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Supplementary Note 1 Datasets and preprocessing
We downloaded publicly available count matrix files with cell type annotations (see data availabil-

ity). For integrating Tabula Sapiens 1, Tabula Microcebus 2 and Tabula Muris 3 we filtered cell

types to select cell types with more than 350 cells. Additionally, we filtered cells with fewer than

500 genes expressed and filtered genes expressed in fewer than 1000 cells. For frog and zebrafish

embryogenesis, we filtered cells with fewer than 500 genes expressed, and filtered genes that were

expressed in fewer than 10 cells. For the Aqueous Humor Outflow cell atlas no additional gene

or cell filtering was done. We selected highly variable genes in each dataset using the Seurat v3

method 4. We set only number of genes (Supplementary Note 4), while we keep all other param-

eters to their default values in scanpy package 5. No additional data preprocessing was performed

and the numerical inputs to SATURN are raw counts.
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Supplementary Note 2 Baseline methods
We compare SATURN to four existing single cell integration methods, SAMap, Harmony, scVI

and Scanorama. SAMap is run in a semi-supervised mode in which cell neighborhoods are deter-

mined by cell types. Harmony 6, scVI 7, and Scanorama 8 are all run with default settings, using

one-to-one homolog genes, and with the batch variable being species (frog or zebrafish). For scVI,

Harmony and Scanorama, no additional highly variable gene selection was performed as the num-

ber of one-to-one homologs was low (7175). SAMap defaults to 3000 highly variable genes for

each species, as determined by their SAM weights.
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Supplementary Note 3 Evaluation
There are a variety of different ways to assess the quality of a multi-species embedding. A multi-

species embedding should encode cells that are the same cell type close together and cells from

different cell types far apart. Cell types that are shared across species should have similar em-

beddings, and cell types that are unique to a species should not be falsely paired with other cell

types.

We therefore assess the quality of multi-species embeddings for the goal of transferring labels

from one species to another. Given a species s1 with distinct cell types T 1, labels are transferred to a

new species s2 with cell types T 2 using a cell type classifier trained on the embeddings of cells from

s1. The simple classification model Cs1(zc) : R → T 1 is trained on embeddings of one species s1,

and evaluated on embeddings of another species s2. Predictions are classified as accurate based on

a predetermined mapping of cell types T 1 → T 2 between species (Supplementary Table 2).

Cs1 := Logistic Regression Model(zc∈s1) ∼ T 1
c∈s1 (1)

T̂ 1
c∈s2 = Cs1(zc∈s2) (2)

Accuracy =
1

|c ∈ s2|
∑
c∈s2

1(T̂ 1
c maps to T 2

c ) (3)
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Supplementary Note 4 Hyperparameters

Hyperparameters. In SATURN, we set the number of highly variable genes to 8000. For in-

tegrating frog and zebrafish embryogenesis datasets and integrating the AH atlas, the number of

macrogenes |M| is 2000. For integrating tissue subsets of the mammalian atlas datasets, the num-

ber of macrogenes is 3000. This dataset requires integration of fine-grained cell types from closely

related species so we set the number of macrogenes to higher value. Intuitively, a higher number

of macrogenes may help in finding finer-level differences between cell types, as an increased num-

ber of macrogenes will result in a more specific gene grouping. However, increasing the number

of macrogenes past a certain point could reduce interpretability as the macrogenes may become

too specific and consist of single genes. Since we are reducing the original high-dimensional

gene space from all species in the macrogene space, we do not recommend using fewer than 1000

macrogenes. The encoder embedding dimension, k is set at 256 for all experiments. The hidden

dimension for all other layers used during pretraining is 256. We use Adam optimizer with learning

rate 0.0005 during pretraining and 0.001 during fine-tuning with metric learning.

To generate the coarse alignment of mammalian cell atlases in Fig. 1b, SATURN was run

with 8000 highly variable genes per species, 2000 macrogenes, an embedding dimension k of 256

and a hidden dimension of 256. An additional categorical covariate was added to the embedding

dimension, representing the tissue of origin. All UMAP visualizations are generated using default

values in scanpy package 5. We generate UMAP embeddings with randomized plotting order in

Supplementary Fig. 1.
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Supplementary Note 5 Gene Ontology enrichment analysis
Gene Ontology (GO) analysis could additionally confirm functionally meaningful groups of macro-

genes. However, the challenge is that many species do not have well annotated GO terms and map-

ping GO terms across different species is non-trivial. Thus, we performed GO term enrichment

analysis between human and mouse in the mammalian cell atlas, since human and mouse genes

are best annotated in the GO. To create gene sets, for each macrogene we took the set of a given

species’ (either mouse or human) genes that had weights from a gene to macrogene above a cutoff

of 0.5. From these, to ensure gene sets had a sufficient size for enrichment analysis, we selected

gene sets with 10 or more genes, and ran GO enrichment analysis using the GOATOOLS Python

package 9.

