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MOCHA’s advanced statistical modeling of scATAC-seq datae

nables functional genomic inference in large human cohorts



Reviewer #1 (Remarks to the Author):

This work provides an interesting and useful tool for analyzing scATAC-seq data. The major 

suggestions are: 1) the performance evaluation can be statistically improved by considering false 

positive discoveries and specificity; 2) the DAA/CAA performance evaluation of ArchR and Signac 

should be also based on the LRM outcome for a more informative comparison; 3) providing 

comparison/benchmarking for the network analysis and the longitudinal analysis.

Major concerns:

1. Design of the positive control overlaps with the performance comparison. The ground truth was 

generated using MACS2 on the pseudo-bulk data from the scATAC-seq data and the MOCHA LRM 

model was trained according to such ground truth data. Then the performance of MOCHA was 

compared with MACS2. This may cause potential confounding. Could the authors try various 

approaches of ground truth generation to mitigate confounding?

2. Sensitivity. The authors claimed that, because MOCHA identified more tiles as positive tiles, it is 

more sensitive. However, sensitivity is not defined as how many samples are predicted as positive, 

but how many positive samples are missed. Also, sensitivity is only meaningful when specificity is 

discussed at the same time, since a model that predicts every sample as positive will have 100% 

sensitivity but is not meaningful. Therefore, the claim of higher sensitivity is not supported by the 

results, and even MOCHA did show higher sensitivity, whether it was meaningful or not was not 

analyzed in the context of specificity.

3. Generalizability of the LRM model. Just wonder whether the parameters are shared across all i, 

j, and t? Or for every sample, cell type, and tile, a unique set of parameters needs to be learned? 

In the Method section, NK cells from the COVID dataset were mentioned as the training set. Did 

this mean that the parameters learned from NK cells were used for predicting accessibilities of 

other datasets and other cell types?

4. The loss function of the LRM model was not provided. Also no justification was provided for the 

necessity of the parameter \theta^{n}. Often if the loss function is suitable and the two classes in 

the training set are well-balanced, the “default” threshold, which is 0.5, is sufficient.

5. Unbalanced ground truth for training a logistic model. The positive and negative labels look 

extremely unbalanced (1.15M vs 750M). Could the authors discuss the impact of unbalanced 

classes on the model performance?

6. Zero inflation is not considered in the LRM component. The authors justified those technical 

dropouts in the scATAC-Seq data lead to unreliable results, and a major advantage of MOCHA is to 

use zero inflation correction to address this issue. The inputs for the prediction of tile accessibility 

using the LRM model are data with dropouts. However, zero inflations were not considered in LRM. 

Meanwhile, the inputs of the differential accessibility analysis and the co-accessibility analysis are 

fragments on tiles that are predicted to be accessible by LRM. Could the authors provide evidence 

and justifications on why zero inflations (dropouts) are not crucial for LRM, which is directly 

affected by dropouts, but are crucial for the differential accessibility analysis? Would it make more 

sense to handle zero inflation in the LRM component instead of in the DAA and CAA components?

7. Zero inflation: could the authors delve in more about the patterns of technical dropouts across 

cell types and samples to check whether dropouts were random? This would provide biological 

insights why zero inflation correction contribute to better performance.

8. Runtime (Fig 2h): It looks that MACS2 performs better when sampled cells > 50k. The authors 

argued that MOCHA performed better in practical cases. However, with the fast growth of the 

single cell omics data and the increasing need of analyzing samples in the contexts of large data 

repositories such as HuBMAP, Human Cell Atlas, and NCI Human Tumor Atlas Network, more 

practice cases will involve over 50k cells. So the performance of MOCHA is not as scalable as the 

other two methods. Also, could the authors provide insights into why MOCHA performs better in 

the range of 50 – 50k cells?

9. Potential positive false discoveries. Suppl Fig 3c suggested that MOCHA slightly identified more 

CTCF and TSS tiles than the other methods and the difference is marginal. However, MOCHA 

significantly identified more tiles. This raises the concern that whether the tiles MOCHA identified 

are more likely to be false discoveries.

10. The comparison of the DAA and CAA components in MOCHA with ArchR and Signac is 

entangled by the effects of the LRM model, since the input of ArchR and Signac are raw data, and 

the input of MOCHA DAA and CAA is based on the MOCHA LRM and thus involved more tiles. 

Therefore, the contribution of the zero-inflation correction in MOCHA DAA and CAA as well as the 



DAA and the CAA models in MOCHA cannot be clearly evaluated. Could the authors provide the 

DAA and the CAA of ArchR and Signac with the predicted assessable tiles using LRM?

11. Using the DAT annotation as the ground truth (Fig 2 b), the sensitivities of MOCHA for 

intragenic and distal regions are lower than ArchR and Signac. The overall sensitivity of the three 

methods is comparable. Specificity has not been compared, which makes it challenging to know 

whether the sensitivity is meaningful. Since MOCHA identified significantly more tiles (6,211) than 

Signac (1,266), but the sensitivity is comparable, likely the specificity of Signac is much better 

than MOCHA. In summary, according to Fig 2 b, it is likely that Signac significantly outperforms 

MOCHA.

12. The “Networks of alternatively regulated genes in early SARS-CoV-2 infection” and the 

“Longitudinal analysis of chromatin accessibility during COVID-19 recovery” sections are 

interesting but lacking comparisons with other approaches to demonstrate the performance of 

MOCHA. Could the authors indicate new discoveries that were previously not possible but now 

made possible by MOCHA? For example, how about comparing with state-of-arts approaches? Or, if 

the authors do not plan to claim novelty of these two components, how about comparing with LRM 

vs MACS2/HOMER and MOCHA vs ArchR/Signac to demonstrate what new or different knowledge 

or regulatory network and longitudinal patterns can be learned with MOCHA’s novel upstream 

models?

13. The authors have recently published a comprehensive platform PALMO on Nature 

Communications (https://www.nature.com/articles/s41467-023-37432-w) – and congratulations 

to the authors! Since the datasets and the functionalities of PALMO and MOCHA are partially 

overlapping, both tools were developed by the same lab (that is, the authors of this manuscript 

should be aware of PALMO), and PALMO was published 4 months ago before the submission of this 

manuscript (and was preprinted in Oct 2022), a comprehensive comparison of functionalities and 

performance between PALMO and MOCHA would help audience to understand the new values of 

MOCHA in the context of PALMO. Also, PALMO should be mentioned in the Introduction besides in 

the Result section.

Minor concerns:

1. Improving the readiness of figures. Some visualizations can be further improved and some 

conventions can be considered. Here are a few examples:

a. Color coding. For example, in Fib 2a, maybe different colors should be used for CD4 CTL TEM 

and CD8 TEM?

b. Orders. Fig 2 a: if the same order of cell types was used, it could improve readability.

c. Scales. Fig 2a, Fig 2b, etc. – using the same scales would help the comparisons.

d. Numbers: Fig 2b – if “400000” could be visualized as “400,000”, it would help. And it is 

inconsistent that, in the same Fig 2b, one subplot was visualized using “400000”, and the other as 

“3e+5”.

2. Method: sample preparation and data preparation info has been provided in the preprint and 

thus not necessary to be re-described in detail.

Reviewer #2 (Remarks to the Author):

In this paper, the authors developed a statistical approach, MOCHA to identify sample-specific cell-

type open chromatin regions using scATAC-seq data. They tested MOCHA to multiple single cell 

datasets such as COVID19, immunology and Hematopoiesis and demonstrated its outperformances 

over existing methods for detecting sample-specific chromatin accessibility, differential accessibility 

in covid, and co-accessibility across samples. Moreover, using detected OCRs, the paper further 

inferred regulatory networks linking TF binding sites, ligands to TSSs, revealing possible 

alternative gene regulatory mechanisms and longitudinal dynamics in covid.

Overall, the study was designed with reasonable rationale. Identifying sample-specific activities of 

chromatin (co-) accessibility at the cell type level is an emerging topic, so MOCHA provides a 

timely statistical tool. The paper was well organized, and the results were presented logically. 

However, I still have some major concerns, especially about the rigor of the methodology and 

evaluation.

1. It is unclear if MOCHA is a general method or specific for COVID/immune study. If former, the 

paper needs to demonstrate broader applications.



2. The logistic regression model for evaluating accessibility needs further clarification. The authors 

claimed the usefulness of normalized total counts, lamda_1 and almost downstream analyses 

seem only use lamda_1. However, how important the max count (lamda_2) contributes to the 

regression? If also important, it remains elusive that lamda_2 is not used in downstream DAT and 

CAA analyses. Moreover, the study specific prefactor S was insufficiently described without 

justification.

3. When comparing with MACS2 and HOMER, the authors should also report functional or disease 

enrichments (e.g., LDSC) of MOCHA OCRs in addition to CTCF sites and TSSs, like their other 

sections did.

4. MOCHA randomly selected 50 DATs with two clusters by K-Means. How sensitive would its 

performance be to those hyperparameters? Also, K-Means is also not robust to outliers. This 

concern applies to many other parameters. The authors need to justify selecting parameters and 

provide guidelines for the users, especially biologists.

5. The networks that the paper predicted were not fully gene regulatory networks. They only 

linked TF binding sites, ligands to TSSs (near promoters) so missed other key regulatory 

mechanisms such as distant regulatory elements (enhancers from scATAC-seq data), gene 

expression relationships (e.g., co-expression from many methods for predicting gene regulatory 

networks like SCENIC).

6. For longitudinal analysis, it is unclear that cofounding factors (e.g., sex, age, etc) were 

considered for detecting chromatin accessibility dynamics.

7. The significant p-values were reported inconsistently thru the paper, e.g., p-value, adjusted p, 

FDR.

Reviewer #3 (Remarks to the Author):

The manuscript describes MOCHA, a method primarily for carrying out comparisons of single cell 

ATAC-seq data between groups of subjects. The method also includes features for identifying 

alternative transcription-start-site regulation, and transcription factor-gene network construction 

from longitudinal data. More rigorous ways of comparing scATAC-seq data sets are needed, 

however, it is not clear that MOCHA is making a substantial contribution for reasons given below.

1. The manuscript correctly observes that in single cell analysis comparisons between treatment 

and control groups should be done on the level of subject rather than cell, as treating cell level 

data as replicates would artificially inflate the significance of differences. The analysis proposed is 

therefore based the aggregation of single cell data into pseudobulk representations for different 

cell types. Differential analysis is then based on comparisons of sample level pseudobulk 

aggregates for the cell types. The idea of using pseudobulk to make comparisons of single cell data 

has been previously evaluated by Junttila et al, for example, who compared 18 methods for the 

identification of differential expression changes between conditions from multisubject scRNA-seq 

data. Many of the methods assessed by Juntilla et al could also be used to compare scATAC-seq 

data.

