SUPPLEMENTARY INFORMATION

A lactate-dependent shift of glycolysis mediates synaptic and cognitive processes in male mice

Ignacio Fernández-Moncada^{1*}, Gianluca Lavanco^{1,2,16,17}, Unai B. Fundazuri^{1,17}, Nasrin Bollmohr^{1,17}, Sarah Mountadem^{1,17}, Tommaso Dalla Tor^{1,2,17}, Pauline Hachaguer¹, Francisca Julio-Kalajzic¹, Doriane Gisquet¹, Roman Serrat^{1,3}, Luigi Bellocchio¹, Astrid Cannich¹, Bérénice Fortunato-Marsol¹, Yusuke Nasu^{4,5}, Robert E. Campbell^{4,6}, Filippo Drago², Carla Cannizzaro⁷, Guillaume Ferreira³, Anne-Karine Bouzier-Sore⁸, Luc Pellerin⁹, Juan P. Bolaños^{10,11,12}, Gilles Bonvento¹³, L. Felipe Barros^{14,15}, Stephane H. R. Oliet¹, Aude Panatier^{1,18}, Giovanni Marsicano^{1,18,*}

¹Univ. Bordeaux, INSERM, Neurocentre Magendie, U1215, F-33000 Bordeaux, France.

²Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of

Catania, Catania 95124, Italy.

³University of Bordeaux, INRAE, Bordeaux INP, NutriNeurO, UMR 1286, Bordeaux, France.

⁴Department of Chemistry, School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan.

⁵PRESTO, Japan Science and Technology Agency, Chiyoda-ku, Tokyo 102-0075, Japan.

⁶Université Laval, CERVO Brain Research Center and Department of Biochemistry, Microbiology, and Bioinformatics, Québec, Québec, Canada.

⁷Department of Biomedicine, Neuroscience and Advanced Diagnostics, University of Palermo, Italy. ⁸Université de Bordeaux, CNRS, Centre de Résonance Magnétique des Systèmes Biologiques, UMR 5536, F-33000 Bordeaux, France.

⁹Université de Poitiers et CHU de Poitiers, INSERM, IRMETIST, U1313, Poitiers, France.

¹⁰Institute of Functional Biology and Genomics (IBFG), Universidad de Salamanca, CSIC, Salamanca, Spain.

¹¹Institute of Biomedical Research of Salamanca (IBSAL), Hospital Universitario de Salamanca, Salamanca, Spain.

¹²Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Madrid, Spain.

¹³Universite Paris-Saclay, CEA, CNRS, MIRCen, Laboratoire des Maladies Neurodegeneratives, Fontenay-aux-Roses, France.

¹⁴Centro de Estudios Científicos, Valdivia, Chile.

¹⁵Universidad San Sebastián, Facultad de Medicina y Ciencia, Valdivia, Chile.

¹⁶Current address: Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, "G. D'Alessandro", University of Palermo. Palermo 90127, Italy.

¹⁷These authors contributed equally.

¹⁸These authors jointly supervised this work.

*Correspondence: <u>giovanni.marsicano@inserm.fr</u> (G.M.) <u>ignacio.fernandez-moncada@inserm.fr</u> (I.F-M.)

Inventory of Supporting Information

Supplementary Fig. 1 – Differential effect of cannabinoids on astrocyte lactate level.

Supplementary Fig. 2 – The basal lactate level and accumulation upon mitochondria inhibition is not altered by CB1 receptor subcellular localization.

Supplementary Fig. 3 – Activation of astroglial CB1 receptors increases lactate production.

Supplementary Fig. 4 – The PKC signaling controls the CB1 receptor-mediated intracellular lactate increase.

Supplementary Fig. 5 – The mitochondrial localization of CB1 receptors is not necessary for physiological novel object exploration.

Supplementary Fig. 6 – Inhibition of the phosphorylated pathway impairs long-term NOR memory in WT mice and in lactate-treated GFAP-CB1-KO mice.

Supplementary Fig. 7 – Activation of HCA1R promotes a biased glucose metabolism.

Supplementary Fig. 8 – Lactate requires the phosphorylated pathway to potentiate NMDAR function.

Supplementary Fig. 9 – Lactate rescues the THC-mediated impairment in novel object exploration via HCAR1 signaling and L-serine production.

Supplementary Fig. 10 – A lactate-dependent shift of glycolysis mediates synaptic and cognitive processes.

Supplementary Table 1 – Details of the double-viral rescue approach to study mtCB1 receptor involvement in NOR performance

Supplementary Table 2 – Statistics details of Main Figures.

Supplementary Table 3 – Statistics details of Supplementary Figures.

