up to 10-15 min. Ins(1,4,5)P, did not activate any significant Cl⁻ current when applied at 100 μ M (Fig. 1c), and 500 μ M-Ins(1,4,5) P_3 produced only a transient activation of the Cl- current (Fig. 1d); preincubation in the absence of extracellular Ca^{2+} had no effect on this transient Cl⁻ current (Fig. 1b). Ins(1,3,4,5) P_4 (50 μ M) potentiated the action of both 100 μ M- and 500 μ M-Ins(1,4,5)P₃. When applied with 100 μ M-Ins(1,4,5) P_3 , the predominant effect of 50 μ M-Ins(1,3,4,5) P_4 was to stimulate a transient Cl⁻ current;

Results shown in (a) and (b) are each typical of three experiments.

given that the transient component of the Cl- current was independent of extracellular Ca2+, these data suggest that $Ins(1,3,4,5)P_{4}$ can assist in mobilization of intracellular Ca²⁺. The potentiating effect of 50 μ M-Ins(1,3,4,5) P_4 on the action of 500 μ M-Ins(1,4,5)P₃ is shown in Fig. 1(f). The duration of both the K⁺- and the Cl⁻-current responses was extended in the presence of $Ins(1,3,4,5)P_4$; this enhancement was most pronounced in the Cl⁻ current, where $Ins(1,4,5)P_3$ and $Ins(1,3,4,5)P_4$ together stimulated a significant sustained component which was not seen with $Ins(1,4,5)P_3$ alone. The Cl⁻ current measured after 2.5 min was -51.8 ± 11 pA (n = 15) under control conditions, -77.8 ± 10 pA (n = 14) after stimulation by 500 μ M- $Ins(1,4,5)P_3$ alone and 376 ± 128 pA (n = 11) (P < 0.01 compared with control) after stimulation by 500 μ M-Ins(1,4,5)P₃ and 50 μ M-Ins(1,3,4,5) P_4 together. The Cl⁻ current measured after 10 min was -290 ± 133 pA (n = 5), still significantly (P < 0.01) elevated above control.

Fig. 2 shows directly that the sustained component of the K⁺current response, induced by $Ins(1,4,5)P_3$ alone, and the sustained K⁺ and Cl⁻ currents induced by $Ins(1,4,5)P_3$ and $Ins(1,3,4,5)P_4$

Fig. 3. (a) K⁺ current and no Cl⁻ current stimulated by 500 μ M-Ins(2,4,5) P_3 in the patch pipette and (b) activation of the Cl⁻ current in addition to the K⁺ current by inclusion of 50 μ M-Ins(1,3,4,5) P_4 in addition to 500 μ M-Ins(2,4,5) P_3 in the patch pipette

Results shown in (a) and (b) are each typical of three experiments.

together were dependent on extracellular Ca^{2+} . All the sustained currents were abolished by replacement of Ca^{2+} in the external bathing solution by 0.5 mm-EGTA. The effects of a short (1–5 min) exposure to EGTA were always reversible, but on some occasions the effects of a prolonged (5–10 min) exposure were not, and the currents did not recover when Ca^{2+} was readmitted to the bathing solution.

It has been suggested that $Ins(1,3,4,5)P_4$ does not have any specific role in Ca²⁺ mobilization, but rather that it enhances the action of $Ins(1,4,5)P_3$ by protecting it from degradation. This was tested by using $Ins(2,4,5)P_3$, which is poorly metabolized [22] and therefore would not benefit from any protection by $Ins(1,3,4,5)P_4$. Fig. 3(a) shows that 500 μ M-Ins(2,4,5)P₃ evoked transient and sustained K⁺ currents, but caused no stimulation of the Cl⁻ current. These data differ from the response to 500 μ M-Ins(1,4,5)P₂ because of the lower activity of $Ins(2,4,5)P_3$. $Ins(2,4,5)P_3$ is thought to be approx. 4-6-fold less effective in mobilizing Ca²⁺ than is $Ins(1,4,5)P_{2}$ [12,22]; this is consistent with the data in Fig. 1(c), which show that a 5-fold lower $Ins(1,4,5)P_3$ concentration (100 μ M) also produced K⁺-current activation but no significant stimulation of the Cl⁻ current. The data in Fig. 3(b) show that the additional presence of 50 μ M-Ins(1,3,4,5) P_4 with 500 μ M- $Ins(2,4,5)P_3$ stimulated a significant transient Cl⁻-current activation, very similar to the potentiation of the Cl- current caused by 50 μ M-Ins(1,3,4,5) P_4 with 100 μ M-Ins(1,4,5) P_3 (Fig. 1e). Potentiation of $Ins(2,4,5)P_3$ -dependent currents by $Ins(1,3,4,5)P_4$ is unlikely to be due to any non-specific protection of $Ins(2,4,5)P_3$ against degradation by $Ins(1,3,4,5)P_4$, therefore this action of $Ins(1,3,4,5)P_4$ is likely to be the result of a real synergism between the two inositol polyphosphates.