Junttila, Sini, Johannes Smolander, and Laura L. Elo. "Benchmarking methods for detecting 

differential states between conditions from multi-subject single-cell RNA-seq data." Briefings in 

bioinformatics 23.5 (2022)

The authors should carry out more careful survey of single cell studies; relevant studies are not 

cited in the manuscript and there are likely to be many more.

2. Apart from the above mentioned scRNA-seq study, the MOCHA methodology is closely related to 

methods for bulk differential ChIP-seq or ATAC-seq peak calling, many of which are based on 

limma, DESeq2 or EdgeR. The following papers need to be cited. It is of critical importance that 

the methods described in these papers be included in benchmarking comparisons of differential 

accessible regions:

Gontarz, Paul, et al. "Comparison of differential accessibility analysis strategies for ATAC-seq data." 

Scientific reports 10.1 (2020)



Chen, Yang, Shue Chen, and Elissa P. Lei. "DiffChIPL: a differential peak analysis method for high-

throughput sequencing data with biological replicates based on limma." Bioinformatics 38.17 

(2022)

Stark, Rory, and Gordon Brown. "DiffBind: differential binding analysis of ChIP-Seq peak data." R 

package version 100.4.3 (2011)

Faux, Thomas, et al. "Differential ATAC-seq and ChIP-seq peak detection using ROTS." NAR 

Genomics and Bioinformatics 3.3 (2021): lqab059.

Qiu, Xintao, et al. "CoBRA: containerized bioinformatics workflow for reproducible ChIP/ATAC-seq 

analysis." Genomics, Proteomics and Bioinformatics 19.4 (2021)

3. Benchmarking of differential tiles between conditions is an important aspect of the paper and 

needs to be done rigorously. In the manuscript numbers of distinct genes and numbers of 

reactome pathways provide some anecdotal evidence that the method is working. However, a 

reliable gold standard of true differentially accessible regions is never established. To benchmark 

rigorously, gold standards need to be constructed to test both sensitivity and specificity. The 

benchmarking methodology used in the DESeq2 paper could be suitable for this. To test specificity, 

comparisons can be made of groups each containing a mixture of COVID+ and COVID- subjects, 

positives found in this analysis would be false positives. For sensitivity, the approach from the 

DESeq2 paper can be used: “we used experimental reproducibility on independent samples 

(though from the same dataset) as a proxy. We used a dataset with large numbers of replicates in 

both of two groups, where we expect that truly differentially expressed genes exist. We repeatedly 

split this dataset into an evaluation set and a larger verification set, and compared the calls from 

the evaluation set with the calls from the verification set, which were taken as truth.” The authors 

might also consider the concepts introduced in:

Tian, Luyi, et al. "Benchmarking single cell RNA-sequencing analysis pipelines using mixture 

control experiments." Nature methods 16.6 (2019)

Benchmarking in the current manuscript has not been done to an acceptable standard, and 

comparisons have not been made to the most relevant methods.

4. The dataset generated in this study involved numerous subjects and must have been done in 

several batches. Although batch effects are well known to impact single cell data such effects are 

not mentioned at all in the manuscript. It is important to provide the batch information and 

evaluate the degree to which batch effects could be influencing results. For example, when 

defining cell types do cells in different batches have similar chromatin accessibility, or do batches 

also define observed chromatin accessibility. A useful reference is:

Luecken, Malte D., et al. "Benchmarking atlas-level data integration in single-cell genomics." 

Nature methods 19.1 (2022): 41-50.

5. The MOCHA logistic regression model is used to create a matrix of accessibility on a sample by 

tile level. The procedure is used to collapse the single cell data into indicators of accessible tiles in 

given cell types and samples. The approach seems overly complicated in comparison with the 

DESeq/EdgeR/limma based methods, so comparisons will be important. Only lambda 2, the 

maximum number of fragments in a tile per cell seems to be truly related to single cell analysis. It 

is not clear how important this parameter is in the analysis and whether the need for this 

parameter could be obviated through simple filtering measures. For example, filtering identical 

fragments from the same cell or constraining the maximum number of fragments per tile per cell 

to 2. In addition, some description of what this parameter is achieving would be helpful.

6. Fig 2 shows total numbers of open tiles, and there is a threshold parameter that controls this 

number in MOCHA. The number of open tiles determined by MACS2 and HOMER could also be 

changed by altering cut-off parameters. In benchmarking it is not enough to define true accessible 

regions, as one can always get more tiles changing thresholds. Unless some way of showing 



specificity is included, this analysis is not meaningful.

7. Line 893: “We used a previously published promoter-capture HiC (pcHiC) resource43 which 

identified promoter-enhancer regulatory links.”

No justification is given for using HiC contacts as a gold standard for co-accessibility. First the 

manuscript should provide a motivation in terms of causality. The causal relationship between HiC 

and accessibility is not well understood and it is possible that chromatin accessibility causes HiC 

contacts rather than the other way round. Second, what HiC measures and its relationship to 

biology needs to be taken carefully into account. HiC is a protocol that measures, in some sense, 

proximity between genomic regions. It cannot be assumed that HiC precisely measures all the 

biologically relevant interactions between regions and only these. Third, the limitations in the 

specific HiC data will include some inaccuracy, limitations in sequencing depth, suboptimal 

experimental conditions etc. Overall, the case for HiC as a gold standard is not at all compelling.

8. The sections “Networks of alternatively regulated genes in early SARS-CoV-2 infection.” and 

“Longitudinal analysis of chromatin accessibility during COVID-19 recovery” describe results from 

the COVID data generated in the project but do not evaluate methodology or make any 

comparisons with other methods. The manuscript notes that “An in-depth, comprehensive analysis 

of our COVID19 cohort is beyond the scope of current work and will be presented in a follow-up 

paper.” It might be better to leave the longitudinal and gene network analyses for that paper.

9. Line 719 “we applied MACS2 37 ( '-g hs -f BED --nolambda --shift -75 --extsize 150 --broad', '-- 

model -n' ) to identify accessible peaks in the pseudobulk data, using previously published 

parameters for identifying peaks in scATAC-seq with the modification to call broad rather than 

narrow peaks.It is not clear why the --broad MACS2 option was used. Can some advantage be 

demonstrated? The –shift -75 –extsize 150 also doesn’t seem to be well motivated.

10. The abstract doesn’t describe the manuscript very well. The method seems to be primarily 

about analysing differential accessibility in multi-sample studies. The question of “proper” handling 

of technical dropout with zero-inflated methods, is highly debatable. Are the proposed heuristics 

proper handling? Identification of alternative transcription-starting-site regulation, and 

transcription factor–gene network construction from longitudinal scATAC-seq data are weak 

sections without benchmarking comparisons.

11. A complementary approach to single cell analysis is to carry out differential abundance testing. 

Comment on the relative strengths and weaknesses of the proposed approach relative to methods 

such as:

Dann, Emma, et al. "Differential abundance testing on single-cell data using k-nearest neighbor 

graphs." Nature Biotechnology 40.2 (2022): 245-253.

Reviewer #4 (Remarks to the Author):

This manuscript declared MOCHA, a tool to identify the gene regulatory programs when analyzing 

the scATAC-seq data. MOCHA exhibits the advantages in detecting differential accessible regions 

and chromatins than widely used tools including MACS2, HOMER, ArchR, Signac. The author also 

showed the good performance of MOCHA in the large dataset of COVID19 patients, and 

constructed ligand-TF-gene networks on alternative TSS regulations, which would be used to 

identify potential targets for COVID19 or other processes. And MOCHA can be integrated with 

exiting tools such as ArchR, chromVAR, as a valuable extension for analyzing scATAC-seq data. The 

following comments or issues need to be considered.

Comment!

1) Line105-107, MOCHA identifies sample- and cell type-specific open chromatin, within samples 



from different experiment and batches. How to distinguish and balance the bias from the batch 

effect using the MOCHA?

2) During tiling the genome, MOCHA splits the genome into 500 bp tiles, all the analyses are based 

on the tiles. But this strategy has been adopted by the previously published SnapATAC. Then what 

are the differences and advantages of MOCHA compared to SnapATAC?

3) Follow the comment, does MOCHA eventually split the genome into 500 bp tiles? How about 

other ranges, such as 1 kb, 1.5 kb, 2 kb, 5 kb, which is better?

4) The authors stated that MOCHA is more sensitive in detecting open chromatin regions than 

MACS2 and HOMER, and detects more differential chromatin than ArchR and Signac. However, the 

splitting genome into 500 bp tiles could somehow cause potential bias by differences in data 

qualities when using MOCHA, which needs to be discussed.

5) Fig 4a-c: what’s the meaning of type I and type II sites in fig 4a? It seems that there is no 

difference between early infection patients and control donors in fig 4b-c? How to understand and 

calculate the Accessibility Change in Fig 4b-c?

6) Fig 4f and line 309-310 in page 8: The authors identified 122 ligands. Are these ligands 

regulated by all the differential motifs as shown in fig 4e?

7) Line 318-320: This reviewer couldn’t find the data demonstrated the regulation in CD16 

monocyte.

8) How about the computer requirements to run the MOCHA?

9) page 13, row 504: An error labeling of “1x106 cells”.



Manuscript NCOMMS-23-29942-T 

Response to Reviewers 

We would like to thank all reviewers for their time and effort in reviewing our manuscript and 

providing insightful comments and feedback. We have incorporated their suggestions, clarified 

and improved the language where recommended, and added numerous additional analyses to 

address their concerns.   

We provide a line-by-line response below, with  

- the original reviewer comments in italics

- our responses in bold

For our revised manuscript, we have  

- left our original text without modification,  

- colored blue the added in-text modifications & revisions, and  

- striked through text we have removed.  

Reviewer #1 (Remarks to the Author): 

This work provides an interesting and useful tool for analyzing scATAC-seq data. The major 

suggestions are: 1) the performance evaluation can be statistically improved by considering 

false positive discoveries and specificity; 2) the DAA/CAA performance evaluation of ArchR and 

Signac should be also based on the LRM outcome for a more informative comparison; 3) 

providing comparison/benchmarking for the network analysis and the longitudinal analysis.  