Supplementary Figure 1 – Differential effect of cannabinoids on astrocyte lactate level. a, Intracellular lactate imaging in astrocytes previously incubated with WIN55 (2 μ M) or vehicle (DMSO) for 24 hours. After treatment, and to determine the basal lactate level (occupancy), cells were imaged and exposed sequentially to an OXPHOS blocker (5 mM sodium azide), pyruvate (10 mM) and lactate (10 mM). R₀, basal ratio. R_{min}, minimum ratio. R_{max}, maximum ratio. Data was normalized to R_{min} to emphasize the difference in R₀. **b**, Basal lactate level (occupancy) after 24 hours treatment with WIN55 (2 μ M) or vehicle (DMSO). Data was computed as occupancy = (R₀-R_{min})/(R_{max⁻Rmin}), using R₀, R_{min} and R_{max} from experiments similar to panel A. Vehicle, n=3, 26 cells. WIN55, n=3, 25 cells. **c**, Intracellular lactate imaging in astrocytes acutely exposed to WIN55 (2 μ M). BL = baseline. **d**, Summary of intracellular lactate level at baseline (BL) and after 3 min exposure to WIN55 (2 μ M), in experiments similar to Supplementary Fig. 1C, n=3, 26 cells. Data correspond to representative cells (**a**,**c**). Circles in scatter and before-after plots correspond to single cells (**b**,**d**). Statistical analysis was performed using a two-tailed unpaired t-test (**b**) and two-tailed paired t-test (**d**). See Supplementary Table 3 for more details. Source data are provided as a Source Data file.

b

1 min

0

0.99-

3

2-

1-

0

Half-maximal time (min)

Rate = $(A_2 - A_1)/4dx$

ns

Supplementary Figure 2 – The basal lactate level and accumulation upon mitochondria inhibition is not altered by CB1 receptor subcellular localization. a. Intracellular lactate imaging in astrocytes. To determine the basal lactate level (occupancy), cells exposed sequentially to WIN55 (1 µM), OXPHOS block (5 mM azide), Oxamate (6 mM) and AR-C155858 (1 µM). R₀, basal ratio. R_{min}, minimum ratio. R_{max}, maximum ratio. Average of 4 independent experiments. Cells: WT=158, KO=145, DN22=154. b, Basal lactate level (occupancy) in CB1-WT, CB1-KO and DN22-CB1-KI astrocytes. Data was computed as occupancy = $(R_0 - R_{min})/(R_{max} - R_{min})$, using R_0 , R_{min} and R_{max} obtained from experiments similar to panel A. N = 4, cells analyzed: CB1-WT=158, CB1-KO=145, DN22-CB1-KI =154. c, Basal lactate production rates in WT, KO and DN22 astrocytes. N=4 d, Intracellular lactate accumulation induced by OXPHOS block (5 mM sodium azide). Average of several cells in a representative experiment (CB1-WT=32, CB1-KO=48, DN22-CB1-KI = 36 cells). e, Summary of intracellular lactate levels after 2 min of OXPHOS block (5 mM sodium azide), in experiments similar to those shown in panel C. CB1-WT: n=7, 247 cells. CB1-KO: n=7, 227 cells. DN22-CB1-KI: n=6, 205 cells. f, Representative non-linear fitting of a sigmoidal model (Boltzmann equation, on top) to the lactate increase induced by OXPHOS blocking. The fitted parameters A1, A2, x' and dx were used to compute the amplitude, half-maximal time and increase rate presented in panel G-I. T_{block}, time of exposure to OXPHOS blocker sodium azide. g, Amplitude of lactate changes induced by OXPHOS block obtained from a non-linear fitting data. CB1-WT: n=7; CB1-KO: n=7; DN22-CB1-KI: n=6. h, Half-maximal time of lactate changes induced by OXPHOS block obtained from a non-linear fitting data. CB1-WT: n=7; CB1-KO: n=7; DN22-CB1-KI: n=6. I, Half-maximal time of lactate changes induced by OXPHOS block obtained from a non-linear fitting data. CB1-WT: n=7; CB1-KO: n=7; DN22-CB1-KI: n=6. Data corresponds to the experiments average and represented as mean+SEM (a,d). Circles in scatter plots correspond to single cells (b,e). Bars correspond to experiments average (mean+SEM) and circles represent individual experiment average (b,c,e,g,h,i). Statistical analysis was performed using Kruskal-Wallis test followed by Dunn's multiple comparison test (b), One-way ANOVA followed by Tukey's multiple comparison test (c,e,g,h,i). See Supplementary Table 3 for more details. Source data are provided as a Source Data file.

Supplementary Figure 3 – Activation of astroglial CB1 receptors increases lactate production. a, Transport stop protocol for measurement of lactate production. Diclofenac is a broad inhibitor of monocarboxylate transporter (MCT) activity. The blockade of MCT causes an intracellular lactate accumulation that is proportional to its rate of production. **b**, Summary of two sequential measurements of basal lactate production with diclofenac. N=4, 95 cells analyzed. **c**, Measurement of lactate production before and during exposure to WIN55 (1 μ M). The production rate is indicated with a solid line above the corresponding lactate accumulation. **D**, Summary of the lactate production rates before (pale blue circles) and during exposure to WIN55 (grey circles), computed from experiments similar to panel E. N=4, 102 cells. Data corresponds to representative cell I. Circles in before – after plots correspond to single cells (**b**,**d**). Bars correspond to experiments average (mean<u>+</u>SEM) and circles represent individual experiment average (**b**,**d**). Statistical analysis was performed using a paired two-tailed paired t-test (**b**,**d**). See Supplementary Table 3 for more details. Source data are provided as a Source Data file.