Using this approach, 88 human gene sets and 79 mouse gene sets were created. GO enrich-

ment analysis on the human gene sets found an average of 2.05 biological process (BP) terms, 1.35

molecular function (MF) terms and 1.88 cellular component (CC) terms that were enriched at a

significant level (p=0.05, FDR BH corrected, default parameters) per human gene set. Enrichment

analysis on the mouse gene sets found an average of 4.10 BP terms, 2.38 MF terms and 2.86 CC

significant terms per mouse gene set. In the null distribution of random assignment of genes, 0

sets had significant terms of any kind. Moreover, we found 14 macrogenes for which we could

create gene sets for both human and mouse. In 11/14 of these macrogenes we found at least one

significantly enriched GO term in common between the mouse and human sets when performing

string-based matching of terms.
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Supplementary Note 6 Macrogene initialization functions

Default initialization. By default, SATURN initializes macrogenes by soft-clustering protein em-

beddings. In particular, SATURN first clusters protein embeddings using the K-Means algorithm
10. Given a matrix that stores protein embeddings for all genes P ∈ R|G|×p, SATURN applies

K-Means to learn a set of centroids M = {mi ∈ Rp}NM
i=1 where NM defines the number of cen-

troids/macrogenes. K-means minimizes the within-cluster sum of squares:

∑
g∈G

minm∈M(||Pg −m||2), (4)

where Pg denotes a row protein embedding vector of matrix P. Here, each centroid m represents

a different macrogene. SATURN then defines an initial set of weights {{Wg,m ∈ R+}|G|g=1}
|M|
m=1

from each gene g to each macrogene m as:

Wg,m = 2 ∗
(
log

(
1

rdm,g

+ 1

))2

, (5)

where rdm,g : N → N represents the ranked euclidean distance from gene g to a macrogene m

and rdm,g = 1 for the nearest gene to a macrogene. This initialization function is arbitrarily chosen

so that genes have the highest weights to the macrogenes they are closest to. Gene to macrogene

weights are strictly positive, differentiable and updated during pretraining. We multiply by two so

that the highest weights are close to 1.

Additional Functions. We benchmark two additional initialization functions, a smoother function

and an all-or-nothing “one-hot” function, which perform similarly (Supplementary Fig. 4).

For the more smoothed initialization function, the weights {{Wg,m ∈ R+}|G|g=1}
|M|
m=1 from

each gene g to each macrogene m are set as:

Wg,m =
1

rdm,g

(6)

For the one hot initialization function, the weights {{Wg,m ∈ R+}|G|g=1}
|M|
m=1 from each gene

g to each macrogene m are set as:

Wg,m = 1(rdm,g = 1) (7)
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Supplementary Figure 1: SATURN embeds multi species datasets. UMAP embeddings of (a)
mammalian cell atlas, (b) frog and zebrafish embryogenesis datasets and (c) Aqueous Humor Out-

flow cell atlas. UMAPs are generated using default parameters but plotting order is randomized.



SA
TU

R
N

PC
A

U
M

AP

a

b

Label Transfer Accuracy

Ac
cu

ra
cy

PCA UMAP

zebrafish to frog

frog to zebrafish

0.8

0.6

0.4

0.2

0.0

Supplementary Figure 2: SATURN outperforms UMAP and PCA for cross species integra-
tion. (a) Performance comparison of SATURN versus PCA and UMAP on frog and zebrafish

embryogenesis datasets. PCA is calculated using the one-to-one homolog genes as determined by