Thank you! We appreciate the feedback and have provided clarifying comments where requested and 

several additional analyses to help address the concerns and recommendations provided by the 

reviewer. For the main suggestions, we have: 1) added simulation studies to address concerns 

regarding recall/sensitivity, Specificity (1-false positive rate, Supplemental Figure 8), and the F1-score 

(Harmonic mean of PPV, Recall), 2) clarified that the DAA/CAA performance evaluation of 

ArchR/Signac was based on the same LRM outcome (Fig 3), and 3) expanded benchmarking for 

differential analysis, network analysis, and longitudinal analysis (lines 174-175, 278-280, 311-314, 389-

390), and Supplemental Figure 11,14). 

Major concerns:  

1. Design of the positive control overlaps with the performance comparison. The ground truth 

was generated using MACS2 on the pseudo-bulk data from the scATAC-seq data and the 

MOCHA LRM model was trained according to such ground truth data. Then the performance of 

MOCHA was compared with MACS2. This may cause potential confounding. Could the authors 

try various approaches of ground truth generation to mitigate confounding?  



We agree that using peaks called by MACS2 as “ground truth” is not ideal, which we previously 

acknowledged in Discussion. We made two changes to address this concern.  

First,  we conducted a simulation study in which we simulated peaks in samples of various cell counts 

from simulated pseudo-bulked scATAC data and summarized MOCHA, MACS2, and HOMER’s ability to 

detect those known peak locations  (lines 200-203, 831-870, Supplementary Fig. 8).   

Second, we highlighted review articles that recommend a minimum of 50 million reads for reliable 

open chromatin detection [1-2] (lines 123). With 15 times the minimum read depth (750 million reads 

total), our ‘ground-truth’ training set is highly robust, which is further supported by the agreement 

between simulated and real performance.   

[1] Yan, F., Powell, D.R., Curtis, D.J. et al. From reads to insight: a hitchhiker’s guide to 

ATAC-seq data analysis. Genome Biol 21, 22 (2020). https://doi.org/10.1186/s13059-

020-1929-3

[2] Buenrostro JD, Wu B, Chang HY, Greenleaf WJ. ATAC-seq: a method for 

assaying chromatin accessibility genome-wide. Curr Protoc Mol Biol. 

2015;2015:21.29.1–9.

2. Sensitivity. The authors claimed that, because MOCHA identified more tiles as positive tiles, it 

is more sensitive. However, sensitivity is not defined as how many samples are predicted as 

positive, but how many positive samples are missed. Also, sensitivity is only meaningful when 

specificity is discussed at the same time, since a model that predicts every sample as positive 

will have 100% sensitivity but is not meaningful. Therefore, the claim of higher sensitivity is not 

supported by the results, and even MOCHA did show higher sensitivity, whether it was 

meaningful or not was not analyzed in the context of specificity.  

We agree that our wording was not precise, and we removed the incorrect usage of the word ‘more 

sensitive’. Additionally, we provided a more rigorous comparison of open chromatin identification, 

including sensitivity, specificity and false positive rates, and F1-score measurements, via our 

simulation studies in Supplementary Fig. 8 (lines 200-203, 754-762, 831-870) to provide a more 

comprehensive evaluation of performance. 

3. Generalizability of the LRM model. Just wonder whether the parameters are shared across all 

i, j, and t? Or for every sample, cell type, and tile, a unique set of parameters needs to be 

learned? In the Method section, NK cells from the COVID dataset were mentioned as the 

training set. Did this mean that the parameters learned from NK cells were used for predicting 

accessibilities of other datasets and other cell types?  

We agree that this was not clarified and thank the reviewer for pointing this out. The model was 

trained on NK cells only, across a range of cell numbers. The same parameters were applied to other 

cell types without further adjustment (Methods). A normalizing pre-factor is calculated and applied 



before the model is applied to call open chromatin on data from new studies. We modified our results 

section to make this point explicit and clarify the generalizability (lines 114-118, 130-132). In addition, 

we conducted a mouse validation to show generalizability outside human studies (lines 227-232, 

Supplementary Fig 5).  

4. The loss function of the LRM model was not provided. Also no justification was provided for 

the necessity of the parameter \theta^{n}. Often if the loss function is suitable and the two 

classes in the training set are well-balanced, the “default” threshold, which is 0.5, is sufficient.  

We agree that model training was not sufficiently described, and thank the reviewer for highlighting 

that. We have modified our method section (see Training of LRM) to explicitly mention  the logit link 

and the default loss function from the GLM logistic regression function in R (lines 735-736)   the 

justification for the threshold parameter !
'$#)

, (lines 127-128, 744-746)  that was necessary to 

address the imbalance in training classes when identifying open chromatin. Except for even 

performance on sensitivity & specificity, a threshold of 0.5 is not sufficient. Youden index is more 

appropriate & widely applied. 

[1] Pepe, M. S. The Statistical Evaluation of Medical Tests for Classification and Prediction. 

(Oxford Univ. Press, 2003). 

5. Unbalanced ground truth for training a logistic model. The positive and negative labels look 

extremely unbalanced (1.15M vs 750M). Could the authors discuss the impact of unbalanced 

classes on the model performance?  

We thank the reviewer for identifying an area that warrants more description. 1.15M is the number of 

open tiles, 4.39 million is the number of inaccessible tiles. In addition,  750 million is the number of 

total fragments in the NK population. So the imbalance is between 1.15M open tiles and 4.39M 

inaccessible tiles (not 1.15M vs 750M). Additionally, class imbalances are altered by downsampling 

depending on whether cells containing fragments in specific peaks are removed or not. This imbalance 

motivates the use of the cell-count dependent Youden Index. We have modified our Results (lines 

127-128) and Methods (lines 744-746)  sections to explain the class imbalances we observed, both 

from open vs closed regions, and the distribution of peak intensities.   

6. Zero inflation is not considered in the LRM component. The authors justified those technical 

dropouts in the scATAC-Seq data lead to unreliable results, and a major advantage of MOCHA is 

to use zero inflation correction to address this issue. The inputs for the prediction of tile 

accessibility using the LRM model are data with dropouts. However, zero inflations were not 

considered in LRM. Meanwhile, the inputs of the differential accessibility analysis and the co-

accessibility analysis are fragments on tiles that are predicted to be accessible by LRM. Could 

the authors provide evidence and justifications on why zero inflations (dropouts) are not crucial 



for LRM, which is directly affected by dropouts, but are crucial for the differential accessibility 

analysis? Would it make more sense to handle zero inflation in the LRM component instead of in 

the DAA and CAA components?  

We thank the reviewers for their feedback on this point, and the need for greater clarity here. In 

response, we have extended the discussion section to include when and where zero-inflation statistics 

are critical (lines 431-433, 437-440). In brief, we make open chromatin calls using our LRM on each tile 

independently per cell type and sample. The LRM is only used on tiles with reads, which by definition 

is non-zero (lines 437-440). Zero-inflation is taken into account for downstream methods where we 

use data from a given tile across samples, where some samples have both zero and non-zero 

measurements.   

7. Zero inflation: could the authors delve in more about the patterns of technical dropouts 

across cell types and samples to check whether dropouts were random? This would provide 

biological insights why zero inflation correction contribute to better performance.  

We thank the reviewer for their excellent question. In response, we have added additional 

results, showing that our zero-inflated modeling functions can separate out both biological 

(Age, Sex) and technical (Cell counts) drop-outs in 3 cell populations: CD4 Naive T Cells, Naive 

B Cells and CD16 Monocytes  (lines 364-366, Supplementary Fig. 18).  A more comprehensive 

analysis on this interesting topic is certainly warranted but beyond the scope of the 

manuscript.  

8. Runtime (Fig 2h): It looks that MACS2 performs better when sampled cells > 50k. The authors 

argued that MOCHA performed better in practical cases. However, with the fast growth of the 

single cell omics data and the increasing need of analyzing samples in the contexts of large data 

repositories such as HuBMAP, Human Cell Atlas, and NCI Human Tumor Atlas Network, more 

practice cases will involve over 50k cells. So the performance of MOCHA is not as scalable as the 

other two methods. Also, could the authors provide insights into why MOCHA performs better in 

the range of 50 – 50k cells?  

We thank the authors for this comment and recognize that the text was not clear on this 

point. MOCHA was designed for identifying open chromatin by individual samples and cell 

types. In a given sample, most cell populations have  < 5k cells. As a result, when calling open 

tiles in samples and cell types, MOCHA produced faster runtime in all applicable settings. We 

are not aware of a technology that can sequence 50k cells for a single cell type in a single 

scATAC sample after quality control. If/when that changes, we recognize that MACS2 would 

be faster under those settings. In our original benchmarking, we pooled cells across samples 

to simulate cell abundances beyond our current technical limitations. Since the previous 

analyses caused confusion and cellular abundances per sample do not typically exceed 5-10k, 

we modified our runtime analysis by varying the number of samples instead of the number of 

cells. This updated benchmark reflects what users would likely encounter when scaling to 



larger datasets with more and more samples. We have updated Figure 2h and our results 

section (lines 234-237) to reflect these analyses. We moved the previous graph  to 

Supplementary Fig. 4D. 

9. Potential positive false discoveries. Suppl Fig 3c suggested that MOCHA slightly identified 

more CTCF and TSS tiles than the other methods and the difference is marginal. However, 

MOCHA significantly identified more tiles. This raises the concern that whether the tiles MOCHA 

identified are more likely to be false discoveries.  

We agree that analyzing real data prevents us from calculating ‘sensitivity’ and ‘specificity’ in 

the absence of ground truth. To complement these analyses, we conducted an additional 

simulation study that enables us to properly compare false positives/negatives and model 

performances in the context of simulated ground truth. These simulation studies are found in 

Supplementary Fig. 8, and provide insights into sensitivity and specificity (1- false positive 

rates, lines 200-203, 754-762, 831-870 ). MOCHA had better F1 scores than MACS2 in all 

tested cases and HOMER when the cell number is 100 or above. 

10. The comparison of the DAA and CAA components in MOCHA with ArchR and Signac is 

entangled by the effects of the LRM model, since the input of ArchR and Signac are raw data, 

and the input of MOCHA DAA and CAA is based on the MOCHA LRM and thus involved more 

tiles. Therefore, the contribution of the zero-inflation correction in MOCHA DAA and CAA as well 

as the DAA and the CAA models in MOCHA cannot be clearly evaluated. Could the authors 

provide the DAA and the CAA of ArchR and Signac with the predicted accessible tiles using 

LRM?  

We recognize that we did not sufficiently describe the tile set used. All differential methods 

were benchmarked using the same predicted accessible tiles from the LRM. We updated the 

results section of the text so as to avoid future confusion for readers (lines 240-243).  

