Supplementary Materials

Supplementary Figure 1. Gating strategy of individual populations, which including (A) FITC - CD29, (B) PE - CD44, (C) FITC - CD73, (D) PE-Cy5 - CD90 and (E) PE - CD105.

Supplementary Figure 2.

(A) ALP, BMP2, OCN, RUNX2, and OPN mRNA expression at day 7 in DPSCs cultured in different medium.

(B) HE staining assayed qualification of new bone area to total area ratios. Data were presented as the mean \pm SD (n=3). Significant difference compared different groups, *P<0.05, **P<0.01, and ***p<0.001; compared between DPSC and CBD+DPSC groups in blue; compared between DPSC and spheroids groups in red; compared between spheroids and CBD+spheroids groups in green; compared between CBD+DPSC and CBD+spheroids groups in green; compared between CBD+spheroids groups in green; compared between CBD+DPSC and CBD+spheroids groups in green; compared between green; compared between green; compared between green; compared between green; compared green; com

Α

Supplementary Figure 3. Transcriptome analysis of DPSC and microspheroids treated with or without CBD.

- (A) The Principal Component Analysis (PCA).
- (B) Volcano plot showing DEGs.

A	ALP	BMP2	COL-I
1	250 HDa 100	250 kDa 150 kDa 150 kDa 100 kDa 100 kDa 70 kDa 70 kDa 1 100 kDa 20 kDa 100 kDa 1 100 kDa 20 kDa 100 kDa 20 kDa 100 kDa 20 kDa 25 kDa 25 kDa 12 kDa 15 kDa	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
	RUNX2	GAPDH	
	250 k03 100 k0a 70 k0a 50 k0a 40 k0a 35 k0a 35 k0a	250 kDa 100 kDa 70 kDa 50 kDa 40 kDa	Lane1:DPSCs Lane2:CBD+DPSCs Lane3:spheroids Lane4:CBD+spheroids

1 2 3 4

25 kDa

20 kDa 15 kDa

п	WNT6			
R	250 kBa 100 kDa 70 kDa 50 kDa 40 kDa 25 kDa	250 kDa 150 kDa 70 kDa 40 kDa 35 kDa 25 kDa 20 kDa		

25 kDa

20 kDa 15 kDa

platerin		β-	ca	te	ni	n
----------	--	----	----	----	----	---

				_
kDa kDa kDa				
kDa ——	1	2 3 4	And Address of	
kDa				
kDa				
kDa	-			
kDa ———				
kDa ———	-			

250 kDa 150 kDa 100 kDa				-	
70 kDa —				_	
50 kDa	-			_	
40 kDa				-=	
25 kDa —	-	1 2	3 4	1	
29 kBa=					

GAPDH

Lane1:DPSCs Lane2:CBD+DPSCs Lane3:spheroids Lane4:CBD+spheroids

Supplementary Figure 4. Raw images for Western blotting experiments.

- (A) Uncropped blot images presented in Fig 4C.
- (B) Uncropped blot images presented in Fig 7F.
- (C) Uncropped blot images presented in Fig 7H.