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Supplementary Note 1 Datasets and preprocessing

We downloaded publicly available count matrix files with cell type annotations (see data availabil-
ity). For integrating Tabula Sapiens ', Tabula Microcebus > and Tabula Muris * we filtered cell
types to select cell types with more than 350 cells. Additionally, we filtered cells with fewer than
500 genes expressed and filtered genes expressed in fewer than 1000 cells. For frog and zebrafish
embryogenesis, we filtered cells with fewer than 500 genes expressed, and filtered genes that were
expressed in fewer than 10 cells. For the Aqueous Humor Outflow cell atlas no additional gene
or cell filtering was done. We selected highly variable genes in each dataset using the Seurat v3
method *. We set only number of genes (Supplementary Note 4), while we keep all other param-
eters to their default values in scanpy package °. No additional data preprocessing was performed

and the numerical inputs to SATURN are raw counts.



Supplementary Note 2 Baseline methods
We compare SATURN to four existing single cell integration methods, SAMap, Harmony, scVI
and Scanorama. SAMap is run in a semi-supervised mode in which cell neighborhoods are deter-

8 are all run with default settings, using

mined by cell types. Harmony ©, scVI 7, and Scanorama
one-to-one homolog genes, and with the batch variable being species (frog or zebrafish). For scVI,
Harmony and Scanorama, no additional highly variable gene selection was performed as the num-
ber of one-to-one homologs was low (7175). SAMap defaults to 3000 highly variable genes for

each species, as determined by their SAM weights.



Supplementary Note 3 Evaluation
There are a variety of different ways to assess the quality of a multi-species embedding. A multi-
species embedding should encode cells that are the same cell type close together and cells from
different cell types far apart. Cell types that are shared across species should have similar em-
beddings, and cell types that are unique to a species should not be falsely paired with other cell
types.

We therefore assess the quality of multi-species embeddings for the goal of transferring labels
from one species to another. Given a species s with distinct cell types T, labels are transferred to a
new species s? with cell types 7 using a cell type classifier trained on the embeddings of cells from
st. The simple classification model Cy:1(z.) : R — T" is trained on embeddings of one species s',
and evaluated on embeddings of another species s2. Predictions are classified as accurate based on

a predetermined mapping of cell types T — T between species (Supplementary Table 2).

C,1 = Logistic Regression Model(zqc41) ~ Th 1 (D
Ties = Cor(2ees?) 2)

1 .
Accuracy = m EZQ 1(T! maps to T?) 3)



Supplementary Note 4 Hyperparameters

Hyperparameters. In SATURN, we set the number of highly variable genes to 8000. For in-
tegrating frog and zebrafish embryogenesis datasets and integrating the AH atlas, the number of
macrogenes | M| is 2000. For integrating tissue subsets of the mammalian atlas datasets, the num-
ber of macrogenes is 3000. This dataset requires integration of fine-grained cell types from closely
related species so we set the number of macrogenes to higher value. Intuitively, a higher number
of macrogenes may help in finding finer-level differences between cell types, as an increased num-
ber of macrogenes will result in a more specific gene grouping. However, increasing the number
of macrogenes past a certain point could reduce interpretability as the macrogenes may become
too specific and consist of single genes. Since we are reducing the original high-dimensional
gene space from all species in the macrogene space, we do not recommend using fewer than 1000
macrogenes. The encoder embedding dimension, k is set at 256 for all experiments. The hidden
dimension for all other layers used during pretraining is 256. We use Adam optimizer with learning
rate 0.0005 during pretraining and 0.001 during fine-tuning with metric learning.

To generate the coarse alignment of mammalian cell atlases in Fig. 1b, SATURN was run
with 8000 highly variable genes per species, 2000 macrogenes, an embedding dimension & of 256
and a hidden dimension of 256. An additional categorical covariate was added to the embedding
dimension, representing the tissue of origin. All UMAP visualizations are generated using default
values in scanpy package >. We generate UMAP embeddings with randomized plotting order in

Supplementary Fig. 1.