11. Using the DAT annotation as the ground truth (Fig 2 b), the sensitivities of MOCHA for 

intragenic and distal regions are lower than ArchR and Signac. The overall sensitivity of the 

three methods is comparable. Specificity has not been compared, which makes it challenging to 

know whether the sensitivity is meaningful. Since MOCHA identified significantly more tiles 

(6,211) than Signac (1,266), but the sensitivity is comparable, likely the specificity of Signac is 

much better than MOCHA. In summary, according to Fig 2 b, it is likely that Signac significantly 

outperforms MOCHA.  

We agree that Fig 3b was not clear and have updated it to reflect absolute tile numbers, with 

relative percentage next to it, and adjusted the figure and legend to better describe the figure 

and avoid unnecessary confusions. The percentage in Fig 3b reflects relative composition 

within a set of differential tiles, which is unrelated to a method’s sensitivity. If % of 

promoters increase, then % of distal regions must decrease (and vice-versa), therefore these 

percentages cannot be used to claim specificity and sensitivity, rather the composition of the 

tiles.  



12. The “Networks of alternatively regulated genes in early SARS-CoV-2 infection” and the 

“Longitudinal analysis of chromatin accessibility during COVID-19 recovery” sections are 

interesting but lacking comparisons with other approaches to demonstrate the performance of 

MOCHA. Could the authors indicate new discoveries that were previously not possible but now 

made possible by MOCHA? For example, how about comparing with state-of-arts approaches? 

Or, if the authors do not plan to claim novelty of these two components, how about comparing 

with LRM vs MACS2/HOMER and MOCHA vs ArchR/Signac to demonstrate what new or 

different knowledge or regulatory network and longitudinal patterns can be learned with 

MOCHA’s novel upstream models?  

We agree that benchmarking novel analytical frameworks is critical and added additional 

benchmarking when comparable methods exist. For alternatively regulated genes from Figure 

4, we have added Supplementary Fig 14 that benchmarks MOCHA’s performance with ArchR 

and Signac (lines 311-314). For Figure 5, we note that longitudinal data analyses with zero-

inflation are not currently supported by either ArchR, Signac, or PALMO (lines 388-390, 

Supplemental Table 1). Instead we had previously benchmarked pseudo-time analyses using 

ArchR’s gene scores with MOCHA’s promoter tiles. Here we demonstrated that MOCHA-

based results were more biologically informative and aligned better with the expected roles 

of CD16 monocytes than GeneScore-based ones (lines 357-362).  

13. The authors have recently published a comprehensive platform PALMO on Nature 

Communications (https://www.nature.com/articles/s41467-023-37432-w) – and 

congratulations to the authors! Since the datasets and the functionalities of PALMO and 

MOCHA are partially overlapping, both tools were developed by the same lab (that is, the 

authors of this manuscript should be aware of PALMO), and PALMO was published 4 months 

ago before the submission of this manuscript (and was preprinted in Oct 2022), a 

comprehensive comparison of functionalities and performance between PALMO and MOCHA 

would help audience to understand the new values of MOCHA in the context of PALMO. Also, 

PALMO should be mentioned in the Introduction besides in the Result section.  

Thank you! We agree and have addressed by modifying the introduction (lines 80, and 174-

175) and providing a table that contrasts MOCHA and PALMO’s functionalities 

(Supplementary Table 1).  

Minor concerns:  

1. Improving the readiness of figures. Some visualizations can be further improved and some 

conventions can be considered. Here are a few examples:  

a. Color coding. For example, in Fib 2a, maybe different colors should be used for CD4 CTL TEM 

and CD8 TEM?  

b. Orders. Fig 2 a: if the same order of cell types was used, it could improve readability.  

c. Scales. Fig 2a, Fig 2b, etc. – using the same scales would help the comparisons.  

d. Numbers: Fig 2b – if “400000” could be visualized as “400,000”, it would help. And it is 



inconsistent that, in the same Fig 2b, one subplot was visualized using “400000”, and the other 

as “3e+5”.  

We thank the reviewer for pointing these out and have addressed these edits indicating how 

each was addressed below. 

1a - We added more axes and legend labels to better clarify that the cell types are 

color-coded by major cell class, so all T-cell populations will share the same colors. 

1b - This has been addressed – the orders have been fixed.  

1c - This has been addressed – all have the same scales.  

1d - This has been addressed – all graphs follow the same format.

2. Method: sample preparation and data preparation info has been provided in the preprint and 

thus not necessary to be re-described in detail. 

We will leave it for Editors to decide whether such information is needed.

Reviewer #2 (Remarks to the Author): 

In this paper, the authors developed a statistical approach, MOCHA to identify sample-specific 

cell-type open chromatin regions using scATAC-seq data. They tested MOCHA to multiple single 

cell datasets such as COVID19, immunology and Hematopoiesis and demonstrated its 

outperformances over existing methods for detecting sample-specific chromatin accessibility, 

differential accessibility in covid, and co-accessibility across samples. Moreover, using detected 

OCRs, the paper further inferred regulatory networks linking TF binding sites, ligands to TSSs, 

revealing possible alternative gene regulatory mechanisms and longitudinal dynamics in covid. 

Overall, the study was designed with reasonable rationale. Identifying sample-specific activities 

of chromatin (co-) accessibility at the cell type level is an emerging topic, so MOCHA provides a 

timely statistical tool. The paper was well organized, and the results were presented logically. 

However, I still have some major concerns, especially about the rigor of the methodology and 

evaluation.  

Thank you! We appreciate the feedback and conducted a variety of additional analyses to help 

address the benchmarking concerns and recommendations highlighted by the reviewer.  

1. It is unclear if MOCHA is a general method or specific for COVID/immune study. If former, the 

paper needs to demonstrate broader applications. 

We thank the reviewers for pointing this out and agree that we should’ve further 

demonstrated the generalization of MOCHA.  We have addressed this by benchmarking 

performance using a murine scATAC atlas (Supplemental Figure 5), which shows MOCHA’s 

ability to generalize  across multiple species and 13 tissue types (lines 130-132, 227-232). 



Additionally, we show applications of zero-inflation across cell types to study biology (lines 

364-366, Supplementary Fig. 18). 

2. The logistic regression model for evaluating accessibility needs further clarification. The 

authors claimed the usefulness of normalized total counts, lamda_1 and almost downstream 

analyses seem only use lamda_1. However, how important the max count (lamda_2) 

contributes to the regression? If also important, it remains elusive that lamda_2 is not used in 

downstream DAT and CAA analyses. Moreover, the study specific prefactor S was insufficiently 

described without justification. 

We agree that this was not clear and thank the reviewer for pointing this out. When training 

the LRM, we tried creating as many statistically informative features to identify open 

chromatin, and selected "'%(, "'&( to identify open chromatin based on single-cell and pseudo-

bulk characteristics. Supplementary Fig. 7 illustrates the statistical significance of the final 

features in the model, whose coefficients had 95% confidence intervals well outside zero. We 

added some details to clarify the issue (lines 142-145, 412-414). 

Additionally, we revised the text to provide greater clarity on the language around the 

different model parameters for the LRM, including specifics around the global prefactor S 

(lines 114-118, 130-132). 

3. When comparing with MACS2 and HOMER, the authors should also report functional or 

disease enrichments (e.g., LDSC) of MOCHA OCRs in addition to CTCF sites and TSSs, like their 

other sections did. 

We thank the reviewer for suggesting another validation strategy, and we conducted an LDSC 

analysis per the reviewer’s recommendations (Supplementary Fig. 9). The LDSC results further 

support previous results and demonstrate that MOCHA’s open chromatin model agrees with 

existing methods while detecting additional, functional enriched regions (lines 210-213).  

4. MOCHA randomly selected 50 DATs with two clusters by K-Means. How sensitive would its 

performance be to those hyperparameters? Also, K-Means is also not robust to outliers. This 

concern applies to many other parameters. The authors need to justify selecting parameters and 

provide guidelines for the users, especially biologists. 

We recognize that the context for the K-means clustering results was not clear. This analysis 

was strictly for benchmarking purposes, to demonstrate that MOCHA tiles on average 

contained more biological information, and not as a framework for others to use in their 

interpretive biological analyses. We have addressed the language to clarify (lines 259). 

5. The networks that the paper predicted were not fully gene regulatory networks. They only 

linked TF binding sites, ligands to TSSs (near promoters) so missed other key regulatory 

mechanisms such as distant regulatory elements (enhancers from scATAC-seq data), gene 



expression relationships (e.g., co-expression from many methods for predicting gene regulatory 

networks like SCENIC). 

We agree the language around gene regulatory regions that MOCHA infers is not clear and 

have addressed the language to clarify when and how distal regulatory regions were included 

in our gene regulatory networks (lines 315-317, 1018-1028). Since MOCHA is a scATAC-seq 

centric tool, gene expression and multi-modal gene regulatory network analyses (e.g., 

SCENIC) are extremely interesting but outside the scope of this study.  

6. For longitudinal analysis, it is unclear that confounding factors (e.g., sex, age, etc) were 

considered for detecting chromatin accessibility dynamics. 

We agree that this was not mentioned in the main text and thank the reviewer for pointing 

this out. We did adjust for age and sex, and we have revised the main text to make this 

explicit (lines 353-354, 369).   

7. The significant p-values were reported inconsistently thru the paper, e.g., p-value, adjusted p, 

FDR.  

We thank the reviewer for pointing these out and have addressed these edits in the main text 

and methods to make explicit what correction procedures were used when and where. 

Reviewer #3 (Remarks to the Author): 

The manuscript describes MOCHA, a method primarily for carrying out comparisons of single 

cell ATAC-seq data between groups of subjects. The method also includes features for 

identifying alternative transcription-start-site regulation, and transcription factor-gene network 

construction from longitudinal data. More rigorous ways of comparing scATAC-seq data sets are 

needed, however, it is not clear that MOCHA is making a substantial contribution for reasons 

given below. 

Thank you. We appreciate the feedback. We have improved the language around our analyses to 

address gaps highlighted by the reviewer. Additionally, we conducted a variety of additional analyses 

to help address the benchmarking concerns and recommendations highlighted by the reviewer.  

1. The manuscript correctly observes that in single cell analysis comparisons between treatment 

and control groups should be done on the level of subject rather than cell, as treating cell level 

data as replicates would artificially inflate the significance of differences. The analysis proposed 

is therefore based the aggregation of single cell data into pseudobulk representations for 

different cell types. Differential analysis is then based on comparisons of sample level 

pseudobulk aggregates for the cell types. The idea of using pseudobulk to make comparisons of 

single cell data has been previously evaluated by Junttila et al, for example, who compared 18 

methods for the identification of differential expression changes between conditions from 



multisubject scRNA-seq data. Many of the methods assessed by Juntilla et al could also be used 

to compare scATAC-seq data. 