BLAST, followed by expression log normalization. UMAP is then calculated using those top 50

principal components. The distribution is obtained with n=30 runs for each method, by setting a

random seed and shuffling the data. B Visualization of PCA (left) and UMAP (right) embeddings

by cell type (top) and species (bottom). For PCA, the top two principal components are used.
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Supplementary Figure 3: Performance of SATURN and the second best baseline SAMap
on transferring annotations on the mammalian cell atlas. Performance is evaluated using the

prediction accuracy of a logistic classifier model trained to differentiate cell types of one species

and tested on predicting the cell type annotations of another species. Higher values indicate better

performance. SAMap represents a version of the SAMap method in which cell-type annotations

are used to integrate datasets. The distribution is obtained with n=30 runs for each method. Per-

formance when transferring annotations from (a) mouse to mouse lemur, (b) human to mouse, and

(c) human to mouse lemur.
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Supplementary Figure 4: SATURN is robust to choice of macrogene initialization function.
Median performance of SATURN with different macrogene initialization functions evaluated as

accuracy of the label transfer between frog and zebrafish embryogenesis datasets. Blue boxplots

show zebrafish to frog label transfer performance, while orange boxplots show frog to zebrafish

label transfer performance. Distribution is estimated with n = 30 runs.
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Supplementary Figure 5: Conditional species variable does not improve performance. Perfor-

mance of SATURN using a conditional autoencoder during pretraining with a species conditional

variable vs a constant variable. The constant variable is appended to the embedding zc, while in

the conditional variable setting, a one hot representation of the species s is concatenated to the em-

bedding. Blue boxplots show zebrafish to frog label transfer performance, while orange boxplots

show frog to zebrafish label transfer performance. Distribution is estimated with n = 30 runs.
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Macrophage and
Myleoid Progenitors
Arhgdi Cebp Ptp Cybb Lcp1
gene weight gene weight gene weight gene weight gene weight
frog arhgdib 2.0586648 frog cebpd 1.7377852 frog ptprc 1.0184758 frog cybb 1.4121561 frog lcp1 1.1437993

zebrafish arhgdig 1.1892534 frog cebpb 1.2713358 zebrafish ptprc 1.0062823 zebrafish cybb 0.98110956 zebrafish parvg 0.95570034

frog arhgdig 0.82862365 zebrafish cebpa 1.2589424 frog iqcd 1.0023459 frog nox4 0.69433695 zebrafish parvb 0.8877349

frog arhgdia 0.42018056 zebrafish cebpb 1.1590556 frog ptpn6 0.975968 frog nox1 0.6060228 frog parva 0.8088149

frog c20orf27 0.012586672 frog mafb 0.777314 zebrafish ptpreb 0.95713043 frog nox5 0.016699424 zebrafish lcp1 0.7965079

frog arr3 0.011929505 zebrafish cebpd 0.6585815 zebrafish ptpn6 0.9493796 frog nadk 0.012460865 frog parvb 0.7859018

zebrafish abracl 0.0018043627 frog cebpa 0.49666032 zebrafish ptpn22 0.88780427 zebrafish slc7a8a 0.008461936 frog parvg 0.6744168

zebrafish c7h20orf27 0.0017385085 zebrafish mafbb 0.3763802 zebrafish ptpn11b 0.5531652 frog rac2 0.006649947 zebrafish parvab 0.62013125

zebrafish arr3b 0.0011982815 zebrafish cebp1 0.2561873 zebrafish ptprr 0.533596 zebrafish slc7a7 0.006204006 zebrafish gas2l2 0.2786125

zebrafish cst14b.1 0.0007732745 frog maf 0.2419157 frog ptprh 0.39319068 frog tfb1m 0.006183132 zebrafish tagln 0.11108811

Ionocytes
Foxi Dmrt2 Cldn Ubp1 Atp60v
gene weight gene weight gene weight gene weight gene weight
frog foxi1 1.7946975 frog dmrt2 1.1082501 zebrafish cldna 0.47487783 frog ubp1 1.4286531 frog atp6v0c 1.5118276

zebrafish foxi3a 1.7876347 zebrafish dmrt2a 1.0135943 zebrafish cldnh 0.46664542 frog grhl3 1.1210046 zebrafish atp6v0cb 1.0511838

zebrafish foxi1 1.7752392 frog kank1 0.9281069 frog cldn4 0.45497242 frog grhl1 1.0977421 zebrafish atp6v0ca 0.6842436

zebrafish foxg1a 1.767095 zebrafish gcm2 0.4140955 zebrafish cldnb 0.40522912 zebrafish grhl3 1.03748 frog atp6v0b 0.33991408

frog foxg1 1.6482608 zebrafish dmrt2b 0.3073387 zebrafish cldne 0.38158783 zebrafish grhl2a 0.85601187 zebrafish atp6v0b 0.18918027