Supplementary Note 5 Gene Ontology enrichment analysis
Gene Ontology (GO) analysis could additionally confirm functionally meaningful groups of macro-
genes. However, the challenge is that many species do not have well annotated GO terms and map-
ping GO terms across different species is non-trivial. Thus, we performed GO term enrichment
analysis between human and mouse in the mammalian cell atlas, since human and mouse genes
are best annotated in the GO. To create gene sets, for each macrogene we took the set of a given
species’ (either mouse or human) genes that had weights from a gene to macrogene above a cutoff
of 0.5. From these, to ensure gene sets had a sufficient size for enrichment analysis, we selected
gene sets with 10 or more genes, and ran GO enrichment analysis using the GOATOOLS Python
package °.

Using this approach, 88 human gene sets and 79 mouse gene sets were created. GO enrich-
ment analysis on the human gene sets found an average of 2.05 biological process (BP) terms, 1.35
molecular function (MF) terms and 1.88 cellular component (CC) terms that were enriched at a
significant level (p=0.05, FDR BH corrected, default parameters) per human gene set. Enrichment
analysis on the mouse gene sets found an average of 4.10 BP terms, 2.38 MF terms and 2.86 CC
significant terms per mouse gene set. In the null distribution of random assignment of genes, 0
sets had significant terms of any kind. Moreover, we found 14 macrogenes for which we could
create gene sets for both human and mouse. In 11/14 of these macrogenes we found at least one
significantly enriched GO term in common between the mouse and human sets when performing

string-based matching of terms.



Supplementary Note 6 Macrogene initialization functions

Default initialization. By default, SATURN initializes macrogenes by soft-clustering protein em-

beddings. In particular, SATURN first clusters protein embeddings using the K-Means algorithm

10 Given a matrix that stores protein embeddings for all genes P € RI9*? SATURN applies

K-Means to learn a set of centroids M = {m; € R?}\"¥ where N, defines the number of cen-

troids/macrogenes. K-means minimizes the within-cluster sum of squares:

ZmlnmEM(HPg - m||2>a (4)

geg

where P, denotes a row protein embedding vector of matrix P. Here, each centroid m represents

1G] M
gzl}mzl

a different macrogene. SATURN then defines an initial set of weights {{W,,, € R+}

from each gene g to each macrogene m as:

1 2
Wy, =2x% (log (rd + 1)) , &)
m,g

where rd,, ;, : N — Nrepresents the ranked euclidean distance from gene g to a macrogene m

and rd,, , = 1 for the nearest gene to a macrogene. This initialization function is arbitrarily chosen
so that genes have the highest weights to the macrogenes they are closest to. Gene to macrogene
weights are strictly positive, differentiable and updated during pretraining. We multiply by two so

that the highest weights are close to 1.

Additional Functions. We benchmark two additional initialization functions, a smoother function

and an all-or-nothing “one-hot” function, which perform similarly (Supplementary Fig. 4).

9] yIM]

For the more smoothed initialization function, the weights {{W,,,, € R+}Z,}; ", from

each gene g to each macrogene m are set as:

1
g’m -
1dy, g

W (6)

9]

M
9:1}|m:‘1 from each gene

For the one hot initialization function, the weights {{W,,, € R+}

g to each macrogene m are set as:

Wym = 1(rdy g = 1) (7)



Supplementary Figure 1: SATURN embeds multi species datasets. UMAP embeddings of (a)
mammalian cell atlas, (b) frog and zebrafish embryogenesis datasets and (¢) Aqueous Humor Out-