Supplementary Figure 4 – The PKC signaling controls the CB1 receptor-mediated intracellular lactate increase. **a**, Intracellular lactate measurement during exposure two sequential exposure to WIN55 (1 μ M). N=1, 42 cells. **b**, Quantification of lactate change induced by the first (blue) and second (grey) WIN55 exposure. N=4, 114 cells analyzed. **c**, Intracellular lactate measurement during the sequential exposure to WIN55 (1 μ M), Go 6983 (5 μ M) and WIN55 + Go 6983. N=1, 40 cells. Data corresponds to the average of a single experiment (**a**,**d**). Circles in before – after plots correspond to single cells (**b**). Bars correspond to experiments average (mean<u>+</u>SEM) and circles represent individual experiment average (**b**). Statistical analysis was performed using a paired two-tailed paired t-test (**b**). See Supplementary Table 3 for more details. Source data are provided as a Source Data file.

HPC-GFAP-CB1-KO HPC-GFAP-CB1-RS

HPC-GFAP-DN22-CB1-RS

Supplementary Figure 5 – The mitochondrial localization of CB1 receptors is not necessary for physiological novel object exploration. a, Histological analysis of the expression of CB1-GFP and the astrocyte marker GFAP, in hippocampus sections obtained from HPC-GFAP-CB1-KO and HPC-GFAP-CB1-WT-RS. The white boxes inside the HPC-GFAP-CB1-WT-RS images correspond to the magnification site shown in the third column of images. b, Quantification of GFP-positive cells in the CA1 region of the hippocampus of HPC-GFAP-CB1-WT-RS mice. N = 4 mice, 30 - 91 cells analyzed in 4 sections per mice. c, Exploration times of familiar versus novel objects in the NOR task, from Control (blue lines), HPC-GFAP-CB1-KO (black lines), HPC-GFAP-CB1-WT-RS (teal lines) and HPC-GFAP-DN22-CB1-RS (red lines) animals, n = 7-9 mice per condition. A single line corresponds to an individual animal. See Supplementary Table 3 for more details. Source data are provided as a Source Data file.

Supplementary Figure 6 – Inhibition of the phosphorylated pathway impairs long-term NOR memory in WT mice and in lactate-treated GFAP-CB1-KO mice. a, Exploration time of familiar versus novel objects in the NOR task of GFAP-CB1-WT (blue lines) and GFAP-CB1-KO mice (black lines) mice, treated either with vehicle (veh), 1 g/kg lactate (Lac) or 0.5 g/kg L-serine (L-Ser), immediately after the acquisition phase. GFAP-CB1-WT, n=13-18 animals. GFAP-CB1-KO, n= 15-23 animals. b, NOR performance in wild-type mice treated either with vehicle or incremental doses of NCT-503. N=7-15 mice per condition. c, Exploration time of familiar versus novel object in the NOR task of wild-type mice treated either with vehicle or incremental doses of NCT-503. N= 7-15 mice per condition. d, Exploration time of familiar versus novel object in the NOR task of wild-type mice treated either with vehicle or incremental doses of NCT-503. N= 7-15 mice per condition time of familiar versus novel object in the NOR task of wild-type mice treated either with vehicle or incremental doses of NCT-503. N= 7-15 mice per condition time of familiar versus novel object in the NOR task of wild-type mice treated either with vehicle or incremental doses of NCT-503. N= 7-15 mice per condition time of familiar versus novel object in the NOR task, of mice treated either

with vehicle + 6 mg/kg NCT-503 (NCT), 1 g/kg lactate + 6 mg/kg NCT-503 (NCT + Lac) or 0.5 g/kg Lserine + 6 mg/kg NCT-503 (NCT + L-Ser), immediately after the acquisition phase. GFAP-CB1-WT mice (blue lines), n=6-12 animals. GFAP-CB1-KO mice (black lines), n= 9-16 animals. A single line corresponds to an individual animal (\mathbf{a} , \mathbf{c} , \mathbf{d}). Data is presented as scatter plot with the line and whisker corresponding to the mean<u>+</u>SEM and circles to individual animals (\mathbf{b}). Statistical analysis was performed with a One-way ANOVA followed by Tukey's multiple comparison test (\mathbf{b}). See Supplementary Table 3 for more details. Source data are provided as a Source Data file.