Junttila, Sini, Johannes Smolander, and Laura L. Elo. "Benchmarking methods for 

detecting differential states between conditions from multi-subject single-cell RNA-seq 

data." Briefings in bioinformatics 23.5 (2022) 

The authors should carry out more careful survey of single cell studies; relevant studies are not 

cited in the manuscript and there are likely to be many more. 

We agree with the reviewer that the idea of pseudo bulking is not new in scRNA. This inspired 

its use in scATAC for MOCHA. Given the advantages that pseudo bulk has shown by the 

scRNA community, we apply and cite accordingly when applying to scATAC. While this was 

already mentioned and cited in our writing, we provided further clarification in the discussion 

(lines 444-448 ). 

Additionally, we agree that a variety of other methods from single cell and bulk sequencing 

assays could theoretically be applied to scATAC-seq data. Per the reviewer’s 

recommendations, we added two additional methods into our benchmarking (Supplementary 

Fig. 11, 12) and revised the corresponding text (Lines 278-280, 438-440). A complete review of 

all potential differential methods in scATAC is beyond the scope of the current work.  

2. Apart from the above mentioned scRNA-seq study, the MOCHA methodology is closely related 

to methods for bulk differential ChIP-seq or ATAC-seq peak calling, many of which are based on 

limma, DESeq2 or EdgeR. The following papers need to be cited. It is of critical importance that 

the methods described in these papers be included in benchmarking comparisons of differential 

accessible regions:  

Gontarz, Paul, et al. "Comparison of differential accessibility analysis strategies for 

ATAC-seq data." Scientific reports 10.1 (2020) 

Chen, Yang, Shue Chen, and Elissa P. Lei. "DiffChIPL: a differential peak analysis method 

for high-throughput sequencing data with biological replicates based on limma." 

Bioinformatics 38.17 (2022) 

Stark, Rory, and Gordon Brown. "DiffBind: differential binding analysis of ChIP-Seq peak 

data." R package version 100.4.3 (2011) 

Faux, Thomas, et al. "Differential ATAC-seq and ChIP-seq peak detection using ROTS." 

NAR Genomics and Bioinformatics 3.3 (2021): lqab059. 

Qiu, Xintao, et al. "CoBRA: containerized bioinformatics workflow for reproducible 

ChIP/ATAC-seq analysis." Genomics, Proteomics and Bioinformatics 19.4 (2021) 



We agree that MOCHA implements pseudo-bulking to make some calculations more 

statistically robust, leading to some similarities with existing methods for ChIP-Seq or ATAC-

seq (lines 438-440). We thank the reviewers for highlighting citations we have missed. We 

have included these citations (439), and included two of them in our benchmarks (lines 278-

280). Additionally, we have clarified the methodological differences between MOCHA and 

these methods, and shown how these methods cannot be directly applied to scATAC.  

3. Benchmarking of differential tiles between conditions is an important aspect of the paper and 

needs to be done rigorously. In the manuscript numbers of distinct genes and numbers of 

reactome pathways provide some anecdotal evidence that the method is working. However, a 

reliable gold standard of true differentially accessible regions is never established. To 

benchmark rigorously, gold standards need to be constructed to test both sensitivity and 

specificity. The benchmarking methodology used in the DESeq2 paper could be suitable for this. 

To test specificity, comparisons can be made of groups each containing a mixture of COVID+ and 

COVID- subjects, positives found in this analysis would be false positives. For sensitivity, the 

approach from the DESeq2 paper can be used: “we used experimental reproducibility on 

independent samples (though from the same dataset) as a proxy. We used a dataset with large 

numbers of replicates in both of two groups, where we expect that truly differentially expressed 

genes exist. We repeatedly split this dataset into an evaluation set and a larger verification set, 

and compared the calls from the evaluation set with the calls from the verification set, which 

were taken as truth.” The authors might also consider the concepts introduced in: 

Tian, Luyi, et al. "Benchmarking single cell RNA-sequencing analysis pipelines using 

mixture control experiments." Nature methods 16.6 (2019) 

Benchmarking in the current manuscript has not been done to an acceptable standard, and 

comparisons have not been made to the most relevant methods. 

We thank the reviewer for pointing this out, and agree that resampling methods provide 

robust evaluations to assess false positives and false negatives. For this purpose, we applied a 

leave-one-out approach (Fig 3F), similar to the approach by DESeq2, to assess potential false 

positives and false negatives across methods. We revised the language to clarify how we 

applied one of these approaches (lines 260-266). 

4. The dataset generated in this study involved numerous subjects and must have been done in 

several batches. Although batch effects are well known to impact single cell data such effects 

are not mentioned at all in the manuscript. It is important to provide the batch information and 

evaluate the degree to which batch effects could be influencing results. For example, when 

defining cell types do cells in different batches have similar chromatin accessibility, or do 

batches also define observed chromatin accessibility. A useful reference is: 



Luecken, Malte D., et al. "Benchmarking atlas-level data integration in single-cell genomics." 

Nature methods 19.1 (2022): 41-50. 

We agree that batch effect is a frequent technical challenge and agree that we did not clarify 

how we address it. We provide an additional figure highlighting batch effects in both single 

cell and pseudo-bulk space. In single cell space, the standard UMAP approach shows minimal 

batch effects in our Longitudinal COVID19 dataset (supp Fig3B). In pseudo bulk, batch effects 

are minimized after normalization (Supp Fig3A). Furthermore, we tested for the influence of 

batch using variance decomposition analysis, revealing that 0.193% (225/116,632) tiles have 

variance mostly described by batch effects (Suppl Table 3). Therefore, we did not include 

batch effects as a covariate in our COVID19 analysis. Finally, we discuss how any residual 

batch effect can be controlled downstream if necessary (lines 106-108, 366-368, 1108-1116). 

5. The MOCHA logistic regression model is used to create a matrix of accessibility on a sample 

by tile level. The procedure is used to collapse the single cell data into indicators of accessible 

tiles in given cell types and samples. The approach seems overly complicated in comparison with 

the DESeq/EdgeR/limma based methods, so comparisons will be important. Only lambda 2, the 

maximum number of fragments in a tile per cell seems to be truly related to single cell analysis. 

It is not clear how important this parameter is in the analysis and whether the need for this 

parameter could be obviated through simple filtering measures. For example, filtering identical 

fragments from the same cell or constraining the maximum number of fragments per tile per 

cell to 2. In addition, some description of what this parameter is achieving would be helpful. 

We agree that having a count matrix data structure such as a gene-by-sample matrix 

facilitates any downstream analyses using DESeq, EdgeR, or limma. Our tile-sample-

accessibility matrix (TSAM) is equivalent to their ‘gene-by-sample’ matrix, where we replace 

genes with open tiles. However, unlike RNA-seq, open tiles must be determined from the 

data. We added some background on the use of TSAM (lines 650-679).  

Additionally, we agree that filtering duplicate fragments and other QC methods are critical to 

ensure robust data analysis.  MOCHA is designed to run after QC steps. Duplicate fragments 

were removed and data QC concerns were addressed during and after running the 10x 

pipeline (CellRanger), including the removal of low quality cells and doublets. We have 

revised and clarified the language in Abstract (lines 28-29) and Results (lines 93-94) to make 

this clearer.  

The parameter "'&( is important for the logistic regression model (LRM) of identifying open 

chromatin. When training the LRM, we tried creating as many statistically informative 

features to identify open chromatin, and selected "'%(, "'&( to identify open chromatin based 

on single-cell and pseudobulk characteristics. Supplementary Fig. 7 illustrates the statistical 

significance of the final features in the model, whose coefficients had 95% confidence 

intervals well outside zero. We added some details to clarify the issue (lines 142-145, 412-

414). 



6. Fig 2 shows total numbers of open tiles, and there is a threshold parameter that controls this 

number in MOCHA. The number of open tiles determined by MACS2 and HOMER could also be 

changed by altering cut-off parameters. In benchmarking it is not enough to define true 

accessible regions, as one can always get more tiles changing thresholds. Unless some way of 

showing specificity is included, this analysis is not meaningful. 

We agree that thresholding can change the results. To address this valid concern, we added 

simulation studies to demonstrate the open-chromatin performance for all three methods 

(Lines 200-203, 754-752, 831- 870, Supplementary Fig. 8) in simulation settings including 

measurements of specificity and sensitivity across a range of cellular abundances. 

7. Line 893: “We used a previously published promoter-capture HiC (pcHiC) resource43 which 

identified promoter-enhancer regulatory links.” 

No justification is given for using HiC contacts as a gold standard for co-accessibility. First the 

manuscript should provide a motivation in terms of causality. The causal relationship between 

HiC and accessibility is not well understood and it is possible that chromatin accessibility causes 

HiC contacts rather than the other way round. Second, what HiC measures and its relationship 

to biology needs to be taken carefully into account. HiC is a protocol that measures, in some 

sense, proximity between genomic regions. It cannot be assumed that HiC precisely measures all 

the biologically relevant interactions between regions and only these. Third, the limitations in 

the specific HiC data will include some inaccuracy, limitations in sequencing depth, suboptimal 

experimental conditions etc. Overall, the case for HiC as a gold standard is not at all compelling. 

We thank the reviewer for pointing out the limitations of HiC, and our phrasing. Our datasets cannot 

address causality, and so we refrain from commenting on any causal relationships. Instead, we use 

HiC and scATAC results to enrich for regions that are both open and potentially interacting to 

benchmark distinct correlation methods. We also agree that HiC is not a gold standard for co-

accessibility. Despite limits to its accuracy and precision, HiC has provided valuable information on 

chromatin interactions and correlations between genomic regions in epigenetic data, including ATAC-

seq [1-2].  

[1] Fortin, JP., Hansen, K.D. Reconstructing A/B compartments as revealed by Hi-C using long-range 

correlations in epigenetic data. Genome Biol 16, 180 (2015). https://doi.org/10.1186/s13059-015-0741-

y 

[2] Gate, Rachel E., et al. "Genetic determinants of co-accessible chromatin regions in activated T cells 

across humans." Nature genetics 50.8 (2018): 1140-1150. 

In response to this question, we modified the text in the results (lines 282-284) and Methods (lines 

946-958) to clarify this benchmarking analysis and removed references to HiC as a ‘gold standard’.  