flow cell atlas. UMAPs are generated using default parameters but plotting order is randomized.
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Supplementary Figure 2: SATURN outperforms UMAP and PCA for cross species integra-
tion. (a) Performance comparison of SATURN versus PCA and UMAP on frog and zebrafish
embryogenesis datasets. PCA is calculated using the one-to-one homolog genes as determined by
BLAST, followed by expression log normalization. UMAP is then calculated using those top 50
principal components. The distribution is obtained with n=30 runs for each method, by setting a
random seed and shuffling the data. B Visualization of PCA (left) and UMAP (right) embeddings
by cell type (top) and species (bottom). For PCA, the top two principal components are used.
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Supplementary Figure 3: Performance of SATURN and the second best baseline SAMap
on transferring annotations on the mammalian cell atlas. Performance is evaluated using the
prediction accuracy of a logistic classifier model trained to differentiate cell types of one species
and tested on predicting the cell type annotations of another species. Higher values indicate better
performance. SAMap represents a version of the SAMap method in which cell-type annotations
are used to integrate datasets. The distribution is obtained with n=30 runs for each method. Per-
formance when transferring annotations from (a) mouse to mouse lemur, (b) human to mouse, and

(¢) human to mouse lemur.
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Supplementary Figure 4: SATURN is robust to choice of macrogene initialization function.
Median performance of SATURN with different macrogene initialization functions evaluated as
accuracy of the label transfer between frog and zebrafish embryogenesis datasets. Blue boxplots
show zebrafish to frog label transfer performance, while orange boxplots show frog to zebrafish

label transfer performance. Distribution is estimated with n = 30 runs.
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Supplementary Figure 5: Conditional species variable does not improve performance. Perfor-
mance of SATURN using a conditional autoencoder during pretraining with a species conditional
variable vs a constant variable. The constant variable is appended to the embedding z., while in
the conditional variable setting, a one hot representation of the species s is concatenated to the em-
bedding. Blue boxplots show zebrafish to frog label transfer performance, while orange boxplots

show frog to zebrafish label transfer performance. Distribution is estimated with n = 30 runs.
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Macrophage and
Myleoid Progenitors
Arhgdi

gene

frog_arhgdib
zebrafish_arhgdig
frog-arhgdig
frog_arhgdia
frog_c20orf27
frog_arr3
zebrafish_abracl
zebrafish_c7h200rf27
zebrafish_arr3b
zebrafish_cst14b.1
Tonocytes

Foxi

gene

frog_foxil
zebrafish_foxi3a
zebrafish_foxil
zebrafish_foxgla
frog foxgl
frog_foxi4.2
frog_foxi2
zebrafish_foxglb
zebrafish_foxhl

frog_foxel

weight
2.0586648
1.1892534
0.82862365
0.42018056
0.012586672
0.011929505
0.0018043627
0.0017385085
0.0011982815
0.0007732745

weight
1.7946975
1.7876347
1.7752392
1.767095
1.6482608
1.6366866
1.598392
0.92830807
0.7387778
0.48347607

Cebp

gene
frog_cebpd
frog_cebpb
zebrafish_cebpa
zebrafish_cebpb
frog_mafb
zebrafish_cebpd
frog_cebpa
zebrafish_mafbb
zebrafish_cebpl
frog_maf

Dmrt2

gene

frog_-dmrt2
zebrafish_dmrt2a
frog kank1
zebrafish_gem?2
zebrafish_dmrt2b
zebrafish_cxxc4
frog_cxxc4
frog_foxil
zebrafish_skor1b
frog_hivepl

weight
1.7377852
1.2713358
1.2589424
1.1590556
0.777314
0.6585815
0.49666032
0.3763802
0.2561873
0.2419157

weight
1.1082501
1.0135943
0.9281069
0.4140955
0.3073387
0.14239863
0.1175361
0.09924057
0.09714537
0.07280374

Ptp

gene

frog_ptprc
zebrafish_ptprc
frog-iqed
frog_ptpn6
zebrafish_ptpreb
zebrafish_ptpn6
zebrafish_ptpn22
zebrafish_ptpn11b
zebrafish_ptprr
frog_ptprh