Supplementary Figure 7 – Activation of HCA1R promotes a biased glucose metabolism. a, Transport stop protocol for measurement of glucose consumption. Cytochalasin B is an inhibitor of glucose transporter (GLUT) activity. The blockade of GLUT causes an intracellular glucose decrease that is proportional to its rate of consumption by hexokinase (HK), the first enzyme of glycolysis. **b**, Intracellular glucose measurement during exposure to cytochalasin B (CytoB, 20 μ M). Astrocytes were treated with 3,5-DHBA (1 mM) for 15 min before exposure to CytoB. **c**, Complete trace of the Fig. 3G intracellular lactate measurement during exposure to 3,5-DHBA, showing the two-point calibration used for transforming the fluorescent ratio to concentration. **d**, Quantification of lactate changes induced by 3,5 DHBA obtained from similar experiments as shown in Fig 3G. N = 6, 222 cells. **e**, Numerical simulation of intracellular lactate concentration (normalized to baseline) with basal E = 0.5, during a two-fold increase in glycolysis. During this stimulation, a decrease in glucose-topyruvate/lactate conversion (E*) was simulated. The recorded increase in intracellular lactate concentration induced by 3,5-DHBA (see methods) is marked by a discontinuous line. **f**, Numerical simulation of intracellular lactate concentration (normalized to baseline) with basal E = 0.9, during a two-fold increase in glycolysis. During this stimulation, a decrease in glucose-topyruvate/lactate conversion (E^*) was simulated. The recorded increase in intracellular lactate concentration induced by 3,5-DHBA (see methods) is marked by a discontinuous line. **g**, Summary of the E^* values required to obtain the observed intracellular lactate concentration induced by 3,5-DHBA for each basal E simulated. Data corresponds to representative cells (**b**). Data corresponds to the average (mean+SEM) of representative of experiment (**c**). Circles in scatter plot correspond to individual cells (**d**). Bars correspond to experiments average (mean+SEM) and circles represent experiment average (**d**). Solid line corresponds to a single numerical simulation (**e**,**f**). Source data are provided as a Source Data file.

Supplementary Figure 8 – Lactate requires the phosphorylated pathway to potentiate NMDAR function. **a**, Representative averaged traces from 20 consecutives sweeps evoked in the presence of, before (in magenta) and after bath application of D -AP5 (50 μ M) + D -serine (50 μ M). Quantification of the NMDAR-fEPSP slopes in presence of D-serine (50 μ M), before and after application D-AP5 (50 μ M) are shown in the bar plot, n=5. **b**, NMDAR-mediated fEPSP slopes in the presence of lactate (data from Fig. 4A, n=9) and lactate + NCT-503 (data from Fig. 4D, n=6). **c**, NMDAR-fEPSP slopes induced by D-serine (same as Fig. 4A, n=6) and D-serine after NCT-503 preincubation (data from Fig. 4D, n=6). Bars correspond to experiments average (mean±SEM) and circles represent individual experiment average (**a**). Data corresponds to the experiments average and represented as mean±SEM. Data points were averaged every 5 mins (**b**,**c**). Statistical analysis was performed using a two-tailed paired t-test (**a**) and two-way ANOVA (**b**,**c**). See Supplementary Table 3 for more details. Source data are provided as a Source Data file.

Supplementary Figure 9 – Lactate rescues the THC-mediated impairment in novel object exploration via HCAR1 signaling and L-serine production. a, Intracellular lactate imaging in CB1-WT astrocytes exposed to WIN55 (1 μ M) during 70 min. After this, cells were exposed to oxamate to deplete lactate levels for biosensor calibration. b, Intracellular lactate imaging in DN22-CB1-KI astrocytes exposed to WIN55 (1 µM) during 70 min. After this, cells were exposed to oxamate to deplete lactate levels for biosensor calibration. c, Exploration times of familiar versus novel objects in the NOR task, from Control (blue lines), GFAP-CB1-KO (black lines), GFAP-CB1-WT-RS (teal lines) and GFAP- DN22-CB1-RS (red lines) animals treated with THC (5 mg/kg immediately after the acquisition phase. N = 7 - 13 mice per condition. d, Exploration time of familiar versus novel objects in the NOR task of mice treated with an IP injection of either vehicle (veh) + saline (sal), vehicle + lactate (lac, 1 g/kg), THC (5 mg/kg) + saline or THC (5 mg/kg) + lactate (1 g/kg), immediately after the acquisition phase. N= 10 - 12 mice per condition. e, Exploration time of familiar versus novel objects in the NOR task of mice treated with an IP injection of either vehicle (veh) or THC (5 mg/kg), immediately after the acquisition phase. After 1-hour post-THC treatment, mice were treated with an IP injection of either saline (sal), lactate (lac, 1g/kg), 3,5-DHBA (240 mg/kg), NCT-503 (NCT, 6 mg/kg) + saline or NCT-503 + lactate. N = 8 – 49 mice per condition. Experiments correspond to a representative cell (**a**, **b**). A single line corresponds to an individual animal (**c**, **d**, **e**). See Supplementary Table 3 for more details. Source data are provided as a Source Data file.