frog foxi4.2 1.6366866 zebrafish cxxc4 0.14239863 zebrafish lhfpl3 0.30014035 zebrafish tp63 0.6001469 frog cnih1 0.0017733343

frog foxi2 1.598392 frog cxxc4 0.1175361 zebrafish cldnc 0.24535778 frog grhl2 0.54704624 frog sec61g 0.0010816682

zebrafish foxg1b 0.92830807 frog foxi1 0.09924057 frog lhfpl4 0.24350967 zebrafish grhl1 0.44004646 frog eif1ax 0.00058003364

zebrafish foxh1 0.7387778 zebrafish skor1b 0.09714537 zebrafish lhfpl5a 0.2244674 zebrafish tfcp2l1 0.4264244 zebrafish sec61g 0.00044005408

frog foxe1 0.48347607 frog hivep1 0.07280374 zebrafish lhfpl5b 0.18170683 frog tp63 0.30589458 zebrafish rpl34 0.0004284728

Supplementary Table 1: Frog and Zebrafish differentially expressed macrogenes’ gene to
macrogene weights. Gene to macrogene weights for the top 10 genes for each differentially

expressed macrogene in Figure 2b. Genes are listed in descending order by weight.
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Frog Cell Type Zebrafish Cell Type # of Frog Cells # of Zebrafish Cells Total # of Cells
Hindbrain Hindbrain 7273 9399 16672

Intermediate mesoderm Intermediate mesoderm 10324 3120 13444

Forebrain/midbrain Forebrain/midbrain 2081 10500 12581

Epidermal progenitor Epidermal progenitor 9149 1921 11070

Non-neural ectoderm Non-neural ectoderm 8022 2227 10249

Neural crest Neural crest 8393 1769 10162

Neuroectoderm Neuroectoderm 6590 3381 9971

Placodal area Placodal area 6918 1188 8106

Presomitic mesoderm Presomitic mesoderm 6293 1642 7935

Skeletal muscle Skeletal muscle 5772 651 6423

Neuron Neuron 1899 4032 5931

Tailbud Tailbud 1860 3759 5619

Optic Optic 1475 3676 5151

Blood Blood 1569 3067 4636

Pluripotent 0 4277 4277

Involuting marginal zone Involuting marginal zone 2385 1849 4234

Endoderm Endoderm 2207 890 3097

Eye primordium Eye primordium 2477 223 2700

Endothelial Endothelial 1002 884 1886

Goblet cell 1473 0 1473

Small secretory cells 1335 0 1335

Ionocyte Ionocyte 1030 292 1322

Notochord Notochord 766 351 1117

Blastula 1116 0 1116

Otic placode Otic placode 813 270 1083

Heart Heart 121 851 972

Spemann organizer 963 0 963

Myeloid progenitors 778 0 778

Pronephric mesenchyme 777 0 777

Cement gland primordium 721 0 721

Lens Lens 458 210 668

Rare epidermal subtypes 0 513 513

Notoplate Notoplate 339 115 454

Rohon-beard neuron Rohon-beard neuron 134 289 423

Olfactory placode Olfactory placode 139 276 415

Macrophage 0 405 405

Periderm 0 382 382

Hatching gland Hatching gland 180 82 262

Dorsal organizer 0 233 233

Pharyngeal pouch 0 209 209

Apoptotic-like 0 163 163

Pronephric duct 0 95 95

Germline Germline 33 53 86

Neuroendocrine cell 70 0 70

Pancreas primordium 0 49 49

Secretory epidermal 0 34 34

Apoptotic-like 2 0 33 33

Forerunner cells 0 5 5

Epiphysis 0 3 3

Nanog-high 0 3 3

Totals: 36 42 96935 63371 160306

Supplementary Table 2: Cell Type Matching and Frequencies in Frog and Zebrafish Em-
bryogenesis. Cell type pairs used for scoring frog and zebrafish embryogenesis embeddings, and

cell type counts.
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Cluster Macrogene Human Genes
Cynomologus