Cldn

gene
zebrafish_cldna
zebrafish_cldnh
frog-cldn4
zebrafish_cldnb
zebrafish_cldne
zebrafish_Ihfpl3
zebrafish_cldnc
frog_lhfpl4
zebrafish_lhfpl5a
zebrafish_lhfpl5b

weight
1.0184758
1.0062823
1.0023459
0.975968
0.95713043
0.9493796
0.88780427
0.5531652
0.533596
0.39319068

weight
0.47487783
0.46664542
0.45497242
0.40522912
0.38158783
0.30014035
0.24535778
0.24350967
0.2244674
0.18170683

Cybb

gene

frog_cybb
zebrafish_cybb
frog_nox4
frog_nox1
frog_nox5
frog_nadk
zebrafish_slc7a8a
frog_rac2
zebrafish_slc7a7
frog_tfblm

Ubpl

gene

frog_ubpl
frog_grhl3
frog_grhll
zebrafish_grhl3
zebrafish_grhl2a
zebrafish_tp63
frog_grhl2
zebrafish_grhl1
zebrafish_tfep2l1
frog_tp63

weight
1.4121561
0.98110956
0.69433695
0.6060228
0.016699424
0.012460865
0.008461936
0.006649947
0.006204006
0.006183132

weight
1.4286531
1.1210046
1.0977421
1.03748
0.85601187
0.6001469
0.54704624
0.44004646
0.4264244
0.30589458

Lepl

gene

frog_lcpl
zebrafish_parvg
zebrafish_parvb
frog_parva
zebrafish_lcpl
frog_parvb
frog_parvg
zebrafish_parvab
zebrafish_gas212
zebrafish_tagln

Atp60v

gene

frog_atp6vOc
zebrafish_atp6vOch
zebrafish_atp6vOca
frog_atp6vOb
zebrafish_atp6vOb
frog_cnih1
frog_sec61g
frog_eiflax
zebrafish_sec61g
zebrafish_rpl34

weight
1.1437993
0.95570034
0.8877349
0.8088149
0.7965079
0.7859018
0.6744168
0.62013125
0.2786125
0.11108811

weight
1.5118276
1.0511838
0.6842436
0.33991408
0.18918027
0.0017733343
0.0010816682
0.00058003364
0.00044005408
0.0004284728

Supplementary Table 1: Frog and Zebrafish differentially expressed macrogenes’ gene to

macrogene weights. Gene to macrogene weights for the top 10 genes for each differentially

expressed macrogene in Figure 2b. Genes are listed in descending order by weight.
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Frog Cell Type Zebrafish Cell Type # of Frog Cells # of Zebrafish Cells Total # of Cells
Hindbrain Hindbrain 7273 9399 16672
Intermediate mesoderm Intermediate mesoderm 10324 3120 13444
Forebrain/midbrain Forebrain/midbrain 2081 10500 12581
Epidermal progenitor Epidermal progenitor 9149 1921 11070
Non-neural ectoderm Non-neural ectoderm 8022 2227 10249
Neural crest Neural crest 8393 1769 10162
Neuroectoderm Neuroectoderm 6590 3381 9971
Placodal area Placodal area 6918 1188 8106
Presomitic mesoderm Presomitic mesoderm 6293 1642 7935
Skeletal muscle Skeletal muscle 5772 651 6423
Neuron Neuron 1899 4032 5931
Tailbud Tailbud 1860 3759 5619
Optic Optic 1475 3676 5151
Blood Blood 1569 3067 4636
Pluripotent 0 4277 4277
Involuting marginal zone Involuting marginal zone 2385 1849 4234
Endoderm Endoderm 2207 890 3097
Eye primordium Eye primordium 2477 223 2700
Endothelial Endothelial 1002 884 1886
Goblet cell 1473 0 1473
Small secretory cells 1335 0 1335
Tonocyte Ionocyte 1030 292 1322
Notochord Notochord 766 351 1117
Blastula 1116 0 1116
Otic placode Otic placode 813 270 1083
Heart Heart 121 851 972
Spemann organizer 963 0 963
Myeloid progenitors 778 0 778
Pronephric mesenchyme 771 0 777
Cement gland primordium 721 0 721
Lens Lens 458 210 668
Rare epidermal subtypes 0 513 513
Notoplate Notoplate 339 115 454
Rohon-beard neuron Rohon-beard neuron 134 289 423
Olfactory placode Olfactory placode 139 276 415
Macrophage 0 405 405
Periderm 0 382 382
Hatching gland Hatching gland 180 82 262
Dorsal organizer 0 233 233
Pharyngeal pouch 0 209 209
Apoptotic-like 0 163 163
Pronephric duct 0 95 95
Germline Germline 33 53 86
Neuroendocrine cell 70 0 70
Pancreas primordium 0 49 49
Secretory epidermal 0 34 34
Apoptotic-like 2 0 33 33
Forerunner cells 0 5 5
Epiphysis 0 3 3
Nanog-high 0 3 3
Totals: 36 42 96935 63371 160306