Supplementary Figure 10 – A lactate-dependent shift of glycolysis mediates synaptic and cognitive processes. Lactate promotes cognitive performance via a cascade involving HCAR1 and phosphorylated pathway (PP) activity, thereby increasing L-/D-serine levels and NMDAR activity to allow an adequate NOR memory consolidation. Importantly, whereas transient activation of non-mitochondrial CB1 receptors promote this novel lactate signaling to promote cognitive performance, the persistent activation of mitochondrial CB1 receptors impairs the lactate signaling and disrupt the consolidation of NOR memory via a specular mechanism. The mice cartoon was adapted from a picture provided by Servier Medical Art (https://smart.servier.com/smart_image/mouse-3/), licensed under a Creative Commons Attribution 4.0 Unported License.

Supplementary Table 1.

Details of the double-viral rescue approach to study mtCB1 receptor involvement in NOR performance

Mice	AAV-1*	AAV-2*	Outcome	Mitochondrial Localization of CB1?	Name of used mutant mice
CB1-flox	GFAP-GFP	CAG-DIO-Empty	CB1-WT	yes	Control
CB1-flox	GFAP-Cre	CAG-DIO-Empty	CB1-KO in GFAP positive cells	no	HPC-GFAP-CB1-KO
CB1-flox	GFAP-Cre	CAG-DIO-CB1- GFP	Re-expression of CB1-WT in GFAP positive cells (CB1 in all subcellular locations)	yes	HPC-GFAP-CB1-RS
CB1-flox	GFAP-Cre	CAG-DIO-DN22- CB1-GFP	Re-expression of DN22-CB1 in GFAP positive cells (CB1 excluded from mitochondria)	no	HPC-GFAP-DN22- CB1-RS

*Injected into the hippocampus (HPC)

Supplementary Table 2 - Main figures statistics details

Group sizes, statistical tests and P-values (page 1/2)