A common factor in most models to account for Ca^{2+} influx into non-electrically excitable cells is depletion of the Ca^{2+} contained in the intracellular Ca^{2+} pools. In the 'capacitance model', emptying of intracellular Ca^{2+} pools, by whatever mechanism, is deemed a full and sufficient signal for influx of intracellular Ca^{2+} [23,24]. Experiments using thapsigargin have shown that this Ca^{2+} -ATPase inhibitor [25] can mobilize intracellular Ca^{2+} from pools insensitive to $Ins(1,4,5)P_3$ as well as from $Ins(1,4,5)P_3$ -sensitive pools, and that increased mobilization of intracellular Ca^{2+} causes increased Ca^{2+} influx [23]. This is taken into account in the most recent version of the 'capacitance model' [23], where it was suggested that the Ca^{2+} pools which regulate Ca^{2+} influx could include a population which lack $Ins(1,4,5)P_3$ receptors. My data show that $Ins(1,3,4,5)P_4$ is able to enhance both the release of intracellular Ca^{2+} caused by $100 \ \mu M$ -Ins $(1,4,5)P_3$ [9,8] and the Ca^{2+} influx evoked by $500 \ \mu M$ -Ins $(1,4,5)P_3$. These data can be accommodated by the 'capacitance model' if the apparently $Ins(1,4,5)P_3$ -insensitive population of Ca^{2+} pools includes those which are stimulated to release Ca^{2+} by $Ins(1,4,5)P_3$ when $Ins(1,3,4,5)P_4$ is also present. Thus, like thapsigargin, $Ins(1,4,5)P_3$ and $Ins(1,3,4,5)P_4$ together (Fig. 1f) can cause greater Ca^{2+} influx than $Ins(1,4,5)P_3$ alone (Fig. 1d) by causing greater release of intracellular Ca^{2+} .

Other models allow for control of Ca²⁺ influx by factors in addition to depletion of the Ca2+ pools; Irvine [26] has suggested that the $Ins(1,4,5)P_3$ receptor connects intracellular Ca²⁺ pools to the plasma membrane by interacting with a plasma-membrane protein, possibly the $Ins(1,3,4,5)P_4$ receptor. Ca^{2+} influx is stimulated by dissociation of the $Ins(1,4,5)P_3$ receptor from the plasma membrane. This mechanism predicts that low [Ca²⁺] within the Ca^{2+} pool and raised concentrations of $Ins(1,4,5)P_3$ or $Ins(1,3,4,5)P_A$ will all contribute to the degree of dissociation of the two receptors, and therefore Ca2+ influx. My data are equally well explained by this model, which contains a fundamental, but not obligate, role for $Ins(1,3,4,5)P_4$. A very high concentration of $Ins(1,4,5)P_3$ could deplete the Ca²⁺ pools to the point at which the two receptors dissociate and allow Ca2+ influx in the absence of $Ins(1,3,4,5)P_4$ (Fig. 1). In both models $Ins(1,3,4,5)P_4$ cannot cause Ca^{2+} influx in the absence of $Ins(1,4,5)P_3$, because $Ins(1,3,4,5)P_4$ alone does not cause the Ca²⁺ pool to empty.

The key difference between these two hypotheses, i.e. whether potentiation of Ca^{2+} influx by $Ins(1,3,4,5)P_4$ is a direct result of Ca^{2+} gating at the plasma membrane by $Ins(1,3,4,5)P_4$, or is secondary to increased mobilization of intracellular Ca^{2+} by $Ins(1,3,4,5)P_4$ acting synergistically with $Ins(1,4,5)P_3$, cannot be resolved by my data.