8. The sections “Networks of alternatively regulated genes in early SARS-CoV-2 infection.” and 

“Longitudinal analysis of chromatin accessibility during COVID-19 recovery” describe results 

from the COVID data generated in the project but do not evaluate methodology or make any 

comparisons with other methods. The manuscript notes that “An in-depth, comprehensive 

analysis of our COVID19 cohort is beyond the scope of current work and will be presented in a 

follow-up paper.” It might be better to leave the longitudinal and gene network analyses for 

that paper. 

We agree that benchmarking novel analytical frameworks is critical and added additional 

benchmarking when comparable methods exist. For alternatively regulated genes from Figure 

4, we have added Supplementary Fig 14 that benchmarks MOCHA’s performance with ArchR 

and Signac for alternative TSSs analysis (lines 311-314). For Figure 5, we note that longitudinal 

data analyses with zero-inflation are not currently supported by either ArchR, Signac, or 

PALMO (lines 174-175, 389-390, Supplemental Table 1). Instead we benchmarked pseudotime 

analyses using ArchR’s gene scores with MOCHA’s promoter tiles. Here we demonstrated that 

MOCHA-based results were more biologically informative and aligned better with the 

expected roles of CD16 monocytes than GeneScore-based ones (lines 357-362) .  

While we appreciate the reviewer’s feedback, we respectfully disagree as these two sections 

highlight the biological utility of MOCHA.  

9. Line 719 “we applied MACS2 37 ( '-g hs -f BED --nolambda --shift -75 --extsize 150 --broad', '-- 

model -n' ) to identify accessible peaks in the pseudobulk data, using previously published 

parameters for identifying peaks in scATAC-seq with the modification to call broad rather than 

narrow peaks. It is not clear why the --broad MACS2 option was used. Can some advantage be 

demonstrated? The –shift -75 –extsize 150 also doesn’t seem to be well motivated. 

We thank the reviewer for pointing this out. Regarding parameter choice, we applied 

previously published parameters for MACS2-based peak calling from scATAC data (lines 777-

778). We recognize that parameters could be further optimized, but on this point, we defer to 

the authors of other packages that apply MACS2 in their pipelines.  

10. The abstract doesn’t describe the manuscript very well. The method seems to be primarily 

about analysing differential accessibility in multi-sample studies. The question of “proper” 

handling of technical dropout with zero-inflated methods, is highly debatable. Are the proposed 

heuristics proper handling? Identification of alternative transcription-starting-site regulation, 

and transcription factor–gene network construction from longitudinal scATAC-seq data are 

weak sections without benchmarking comparisons.  

We thank the reviewer for their feedback and have addressed this by modifying our abstract 

to explicitly denote the improvements by MOCHA (lines 25-29). Each figure indicates the 



different types of analyses available in MOCHA, ranging from identifying open tiles to 

longitudinal analyses of open chromatin. 

11. A complementary approach to single cell analysis is to carry out differential abundance 

testing. Comment on the relative strengths and weaknesses of the proposed approach relative 

to methods such as: 

Dann, Emma, et al. "Differential abundance testing on single-cell data using k-nearest neighbor 

graphs." Nature Biotechnology 40.2 (2022): 245-253. 

We thank the reviewer for highlighting this paper. Since MOCHA pseudobulks after cell labeling, this 

type of analysis is unrelated to MOCHA’s approach, and therefore not directly comparable. However, 

in response to this reviewer, we now include abundance statistics in the metadata of MOCHA objects, 

which can be used by researchers interested in differential abundance and describe how to access 

them (lines 650-679).  

Reviewer #4 (Remarks to the Author): 

This manuscript declared MOCHA, a tool to identify the gene regulatory programs when 

analyzing the scATAC-seq data. MOCHA exhibits the advantages in detecting differential 

accessible regions and chromatins than widely used tools including MACS2, HOMER, ArchR, 

Signac. The author also showed the good performance of MOCHA in the large dataset of 

COVID19 patients, and constructed ligand-TF-gene networks on alternative TSS regulations, 

which would be used to identify potential targets for COVID19 or other processes. And MOCHA 

can be integrated with existing tools such as ArchR, chromVAR, as a valuable extension for 

analyzing scATAC-seq data. The following comments or issues need to be considered. 

Thank you! We appreciate the feedback and provide clarifying comments and additional analyses to 

help address the concerns and recommendations provided by the reviewer.  

Comment

1) Line105-107, MOCHA identifies sample- and cell type-specific open chromatin, within samples 

from different experiment and batches. How to distinguish and balance the bias from the batch 

effect using the MOCHA? 

We agree that batch effect is a frequent technical challenge and agree that we did not clarify 

how we address it. We provide an additional figure highlighting batch effects in both single 

cell and pseudo-bulk space. In single cell space, the standard UMAP approach shows minimal 

batch effects in our Longitudinal COVID19 dataset (supp Fig3B). In pseudo bulk, batch effects 

are minimized after normalization (supp Fig3A). Furthermore, we tested for the influence of 

batch using variance decomposition analysis, revealing that 0.192% (245/127,075) tiles have 

variance mostly described by batch effects (Suppl Table 3). Therefore, we did not include 



batch effects as a covariate in our COVID19 analysis. Finally, we discuss how any residual 

batch effect can be controlled downstream if necessary (lines 106-108, 366-368, 1108-1116).  

2) During tiling the genome, MOCHA splits the genome into 500 bp tiles, all the analyses are 

based on the tiles. But this strategy has been adopted by the previously published SnapATAC. 

Then what are the differences and advantages of MOCHA compared to SnapATAC?  

We agree that tiling the genome is not a novel strategy, and has been successfully applied by 

SnapATAC and others. In addition, we recognize that while we did not explicitly benchmark Signac, 

snapATAC and ArchR for open chromatin identification, these methods implement MACS2 for peak 

calling, and are thus benchmarked indirectly via our MACS2 peak calls.  We have revised the text in 

Results (lines 181-182) and in Discussion  (lines 405-407). 

3 ) Follow the comment, does MOCHA eventually split the genome into 500 bp tiles? How about 

other ranges, such as 1 kb, 1.5 kb, 2 kb, 5 kb, which is better?  

We agree that this was not clarified. MOCHA starts by splitting the genome into 500 bp tiles, 

and the model is explicitly trained for 500 bp, in-line with the standards set by others (e.g., 

ArchR, SnapATAC, and Signac). We revised the discussion to provide additional language 

around this topic  (lines 405-407). 

We agree that while modeling open regions of distinct sizes may be useful, we selected 500 

bps to balance between having large coarse regions and small, extremely sparse regions.  

Additionally, we provide a code template (see Github code repository) for retraining open 

chromatin models of other tile sizes. 

4) The authors stated that MOCHA is more sensitive in detecting open chromatin regions than 

MACS2 and HOMER, and detects more differential chromatin than ArchR and Signac. However, 

the splitting genome into 500 bp tiles could somehow cause potential bias by differences in data 

qualities when using MOCHA, which needs to be discussed. 

We recognize that tiling the genome could cause potential bias for both open chromatin 

detection and differential accessibility. We revised the text to clarify how we addressed this 

bias, for both steps. In the discussion (lines 405-407) we added new language discussing the 

motivation and implications of tiling the genome for open chromatin prediction.   

To address potential biases around differentials, we used the same set of predicted accessible 

regions from the LRM for all methods. We updated the results section of the text so as to 

avoid future confusion for readers (lines 240-243). 



5) Fig 4a-c: what’s the meaning of type I and type II sites in fig 4a? It seems that there is no 

difference between early infection patients and control donors in fig 4b-c? How to understand 

and calculate the Accessibility Change in Fig 4b-c? 

We agree that this was not clear and have revised the text to clarify (lines 303-306). We have provided 

explicit definitions of type I and type II sites, and clarify how the significant difference in accessibility 

was visualized.  

6) Fig 4f and line 309-310 in page 8: The authors identified 122 ligands. Are these ligands 

regulated by all the differential motifs as shown in fig 4e?  

We agree that this was not clear and we’ve clarified our text (see Methods: Ligand-motif 

enrichment analysis, lines 1030-1031) to specify that ligands are regulating transcription 

factors (and thus motif enrichment), and not vice versa. 

7) Line 318-320: This reviewer couldn’t find the data demonstrated the regulation in CD16 

monocyte. 

We thank the reviewer for pointing this out. The full network and analyses leading up to that 

are all in Source Data Figure 4, including DATs, Motif Enrichment, Ligand-Motif Enrichment, 

and the full network’s nodes and edges.  

8) How about the computer requirements to run the MOCHA? 

We agree that this was not clarified and have addressed this by revising the text (lines 175-

178) including the technical specifications of benchmarks conducted on a laptop.  

9) page 13, row 504: An error labeling of “1x106 cells”. 

Thank you for pointing this out. We’ve corrected it in the manuscript. 



Reviewer #1 (Remarks to the Author):

The authors have thoroughly replied to each concern, with sufficient further analysis and 

explanations when necessary. I have no further concerns.

Reviewer #1 (Remarks on code availability):

The code is functional and the instruction is sufficient.

Reviewer #2 (Remarks to the Author):

Thank authors for considering my comments. They have addressed many of my previous concerns. 

I just have two more responses:

1) for gene regulatory networks, I understand the study focuses on chromatin regions but the 

authors at least can check if their predicted TFs express in the corresponding cell types. If those 

TFs lowly express, the network links might be false positive;

2) for K-means, the authors claim that it's just for benchmarking. How optimally were the 

parameters tuned across different methods including K to make a fair benchmarking?

Reviewer #3 (Remarks to the Author):

The revised version of the paper provides some more evidence for the method's performance, 

however several comments from the previous review have not been adequately addressed. In 

addition, some of the new material raises further questions.

Major comments

1. When making predictions of accessibility on a new dataset a parameter S is used to scale 

fragment counts. If there are very few reads in the new dataset there would not be much 

statistical support for peaks. Wouldn’t MOCHA yield results with a high false positive rate in such 

cases? Can you show mathematically that this is not a problem?

2. A major part of the manuscript is about differential analysis of scATAC-seq data, therefore I 

think that a review of the available methods for such analysis is a necessary part of the 

introduction to the study.

3. In the manuscript, much is made of the role of zero-inflation. However, it is debatable whether a 

model of zero-inflation is more suitable than a negative binomial one. See for example. Sarkar, A., 

Stephens, M. Separating measurement and expression models clarifies confusion in single-cell 

RNAsequencing analysis. Nat Genet 53, 770–777 (2021). https://doi.org/10.1038/s41588-021-

00873-4

A more comprehensive analysis of the performance of available negative binomial models, using 

credible benchmarking standards is needed.