Supplementary Table 2: Cell Type Matching and Frequencies in Frog and Zebrafish Em-
bryogenesis. Cell type pairs used for scoring frog and zebrafish embryogenesis embeddings, and

cell type counts.
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Cynomologus Rhesus Macaque .
Cluster Macrogene Human Genes Mouse Genes Pig Genes
Macaque Genes Genes
| 1540 Col6A2, Vit, Vit, Col28A1, Col6A2, Col6A1, Col6A2, Vit, Antxr2,
Col6A6 Antxr2 Col28Al, Vit Vit Col6A2
Rpp25, Sco2, Adaml5, Adaml5, Lhb, C4A, Kenk7,
1 71 ) ) Ptpnl18
Siglecl Siglecl, Nop9 Kcp Rpp25
2 1115 Cxcll2, Ccl25 Cxcll2 Ccl25, Cxcl14 Cxcll2 Cxcll2
Nr2F1, Nr2E3, Nr2F2, Nr2F1, Nr2F1, Nr2F2, Nr2F1, Nr2F2,
2 197 Nr2F1, Nr2F2
Nr2E1 Nr2E3 Nr2E3 Nr0B2
Tagln, Tagln2,
3 232 Tagln, Tagln3 Tagln, Tagln2 Tagln, Tagln3 Tagln, Tagln3
Tagln3
Rspo3, Rspo2,
3 583 Rspo2, Rspo3 Rspo2, Rspo3 Rspo2, Rspo3 Rspol Rspo3, Rspo2
spo
4 748 Bgn
4 433 Prelp, Ogn, Aspn | Ogn, Kera, Prelp | Ogn, Prelp, Optc | Dcn, Fmod, Optc | Omd, Ogn, Ecm?2
4 479 Angptl7, Fgl2, Fgl2, Angptl7, Fgl2, Angptl7, Fgl2, Angptl7, Fgl2, Angptl7,
Angptll Fgb Fgg Angptl2 Fibcd1
Tnxb, Matn2, Morn4, Tnc, Zcchel3, Tnc,
4 1273 Tnc, Morn4 Tnxb
Tnr Matn2 Tnr
Car3, Car2,
5 1300 Ca3, Cal3, Ca7 Ca2, Ca7, Ca3 Ca3, Ca2, Cal3 Carl3 Ca2, Ca3, Ca7
ar
Slc4A7, Slc4A4, Slc4A10, Slc4A10, Slc4A4, SIc4AT,
5 73 Slc4A4, SIc4AS
Slc4A10 Slc4A7, Slc4A4 | Slc4A7, Slc4A4 Slc4AS5
5 97 Fgf6, Fgf23, Fgf21, Fgf19, Fgf10, Fef8, Fgf10, Fefs, Fgf10, Fgf22,
Fgf16 Fgf10 Fgf9 Fgf21 Fgf21

Supplementary Table 3: Differentially expressed macrogenes in regrouped AH Atlas cell

types. Genes in the table represent the corresponding species’ top 3 genes per macrogene, ordered

by weight and with weights above 0.5.
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