These studies and those of Bird et al. [15] have employed inositol phosphate concentrations far in excess of those ever likely to be produced by receptor activation, in order to mimic the release of intracellular Ca²⁺ and influx of Ca²⁺ stimulated by agonist. Although it is possible that there are variations $Ins(1,4,5)P_3$ concentration throughout the cell, and in the $Ins(1,4,5)P_3$ concentration immediately adjacent to the Ins(1.4,5) $P_{\rm s}$ -sensitive store could rise to 500 μ M after agonist stimulation, it seems more likely that 500 μ M-Ins(1,4,5)P₃ represents a supramaximal stimulus which has no physiological counterpart. Therefore, although these data may provide useful insights into the pharmacology of $Ins(1,4,5)P_3$ - and $Ins(1,3,4,5)P_4$ receptor activation and may even help resolve what can stimulate Ca²⁺ influx, the observation that very high concentrations of $Ins(1,4,5)P_{3}$ can stimulate Ca^{2+} influx in the absence of Ins $(1,3,4,5)P_4$ probably has little physiological relevance. These data, in conjunction with previous studies using lower Ins $(1,4,5)P_3$ concentrations, do show that Ins $(1,3,4,5)P_4$ potentiates both release of intracellular Ca²⁺ and influx of extracellular Ca²⁺ stimulated by a wide range of Ins $(1,4,5)P_3$ concentrations and that, particularly in lacrimal cells, which have a low sensitivity to Ins $(1,4,5)P_3$, the synergism between Ins $(1,4,5)P_3$ and Ins $(1,3,4,5)P_4$ is likely to be a vital part of the physiological response to agonist stimulation.

This work was supported by a grant from the Wellcome Trust to D. V. Gallacher. I thank D. V. Gallacher, O. H. Petersen and P. Thorn for help and advice throughout this study.

REFERENCES

- 1. Downes, C. P. (1989) Biochem. Soc. Trans. 17, 259-268
- Spat, A., Bradford, P. G., McKinney, J. S., Rubin, R. P. & Putney, J. W., Jr. (1986) Nature (London) 319, 514-516
- 3. Ferris, C. D., Huganir, R. L., Supattapone, S. & Snyder, S. H. (1989) Nature (London) 342, 87-89
- Challiss, R. A. J., Willcocks, A. L., Mulloy, B., Potter, B. V. L. & Nahorski, S. R. (1989) Biochem. J. 274, 861–867
- 5. Donie, F., Hulser, E. & Reiser, G. (1990) FEBS Lett. 268, 194-198
- Theibert, A. B., Supattapone, S., Ferris, C. D., Danoff, S. K., Evans, R. K. & Snyder, S. H. (1990) Biochem. J. 267, 441–445
- Theibert, A. B., Estevez, V. A., Ferris, C. D., Danoff, S. K., Barrow, R. K., Prestwich, G. D. & Snyder, S. H. (1991) Proc. Natl. Acad. Sci. U.S.A. 88, 3165–3167
- Changya, L., Gallacher, D. V., Irvine, R. F., Potter, B. V. L. & Petersen, O. H. (1989) J. Membr. Biol. 109, 85–93
- Cullen, P. J., Irvine, R. F. & Dawson, A. P. (1990) Biochem. J. 271, 549–553
- Ivorra, I., Gigg, R., Irvine, R. F. & Parker, I. (1991) Biochem. J. 273, 317–321
- Ely, J. A., Hunyady, L., Baukal, A. J. & Catt, K. J. (1990) Biochem. J. 268, 333–338
- Ferguson, J. E., Han, J. K., Kao, J. P. Y. & Nuccitelli, R. (1991) Exp. Cell Res. 192, 352–356
- Matthews, G., Neher, E. & Penner, R. (1989) J. Physiol (London) 418, 105-130
- 14. Morris, A. P., Gallacher, R. F., Irvine, R. F. & Petersen, O. H. (1987) Nature (London) 330, 653–655
- Bird, G. St. J., Rossier, M. F., Hughes, A. R., Shears, S. B., Armstrong, D. L. & Putney, J. W., Jr. (1991) Nature (London) 352, 162-165
- Muallem, S., Pandol, S. J. & Beeker, T. G. (1989) J. Biol. Chem. 264, 205–212
- 17. Nunn, D. L. & Taylor, C. W. (1990) Biochem. J. 270, 227-232
- 18. Smith, P. M. (1992) J. Physiol. (London), in the press
- 19. Sasaki, T. & Gallacher, D. V. (1990) FEBS Lett. 264, 130-134
- 20. Findlay, I. & Petersen, O. H. (1985) Pflugers Arch. 403, 328-330
- Marty, A., Tan, Y. P. & Trautmann, A. (1984) J. Physiol. (London) 357, 293-325
- 22. Irvine, R. F. & Moor, R. M. (1986) Biochem. J. 240, 917-920
- 23. Putney, J. W., Jr. (1986) Cell Calcium 7, 1-12
- 24. Putney, J. W., Jr. (1990) Cell Calcium 11, 611-624
- Thastrup, O., Cullen, P. J., Brobak, B. K., Hanley, M. R. & Dawson, A. P. (1990) Proc. Natl. Acad. Sci. U.S.A. 87, 2466–2470
- 26. Irvine, R. F. (1990) FEBS Lett. 263, 5-9

Received 8 January 1992/22 January 1992; accepted 23 January 1992