4. The method for assessing differentially accessible tiles has several drawbacks, the use of k-

means, the G index and the number of DATs randomly selected. It does not directly show that the 

DATs called are true, but that the DATs that are called, yield better G indices when analyzed using 

k-means clustering. The degree to which these results support the performance in the differential 

analysis are not well understood. For this reason I previous suggested the authors make more 

direct assessments of differential analysis. The leave-one-out approach they have added to the 

revision has little semblance to the method in DESeq2 that was suggested. My comment from the 

first review is repeated here:

“ The benchmarking methodology used in the DESeq2 paper could be suitable for this. To test 

specificity, comparisons can be made of groups each containing a mixture of COVID+ and COVID- 

subjects, positives found in this analysis would be false positives. For sensitivity, the approach 



from the DESeq2 paper can be used: “we used experimental reproducibility on independent 

samples (though from the same dataset) as a proxy. We used a dataset with large numbers of 

replicates in both of two groups, where we expect that truly differentially expressed genes exist. 

We repeatedly split this dataset into an evaluation set and a larger verification set, and compared 

the calls from the evaluation set with the calls from the verification set, which were taken as 

truth.”

5. Another issue from the previous review has not been adequately addressed:

“Fig 2 shows total numbers of open tiles, and there is a threshold parameter that controls this 

number in MOCHA. The number of open tiles determined by MACS2 and HOMER could also be 

changed by altering cut-off parameters. In benchmarking it is not enough to define true accessible 

regions, as one can always get more tiles changing thresholds. Unless some way of showing 

specificity is included, this analysis is not meaningful.” The revision does contain additional analysis 

in Supplementary Fig 8, which is helpful. However, the significant region count shown in Fig 2 has 

the same problems as before.

6. The simulation study is a promising addition, but it is unclear how MOCHA was applied. It seems 

that the simulation should include more than one cell type. How are the initial peaks called by 

MACS2? Which cells is the MOCHA logistic regression trained on? Which other types of cells are the 

parameters extended to ? How are different cell types included in the simulation ?

7. ATAC-seq analysis is typically carried out using narrow, not broad, peak calling, so shouldn’t the 

standard practice be represented?

Reviewer #3 (Remarks on code availability):

Code is there with some limited documentation. I did not install and run it.

Reviewer #4 (Remarks to the Author):

The authors have addressed all my concerns. I am satisfied with the responses.



Response to Reviewers  

REVIEWER COMMENTS 

Reviewer #1 (Remarks to the Author): 

The authors have thoroughly replied to each concern, with sufficient further analysis and explanations 

when necessary. I have no further concerns. 

Reviewer #1 (Remarks on code availability): 

The code is functional and the instruction is sufficient. 

Reviewer #4 (Remarks to the Author): 

The authors have addressed all my concerns. I am satisfied with the responses. 

Reviewer #2 (Remarks to the Author): 

Thank authors for considering my comments. They have addressed many of my previous concerns. I just 

have two more responses: 

1) for gene regulatory networks, I understand the study focuses on chromatin regions but the authors at 

least can check if their predicted TFs express in the corresponding cell types. If those TFs are lowly 

expressed, the network links might be false positive.  

This is a fair point. Using published RNA-seq datasets (Monaco and Schmiedel Datasets), we 

found that 9 out of the 10 transcription factors in Figure 5D had high to medium expression in 

CD16 monocytes (aka non-classical monocytes), relative to other cell types. However, the last 

TF, SPIB, had very low expression in CD16 monocytes but was highly expressed in macrophages 

(Archs4 database), which differentiate from CD16 monocytes. We have modified the text (lines 

400-402) to reflect this information.  

2) for K-means, the authors claim that it's just for benchmarking. How optimally were the parameters 

tuned across different methods including K to make a fair benchmarking? 

For the benchmarking analysis in question, the only changeable parameter is the number of input DATs 

in clustering. We tested N = 25, 50, 75 and 100 DATs in the benchmarking. We must set K = 2 in the K-

means clustering to benchmark whether the DATs can effectively separate COVID+ from COVID– 

samples in a 2-group comparison. We have added such information in the text (lines 267-272). We also 

recognize that we previously used K to denote the # of DATs in Supplementary Figures 11-12, which may 

cause confusion. We have changed it to N.  



Reviewer #3 (Remarks to the Author): 

The revised version of the paper provides some more evidence for the method's performance, however 

several comments from the previous review have not been adequately addressed. In addition, some of 

the new material raises further questions.  

Major comments 

1. When making predictions of accessibility on a new dataset a parameter S is used to scale fragment 

counts. If there are very few reads in the new dataset there would not be much statistical support for 

peaks. Wouldn’t MOCHA yield results with a high false positive rate in such cases? Can you show 

mathematically that this is not a problem? 

This is a fair point. To address this concern, we ran additional simulations in which we varied the number 

of fragments per cell, from 4k fragments/cell down to 1k fragments/cell, so as to simulate performance 

as the number of reads is lowered. We did not go below 1k fragments per cell since existing scATAC-seq 

data analysis softwares (e.g., Signac, ArchR, and SnapATAC) would toss out between 50% to 100% of 

cells in their quality control steps.  MOCHA attained the highest F-1 score in 210/240 iterations (87.5%, 

Supplementary Fig 8B-D). We have revised the text (lines 208-215) to incorporate these new results, and 

showcased that MOCHA controls FPR in datasets with few reads.  

We also note that in our original submission, downsampling on real data demonstrated that MOCHA 

was able to control FPR at low cell counts (Supplementary Fig 6b-d, model training). Likewise, our 

simulation showed that MOCHA’s false positive rate with low cell counts (and thus low total reads) was 

smaller than HOMER’s and MACS2’s FPR (Supplementary Fig 8A).  

2. A major part of the manuscript is about differential analysis of scATAC-seq data, therefore I think that 

a review of the available methods for such analysis is a necessary part of the introduction to the study.  

We have revised our introduction (lines 65-68) to broaden our discussion of methods used for scATAC-

seq differential analysis. Specifically, we have added four references  (Shi et al, 2022; Chen et al, 2019; 

Nuno et al, 2023; and Stuart et al, 2021) to expand our review of available methods.  

3. In the manuscript, much is made of the role of zero-inflation. However, it is debatable whether a 

model of zero-inflation is more suitable than a negative binomial one. See for example. Sarkar, A., 

Stephens, M. Separating measurement and expression models clarifies confusion in single-cell RNA 

sequencing analysis. Nat Genet 53, 770–777 (2021). https://doi.org/10.1038/s41588-021-00873-4

A more comprehensive analysis of the performance of available negative binomial models, using 

credible benchmarking standards is needed. 

We acknowledge that there has been a debate on this topic with respect to scRNA-seq data and are not 

aware of similar debates in scATAC-seq. There are a number of recently published papers for and against 

zero-inflated models. Below are several studies using zero-inflated methods in scATAC-seq or multi-

omics data. 

D ,2<92@9?" (8>9?@=?" (2@2;9<2 &$ 12;;5:=?" 2<4 *A94= 02<7A9<5@@9$ !0(/2.+% & '2C5?92<

hierarchical framework for detecting technical associates in single cell multiomics data." 

PLoS computational biology 18.6 (2022): e1010163. 



! Dayu Hu, Ke Liang, Zhibin Dong, Jun Wang, Yawei Zhao, Kunlun He, 
Effective multi-modal clustering method via skip aggregation network for 
parallel scRNA-seq and scATAC-seq data, Briefings in Bioinformatics, 
Volume 25, Issue 2, March 2024, bbae102, 
https://doi.org/10.1093/bib/bbae102
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Chromatin Accessibility Sequencing Data." bioRxiv (2024): 2024-01 

A recent deep-learning based tool for scATAC-seq data implements zero-inflated approaches.  

W. Lan, X. Sun, Q. Chen, J. Ye, X. Zhu and Y. Pan, "scIAC: clustering scATAC-seq data based on 

Student’s t-distribution similarity imputation and denoising autoencoder," 2022 IEEE 

International Conference on Bioinformatics and Biomedicine (BIBM), Las Vegas, NV, USA, 2022, 

pp. 206-211, doi: 10.1109/BIBM55620.2022.9995225. 

We have modified the text to include this information, including recent preprints investigating the use of 

zero-inflated models (lines 62, 466-468). 

To address the reviewer’s concern about zero-inflation in pseudobulk scATAC-seq data, we fit a negative 

binomial (NB) distribution on pseudobulked accessibility (!#"$ ) at each open tile. We then tested 

whether !#"$  is zero-inflated using an independent R package, DHARMa, which utilizes the model fits 

from the glmmTMB R package. More specifically, the test compares the observed number of zeros with 

that expected from a NB distribution: An estimate of >1 means that there are more zeros than expected 

by a NB model and a p < 0.05 means that the observed and the expected zeros in the data is significantly 

different. To be comprehensive, we ran the test using two standard parameterizations of the NB family, 

as implemented in the glmmTMB package: The variance grows either linearly (NB1) or quadratically 

(NB2) with the mean. Under the first parameterization (NB1), we observed that 41%, 37%, and 38%, 

respectively, of open tiles in the CD4 Naive T cells, Naive B cells, and CD16 Monocytes were zero-inflated 

(p < 0.05 & statistic > 1) (Supplementary Figure 18C - left column). The corresponding rates under the 

NB2 were 46%, 42%, and 44%, respectively (Supplementary Figure 18C - right column). For comparison, 

underinflation of zeros was not observed (p < 0.05 & statistic < 1, see inserts of Supplementary Figure 

18C). These evidences justified the use of zero-inflation methods in analyzing pseudobulk scATAC-seq 

data. Finally, we want to point out that the zero-inflated methods in MOCHA can also handle data 

without zero inflation. We have revised the text to include this information (lines 154-155, 466-468, 

906-915). 

4. The method for assessing differentially accessible tiles has several drawbacks, the use of k-means, the 

G index and the number of DATs randomly selected. It does not directly show that the DATs called are 

true, but that the DATs that are called, yield better G indices when analyzed using k-means clustering. 

The degree to which these results support the performance in the differential analysis are not well 

understood. For this reason I previously suggested the authors make more direct assessments of 

differential analysis. The leave-one-out approach they have added to the revision has little semblance to 

the method in DESeq2 that was suggested. My comment from the first review is repeated here:  

“ The benchmarking methodology used in the DESeq2 paper could be suitable for this. To test specificity, 

comparisons can be made of groups each containing a mixture of COVID+ and COVID- subjects, positives 

found in this analysis would be false positives. For sensitivity, the approach from the DESeq2 paper can 

be used: “we used experimental reproducibility on independent samples (though from the same 



dataset) as a proxy. We used a dataset with large numbers of replicates in both of two groups, where we 

expect that truly differentially expressed genes exist. We repeatedly split this dataset into an evaluation 

set and a larger verification set, and compared the calls from the evaluation set with the calls from the 

verification set, which were taken as truth.”  