Figure	Group	N	Mean	SEM	Statistical test	P value	Multiple comparisons (reported in figure)	P value
Fig. 1C	CB1-WT	7	0.0162	0.0029			CB1-WT vs. CB1-KO	0.0133
	СВ1-КО	7	-0.0005	0.0025	Kruskal Wallis test	< 0.0001	CB1-WT vs. DN22-CB1	>0.9999
	DN22-CB1	6	0.0211	0.0038			CB1-KO vs. DN22-CB1	0.0021
Fig 1F Fig. 1l	Sniffers	3	-0.0105	0.0069			Sniffers vs Sniffers + Astro CB1-WT	0.0004
	Sniffers + Astro CB1-WT	7	0.0959	0.0134	One way ANOVA	0.0001	Sniffers vs Sniffers + Astro CB1-KO	0.8163
	Sniffers + Astro CB1-KO	4	0.0022	0.0049			Sniffers + Astro CB1-WT vs Sniffers + Astro CB1-KO	0.0005
	Basal	4	0.0341	0.005184	Two table duration of T to at	10,0001		
	Go 6983	4	-0.01105	0.004554	Two talled paired 1-test	<0.0001		
	Control	7	0.306	0.043			Control vs. HPC-GFAP-CB1-KO	0.0066
	HPC-GFAP-CB1-KO	7	-0.024	0.038			Control vs. HPC-GFAP-CB1-RS	>0.9999
Fig 3P	HPC-GFAP-CB1-RS	8	0.306	0.102		0.002	Control vs. HPC-GFAP-DN22-CB1-RS	0.9962
Fig. 20	HPC-GFAP-DN22-CB1-RS	9	0.287	0.033	One way ANOVA	0.002	HPC-GFAP-CB1-KO vs. HPC-GFAP-CB1-RS	0.0049
							HPC-GFAP-CB1-KO vs. HPC-GFAP-DN22-CB1-RS	0.0067
							HPC-GFAP-CB1-KO vs. HPC-GFAP-DN22-CB1-RS	0.9957
	Vehicle : GFAP-CB1-WT	50	0.3637	0.0246	Two way ANOVA		Vehicle:GFAP-CB1-WT vs. Vehicle:GFAP-CB1-KO	< 0.0001
	Vehicle : GFAP-CB1-KO	49	0.0005	0.0239	Interaction	< 0.0001	Vehicle:GFAP-CB1-WT vs. Lactate:GFAP-CB1-WT	0.9958
	Lactate : GFAP-CB1-WT	13	0.2927	0.0547	Treatment	< 0.0001	Vehicle:GFAP-CB1-WT vs. L-Serine:GFAP-CB1-WT	0.2718
	Lactate : GFAP-CB1-KO	15	0.2760	0.0407	Genotype	< 0.0001	Vehicle:GFAP-CB1-WT vs. 3,5 DHBA:GFAP-CB1-WT	0.9995
	3,5-DHBA : GFAP-CB1-WT	15	0.4190	0.0331			Vehicle:GFAP-CB1-WT vs. NCT:GFAP-CB1-WT	0.8037
	3,5-DHBA : GFAP-CB1-KO	10	0.3046	0.0440			Vehicle:GFAP-CB1-WT vs. NCT + Lac:GFAP-CB1-WT	>0.9999
	L-serine : GFAP-CB1-WT	16	0.2216	0.0419			Vehicle:GFAP-CB1-WT vs. NCT + L-Serine:GFAP-CB1-WT	0.9501
	L-serine : GFAP-CB1-KO	17	0.3246	0.0403			Vehicle:GFAP-CB1-WT vs. NCT + 3,5-DHBA:GFAP-CB1-WT	>0.9999
	Vehicle : GFAP-CB1-WT : NCT-503	17	0.2631	0.0532			Vehicle:GFAP-CB1-KO vs. Lactate:GFAP-CB1-KO	< 0.0001
	Vehicle : GFAP-CB1-KO : NCT-503	14	-0.0097	0.0533			Vehicle:GFAP-CB1-KO vs. L-Serine:GFAP-CB1-KO	< 0.0001
	Lactate : GFAP-CB1-WT : NCT-503	6	0.3656	0.0701			Vehicle:GFAP-CB1-KO vs. 3,5 DHBA:GFAP-CB1-KO	0.0001
	Lactate : GFAP-CB1-KO : NCT-503	9	-0.0484	0.0467			Vehicle:GFAP-CB1-KO vs. NCT:GFAP-CB1-KO	>0.9999
Fig. 3 B,D	3,5-DHBA : GFAP-CB1-WT : NCT-503	9	0.2565	0.0480			Lactate:GFAP-CB1-WT vs. Lactate:GFAP-CB1-KO	>0.9999
	3,5-DHBA : GFAP-CB1-KO : NCT-503	9	0.0599	0.0460			Lactate:GFAP-CB1-WT vs. L-Serine:GFAP-CB1-WT	0.9995
	L-serine : GFAP-CB1-WT : NCT-503	11	0.3655	0.0926			Lactate:GFAP-CB1-WT vs. 3,5 DHBA:GFAP-CB1-WT	0.8778
	L-serine : GFAP-CB1-KO : NCT-503	16	0.3019	0.0354			Lactate:GFAP-CB1-WT vs. NCT + Lac:GFAP-CB1-WT	>0.9999
							L-Serine:GFAP-CB1-WT vs. L-Serine:GFAP-CB1-KO	0.951
							L-Serine:GFAP-CB1-KO vs. 3,5 DHBA:GFAP-CB1-KO	>0.9999
							3,5 DHBA:GFAP-CB1-WT vs. 3,5 DHBA:GFAP-CB1-KO	0.9689
							3,5 DHBA:GFAP-CB1-WT vs. NCT:GFAP-CB1-WT	0.4767
							3,5 DHBA:GFAP-CB1-WT vs. NCT + 3,5-DHBA:GFAP-CB1-WT	>0.9999
							NCT:GFAP-CB1-WT vs. NCT:GFAP-CB1-KO	0.0026
							NCT + Lac:GFAP-CB1-WT vs. NCT + Lac:GFAP-CB1-KO	0.0013
							NCT + L-Serine:GFAP-CB1-WT vs. NCT + L-Serine:GFAP-CB1-KO	>0.9999
							NCT + 3,5-DHBA:GFAP-CB1-WT vs. NCT + 3,5-DHBA:GFAP-CB1-KO	0.0134
Fig 3E	Control	63 cells	0.1014	0.0086	Mann-Whitney	< 0.0001		
	3,5-DHBA	48 cells	0.2011	0.0148		0.5927 0.0032 0.6782		
Fig. 4A	Lactate	8	124	11.86	Two-tailed unpaired T-test			
-	D-serine	5	127.7	12.25				
Fig. 4B	Lactate	8	0.09335	0.01583	Two-tailed unpaired T-test			
-	D-Serine	5	0.294	0.06443				
Fig. 4C	baseline	6	100.1	0.1091	Two-tailed paired T-test			
-	Lactate	6	102.1	4.389				
Fig. 4D	Lastata - NGT 502	C	111.1	6.615				
	Lactate + NCT-503	ь	111.4	6.615	Two-tailed unpaired T-test	0.0212		
	D-Serine + NCI-503	ь	138.8	7.5/6				
	Daseline (NCI-503)	ь	99.92	0.1241	Two-tailed paired T-test	0.143		
	Lactate + NC1-503	6	111.4	6.615				
Fig. 4F	Baseline	6	101	0.747	Two-tailed paired T-test	0.0096		
	3,5-DHBA	6	128.8	6.888				
	Baseline	8	100.6	0.8498	Two-tailed paired T-test	0.4576		
	D-serine	8	104.2	4.463				

Supplementary Table 2 - Main figures statistics details

Group sizes, statistical tests and P-values (page 2/2)