Macaque Genes

Rhesus Macaque

Genes
Mouse Genes Pig Genes

1 1540
Col6A2, Vit,

Col6A6

Vit, Col28A1,

Antxr2

Col6A2,

Col28A1, Vit

Col6A1, Col6A2,

Vit

Vit, Antxr2,

Col6A2

1 71
Rpp25, Sco2,

Siglec1

Adam15,

Siglec1, Nop9

Adam15, Lhb,

Kcp
Ptpn18

C4A, Kcnk7,

Rpp25

2 1115 Cxcl12, Ccl25 Cxcl12 Ccl25, Cxcl14 Cxcl12 Cxcl12

2 197 Nr2F1, Nr2F2
Nr2F1, Nr2E3,

Nr2E1

Nr2F2, Nr2F1,

Nr2E3

Nr2F1, Nr2F2,

Nr2E3

Nr2F1, Nr2F2,

Nr0B2

3 232
Tagln, Tagln2,

Tagln3
Tagln, Tagln3 Tagln, Tagln2 Tagln, Tagln3 Tagln, Tagln3

3 583 Rspo2, Rspo3 Rspo2, Rspo3 Rspo2, Rspo3
Rspo3, Rspo2,

Rspo1
Rspo3, Rspo2

4 748 Bgn

4 433 Prelp, Ogn, Aspn Ogn, Kera, Prelp Ogn, Prelp, Optc Dcn, Fmod, Optc Omd, Ogn, Ecm2

4 479
Angptl7, Fgl2,

Angptl1

Fgl2, Angptl7,

Fgb

Fgl2, Angptl7,

Fgg

Fgl2, Angptl7,

Angptl2

Fgl2, Angptl7,

Fibcd1

4 1273
Tnxb, Matn2,

Tnr
Tnc, Morn4

Morn4, Tnc,

Matn2
Tnxb

Zcchc13, Tnc,

Tnr

5 1300 Ca3, Ca13, Ca7 Ca2, Ca7, Ca3 Ca3, Ca2, Ca13
Car3, Car2,

Car13
Ca2, Ca3, Ca7

5 73
Slc4A7, Slc4A4,

Slc4A10

Slc4A10,

Slc4A7, Slc4A4

Slc4A10,

Slc4A7, Slc4A4
Slc4A4, Slc4A5

Slc4A4, Slc4A7,

Slc4A5

5 97
Fgf6, Fgf23,

Fgf16

Fgf21, Fgf19,

Fgf10

Fgf10, Fgf8,

Fgf9

Fgf10, Fgf5,

Fgf21

Fgf10, Fgf22,

Fgf21

Supplementary Table 3: Differentially expressed macrogenes in regrouped AH Atlas cell
types. Genes in the table represent the corresponding species’ top 3 genes per macrogene, ordered

by weight and with weights above 0.5.

15



Supplementary Data References

1. Tabula Sapiens Consortium et al. The Tabula Sapiens: A multiple-organ, single-cell transcrip-
tomic atlas of humans. Science 376, eabl4896 (2022).

2. Consortium, T. T. M. et al. Tabula Microcebus: A transcriptomic cell atlas of mouse lemur, an
emerging primate model organism. BioRxiv (2021).

3. Tabula Muris Consortium. Single-cell transcriptomics of 20 mouse organs creates a Tabula
Muris. Nature 562, 367–372 (2018).

4. Butler, A., Hoffman, P., Smibert, P., Papalexi, E. & Satija, R. Integrating single-cell transcrip-
tomic data across different conditions, technologies, and species. Nature Biotechnology 36,
411–420 (2018).

5. Wolf, F. A., Angerer, P. & Theis, F. J. SCANPY: large-scale single-cell gene expression data
analysis. Genome Biology 19, 15 (2018).

6. Korsunsky, I. et al. Fast, sensitive and accurate integration of single-cell data with Harmony.
Nature Methods 16, 1289–1296 (2019).

7. Lopez, R., Regier, J., Cole, M. B., Jordan, M. I. & Yosef, N. Deep generative modeling for
single-cell transcriptomics. Nature Methods 15, 1053–1058 (2018).

8. Hie, B., Bryson, B. & Berger, B. Efficient integration of heterogeneous single-cell transcrip-
tomes using Scanorama. Nature Biotechnology 37, 685–691 (2019).

9. Klopfenstein, D. et al. GOATOOLS: A python library for gene ontology analyses. Scientific
reports 8, 1–17 (2018).

10. Lloyd, S. Least squares quantization in PCM. IEEE Transactions on Information Theory 28,
129–137 (1982).

16


	SpringerNature_NatMeth_2191_ESM.pdf
	Datasets and preprocessing
	Baseline methods
	Evaluation
	Hyperparameters
	Gene Ontology enrichment analysis
	Macrogene initialization functions