The Reviewer has the correct interpretation on our K-means/G Index evaluation but requests for specific 

assessments on specificity and sensitivity. For specificity, we conducted the suggested analysis by 

shuffling the labels of COVID+ and COVID- samples, and then testing for differential accessibility. 

MOCHA had a 0% false positive rate (FPR) across all 50 random permutations (Supplementary Figure 

12B). In comparison, the minimum, median, and maximum FPR for other methods are: DESeq2 (0%, 0%, 

3%), DiffChipL (0%, .05%, 11.1%), Signac (0%, 0.43%, 13.5%), and ArchR (0.11%, 1.0%. 41.6%). While all 

methods had very low median FPRs, DiffChipL, Signac, and ArchR showed some instability in FDR as the 

corresponding maximum FDR was 11.1%, 13.5%, and 41.6%, respectively. We updated the main text 

with these results (lines 292 - 295). 

For sensitivity, we believe that the suggested assessment is inappropriate for our dataset. Here is the 

method described in DESeq2: “To obtain an impression of the sensitivity of the algorithms, we 

considered the Bottomly et al. [16] dataset, which contains ten and eleven replicates of two different, 

genetically homogeneous mice strains. This allowed for a split of three vs three for the evaluation set 

and seven vs eight for the verification set, which were balanced across the three experimental 

batches.” (Highlights are marked by us.) In this idealized situation, it is reasonable to expect the same 

differential genes to be identified from both the evaluation set and the verification set. However, our 

COVID19X human dataset contains 22 COVID- samples and 17 COVID+ samples and is much more 

complex than the genetically and epigenetically homogeneous dataset used in DESeq2. The suggested 

assessment on sensitivity has two major challenges for our data: 1) Human samples are heterogeneous 

with differences in sex, age, health conditions, disease comorbidities, genetics, life experience, 

professional and environmental hazard exposure, and many many known and unknown factors. It is not 

feasible to split the samples into “evaluation” and “verification” subsets and eliminate all biases 

between them. In other words, differences observed between any two subsets can be real and 

biological, in addition to technical/methodological artifacts. 2) Splitting the samples will reduce the 

power for the study and increase the number of false negatives in both subsets. Nevertheless, to 

address the reviewer’s concern on sensitivity assessment, we downsampled the number of subjects 

from the original n = 39 to n = 30 (a >20% reduction) and measured how sensitive each method was able 

to detect the original DATs  (supplementary Figure 12C). Signac obtained higher recalls with its very 

conservative (thus very few) DAT calls, while the remaining 4 methods obtained similar recalls. We note 

that the recall evaluated in this approach was likely a lower bound due to disease/human heterogeneity 

and sample size reduction, a loss of > 20% of power when the sample size was reduced from n = 39 to n 

= 30 based on t-test (Supplementary Fig 12D). Overall, MOCHA provided comparable performance on 

recall, and better performance on FPR than other methods. We have updated our text to reflect these 

results (lines 295-301). 

5. Another issue from the previous review has not been adequately addressed: 

“Fig 2 shows total numbers of open tiles, and there is a threshold parameter that controls this number 

in MOCHA. The number of open tiles determined by MACS2 and HOMER could also be changed by 

altering cut-off parameters. In benchmarking it is not enough to define true accessible regions, as one 

can always get more tiles changing thresholds. Unless some way of showing specificity is included, this 



analysis is not meaningful.” The revision does contain additional analysis in Supplementary Fig 8, which 

is helpful. However, the significant region count shown in Fig 2 has the same problems as before. 

a. We realize our original description did not make it clear that the cell count-dependent 

thresholds were fixed in all our analyses post the training of the logistic regression models 

(LRMs) on NK cells in our COVID19 dataset. We have modified the text to clarify the confusion 

(lines 132-135). 

b. We would like to point out that we provided specificity results in Supplementary Fig 6d on 

validation datasets, which were obtained without changing the threshold and previously 

described in lines 136-138. We have added a reference to Supplementary Fig 6c,d to make it 

clear to readers (line 139).  

c. Previously we used simulations to compare MOCHA, MACS2, and HOMER on their F1 score, 

recall, false discovery rate, and the number of total detected open regions as cell counts in the 

data are decreased (Supplementary Figure 8A). We have expanded the simulation to examine 

how sequencing depth and the number of “true” open regions impact the performance of the 

three methods (Supplementary Fig 8b-d). We have revised the text to incorporate these new 

results (lines 213-215).  

d. As mentioned above, we did not adjust MOCHA parameters in open tile evaluation. Likewise, we 

used the default threshold settings for HOMER and MACS2, as shown in the code repository. 

Therefore, we believe our comparison on the performance of the three methods is fair.   

e. Youden Index is widely used to balance the tradeoff between sensitivity and specificity (see 

page 80 of Pepe 2003). We mistakenly stated that the Youden Index is used “to balance 

accessible and inaccessible tiles in real data”. As described by Eq (4.5) in Pepe 2003, the receiver 

operating characteristics (ROC) curve is fully determined by the score density distributions of 

disease and control samples. Thus the ROC curve and its optimal point do not depend on the 

numbers of accessible and inaccessible tiles. We have modified the text accordingly (lines 130 - 

131).     

Pepe, Margaret Sullivan. 2003. The Statistical Evaluation of Medical Tests for Classification and 

Prediction. OUP Oxford. 

We believe we have adequately addressed the reviewer’s concerns here.   

6. The simulation study is a promising addition, but it is unclear how MOCHA was applied. It seems that 

the simulation should include more than one cell type. How are the initial peaks called by MACS2? 

Which cells is the MOCHA logistic regression trained on? Which other types of cells are the parameters 

extended to? How are different cell types included in the simulation? 

Question 6A): it is unclear how MOCHA was applied 

MOCHA was applied to the simulated data in the same way as to real data, a detail that has 

been clarified explicitly in the text (lines 210 - 211).  

Question 6B):  It seems that the simulation should include more than one cell type

We previously simulated ‘generic’ fixed peaksets as the ground truth for open and closed 

regions, a detail that has been added in the text (lines 208 - 209). We have broadened our 

simulation to cover ‘multiple’ cell types (see response to Question 6E-F below).  



Question 6C):  How are the initial peaks called by MACS2 

We assume this question refers to finding ‘ground truth’ for training MOCHA’s logistic 

regression models. In these simulations, there is no need for “initial” peak calling by MACS2 

since all “ground truth” peaks were predefined in the simulations and MOCHA was not retrained 

for the analysis.  

Question 6D): Which cells is the MOCHA logistic regression trained on? 

As previously described, MOCHA logistic regression models were exclusively trained on NK cells 

in our COVID19 dataset (lines 125 & 136).  

Question 6E): Which other types of cells are the parameters extended to? 

No MOCHA parameters were changed in analyzing the simulated data. With the exception for S, 

all other MOCHA parameters were fixed post training, and then applied as is to all cell types and 

datasets in this study (Figure 2, Supplementary Figure 5). We updated the text to make it clear 

to readers (lines 133 - 135, 210-211). 

Question 6F): How are different cell types included in the simulation?

Previously, different cell types were modeled by varying the location of the open tiles in 

peaksets, while fixing the number of total open regions (Supplementary Fig 8a). In the new 

simulations, we have changed the number of fragments per cell (to model variation in 

sequencing depth and/or cell type, i.e., ploidy) and both the number and locations of open tiles 

to model cell type-related variations (Supplementary Fig 8b-d). We have modified Results (lines 

208-215), Discussion (lines 445-447), and Methods (lines 887-900) to discuss the additional 

simulations and better describe the analyses.   

7. ATAC-seq analysis is typically carried out using narrow, not broad, peak calling, so shouldn’t the 

standard practice be represented? 

We recognize that many tools identify narrow peaks to answer specific biological questions (e.g., 

nucleosome positioning, insertion cut sites, etc..). These tools provide valuable insight for those specific 

questions and do not generally overlap with MOCHA’s functionalities [1-2]. Since MOCHA was designed 

to analyze pseudo-bulk open chromatin, we identified broad peaks, following previously published best-

practices. On this topic, the literature states that tools which “stitch nearby narrow peaks to form broad 

peaks such as MACS2, HOMER, and SICER/epic2 are also thought to provide more meaningful results 

[3].” We have revised Discussion and added these references to highlight the different use-cases (lines 

452-454).  

[1] Gong, W., Dsouza, N. & Garry, D.J. SeATAC: a tool for exploring the chromatin landscape and 

the role of pioneer factors. Genome Biol 24, 125 (2023). https://doi.org/10.1186/s13059-023-

02954-5

[2] Xu B, Li X, Gao X, Jia Y, Liu J, Li F, Zhang Z. DeNOPA: decoding nucleosome positions 

sensitively with sparse ATAC-seq data. Brief Bioinform. 2022 Jan 17;23(1):bbab469. doi: 

10.1093/bib/bbab469. PMID: 34875002. 



[3] Yan, F., Powell, D.R., Curtis, D.J. et al. From reads to insight: a hitchhiker’s guide to ATAC-seq 

data analysis. Genome Biol 21, 22 (2020). https://doi.org/10.1186/s13059-020-1929-3

Reviewer #3 (Remarks on code availability):

Code is there with some limited documentation. I did not install and run it. 

All scripts for this manuscript are deposited on GitHub 

(https://github.com/aifimmunology/MOCHA_Manuscript/). The MOCHA website 

(https://aifimmunology.github.io/MOCHA/) contains Documentation, Vignettes, and Instructions on 

how to install and run MOCHA. The link to the website is also available on MOCHA’s github repository.  



Reviewer #3 (Remarks to the Author):

The revised manuscript is substantially improved from the last revision. The benchmarking based 

on the COVID data, in particular, is a useful addition. There are however a couple of points that 

could be made clearer.

1. In the simulation (Supp Fig 8) the question of different cell types is not clear. It seems that 

different cell types are represented through the inclusion of different numbers of fragments per 

cell, where the fragment positions are drawn from the same underlying distribution. If this is the 

case, this would not represent different cell types but different measurements of the same cell 

population. Some clarification or adjustment of the simulation is needed here.

2. The discussion of zero-inflation might be clearer if the distinction between accessibility models 

and measurement models is made (along the lines suggested by Sarkar and Stephens (2020)), 

and the reason for including zero-inflation. In other words, the biological phenomenon and the 

measurement thereof are two separate issues and there are different approaches to modeling the 

combination. What is the adopted in the manuscript?