Fig. 5A	5 min post WIN55	11	0.0149	0.0024		<0.0001	baseline vs. 5 min	0.0277
	10 min post WIN55	4	0.0085	0.0045			baseline vs. 10 min	0.3801
	20 min post WIN55	4	0.0037	0.0042			baseline vs. 20 min	0.9626
	30 min post WIN55	4	-0.0001	0.0049	Main and a ff a star ward all		baseline vs. 30 min	>0.9999
	40 min post WIN55	4	-0.0042	0.0040	ivilxed-effects model		baseline vs. 40 min	0.9315
	50 min post WIN55	4	-0.0110	0.0049			baseline vs. 50 min	0.1578
	60 min post WIN55	4	-0.0179	0.0078			baseline vs. 60 min	0.007
	70 min post WIN55	4	-0.0264	0.0090			baseline vs. 70 min	< 0.0001
	5 min post WIN55	10	0.0242	0.0030		0.001	baseline vs. 5 min	0.0002
	10 min post WIN55	4	0.0245	0.0069			baseline vs. 10 min	0.0013
	20 min post WIN55	4	0.0202	0.0082	1		baseline vs. 20 min	0.0087
	30 min post WIN55	4	0.0165	0.0072	Mixed-effects model		baseline vs. 30 min	0.0399
Fig. 5B	40 min post WIN55	4	0.0155	0.0060			baseline vs. 40 min	0.0573
	50 min post WIN55	4	0.0125	0.0029			baseline vs. 50 min	0.1711
	60 min post WIN55	4	0.0095	0.0011			baseline vs. 60 min	0.4141
	70 min post WIN55	4	0.0081	0.0034			baseline vs. 70 min	0.5788
	Control	8	-0.0226	0.1276		0.002	Control vs. HPC-GFAP-CB1-KO	0.9981
Fig. 5C	HPC-GFAP-CB1-KO	7	-0.0466	0.1176			Control vs. HPC-GFAP-CB1-RS	0.9991
	HPC-GFAP-CB1-RS	13	-0.0062	0.0545	0		Control vs. HPC-GFAP-DN22-CB1-RS	0.0158
	HPC-GFAP-DN22-CB1-RS	13	0.3594	0.0679	One way ANOVA		HPC-GFAP-CB1-KO vs. HPC-GFAP-CB1-RS	0.9884
							HPC-GFAP-CB1-KO vs. HPC-GFAP-DN22-CB1-RS	0.0136
							HPC-GFAP-CB1-KO vs. HPC-GFAP-DN22-CB1-RS	0.0071
	Vehicle : Saline	12	0.3246	0.0444	Two way ANOVA		Saline:Vehicle vs. Saline:THC	0.0003
	THC : Saline	11	-0.0178	0.0610	Interaction	0.505	Saline:Vehicle vs. Lactate:Vehicle	0.7752
Eig ED	Vehicle : Lactate	10	0.3953	0.0620	Lactate	0.5317	Saline:Vehicle vs. Lactate:THC	
Fig JD	THC : Lactate	10	-0.0200	0.0484	THC	< 0.0001	Saline:THC vs. Lactate:Vehicle	
							Saline:THC vs. Lactate:THC	>0.9999
							Lactate:Vehicle vs. Lactate:THC	< 0.0001
	Vehicle : Saline	42	0.305362	0.027283	Two way ANOVA		Saline + Vehicle vs. Saline + THC	< 0.0001
	THC : Saline	24	0.015965	0.04061	Interaction	0.0001	Saline + Vehicle vs. Lactate 1h after + Vehicle	
	Vehicle : Lactate	21	0.339832	0.051617	Treatment 2	< 0.0001	Saline + Vehicle vs. Lactate 1h after + THC	
	THC : Lactate	23	0.387984	0.051963	THC	< 0.0001	Saline + Vehicle vs. 3,5 DHBA 1h after + Vehicle	>0.9999
	Vehicle : 3,5-DHBA	8	0.339324	0.03525			Saline + Vehicle vs. 3,5 DHBA 1h after + THC	>0.9999
	THC : 3,5-DHBA	9	0.306085	0.062923			Saline + Vehicle vs. NCT + Vehicle	0.982
	Vehicle : Saline : NCT-503	14	0.380169	0.049633		Saline + Vehicle vs. NCT + THC		0.0016
	THC : Saline : NCT-503	12	0.006681	0.055404		Saline + THC vs. Lactate 1h after + THC		< 0.0001
Fig. 5E	Vehicle : Lactate : NCT-503	18	0.300849	0.042664	Saline + THC vs. 3,5 DHBA 1h after + Vehi		Saline + THC vs. 3,5 DHBA 1h after + Vehicle	0.0119
	THC : Lactate : NCT-503	17	0.054124	0.083171			Saline + THC vs. 3,5 DHBA 1h after + THC	0.0252
							Saline + THC vs. NCT + Vehicle	< 0.0001
							Saline + THC vs. NCT + THC	>0.9999
							Saline + THC vs. Lactate + NCT + THC	>0.9999
							Lactate 1h after + Vehicle vs. Lactate 1h after + THC	0.9992
							Lactate 1h after + Vehicle vs. Lactate + NCT + THC	0.003
							3,5 DHBA 1h after + Vehicle vs. 3,5 DHBA 1h after + THC	>0.9999
							Lactate + NCT + Vehicle vs. Lactate + NCT + THC	0.0302

Supplementary Table 3 - Supplementary figures statistics details

Group sizes, statistical tests and P-values

Figure	Group	Ν	Mean	SEM	Statistical test	P value	Multiple comparisons (reported in figure)	P value
Ext. data Fig 1B	Vehicle	3	0.7325	0.01123	Two tailed uppoined T test	<0.0001		
	WIN55	3	0.5498	0.02122	Two-tailed unpaired T-test	<0.0001		
Ext. data Fig 1D	Baseline (BL)	3	0.9929	0.002431	Two table duration of T to at	-0.0001		
	WIN55	3	1.032	0.001816	I wo-talled paired I-test	<0.0001		
	CB1-WT	4	0.4798	0.05392			CB1-WT vs. CB1-KO	0.9804
Ext. data Fig 2B	СВ1-КО	4	0.5483	0.03634	Kruskal-Wallis test	0.6298	CB1-WT vs. DN22-CB1	>0.9999
	DN22-WT	4	0.5541	0.0473			CB1-KO vs. DN22-CB1	>0.9999
	CB1-WT	4	0.06298	0.01233	One way ANOVA		CB1-WT vs. CB1-KO	0.449
Ext. data Fig 2C	СВ1-КО	4	0.04552	0.009156		0.4612	CB1-WT vs. DN22-CB1	0.6554
	DN22-WT	4	0.05058	0.007127			CB1-KO vs. DN22-CB1	0.9295
	CB1-WT	7	0.0385	0.004412	One way ANOVA		CB1-WT vs. CB1-KO	0.3496
Ext. data Fig 2D	СВ1-КО	7	0.02675	0.006981		0.3815	CB1-WT vs. DN22-CB1	0.7466
	DN22-WT	6	0.0322	0.00623			CB1-KO vs. DN22-CB1	0.8022
First plane File 2D	First measurement	4	0.02854	0.001203	Two-tailed paired T-test	0.2564		-
Ext. data Fig 3B	Second measurement	4	0.03095	0.002664				
Evet data Fig 2D	Basal	4	0.02441	0.0013	Two-tailed paired T-test	0.0217		
Ext. data Fig 3D	WIN55	4	0.03174	0.001944		0.0317		
	First measurement	4	0.02143	0.007549	Two tails duration of The st	0.391		
EXt. data Fig 4b	Second measurement	4	0.02148	0.007517	Two-talled paired T-test			
Fut data Fig FR	GFP (+) - GFAP (+)	4	93.81	0.762				
EXt. data Fig 56	GFP (+) - GFAP (-)	4	6.195	0.762				
	Vehicle	13	0.3688	0.02855	One way ANOVA	<0.0001	Vehicle vs. 5 mg/kg	0.9973
	5 mg/kg NCT-503	7	0.3407	0.06452			Vehicle vs. 5.75 mg/kg	0.7351
	5.75 mg/kg NCT-503	7	0.2842	0.03302			Vehicle vs. 6.5 mg/kg	0.0911
	6.5mg/kg NCT-503	15	0.2353	0.03493			Vehicle vs. 8 mg/kg	0.0056
	8 mg/kg NCT-503	8	0.1494	0.03349			Vehicle vs. 10 mg/kg	< 0.0001
	10 mg/kg NCT-503	8	-0.01882	0.06185			5 mg/kg vs. 5.75 mg/kg	0.964
							5 mg/kg vs. 6.5 mg/kg	0.4935
Ext. data Fig 6B							5 mg/kg vs. 8 mg/kg	0.0667
							5 mg/kg vs. 10 mg/kg	< 0.0001
							5.75 mg/kg vs. 6.5 mg/kg	0.9622
							5.75 mg/kg vs. 8 mg/kg	0.3556
							5.75 mg/kg vs. 10 mg/kg	0.0005
							6.5 mg/kg vs. 8 mg/kg	0.6613
							6.5 mg/kg vs. 10 mg/kg	0.0006
							8 mg/kg vs. 10 mg/kg	0.1195
Ext. data Fig 7D	3,5-DHBA	4	0.01303	0.001426		1		
Ext. data Fig 8A	D-serine	5	102.7	7.238	Two-tailed paired T-test	0.0001		
. .	D-serine + D-AP5	5	-5.945	2.604	· · · · , · · · · · ·			
Ext. data Fig 8B		N			Two way ANOVA			
	Lactate	9			Time x Treatment	0.0007		
	Lactate + NCT-503	5			Time	< 0.0001		
					Treatment	0.0127		
		N			Two way ANOVA	P value		
Ext. data Fig 8C	D-serine	6			Time x Treatment	0.0604		
	D-serine + NCT-503	4			Time	< 0.0001		
					Ireatment	0.6915		