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Enzyme kinetics and metabolic control

A method to test and quantify the effect of enzymic properties on metabolic variables

Luis ACERENZA* and Henrik KACSERY

Department of Genetics, University of Edinburgh, King’s Buildings, West Mains Road, Edinburgh EH9 3JN, U.K.

It is usual to study the sensitivity of metabolic variables to small (infinitesimal) changes in the magnitudes of individual
parameters such as an enzyme concentration. Here, the effect that a simultaneous change in all the enzyme concentrations
by the same factor a (Co-ordinate-Control Operation, CCO) has on the variables of time-dependent metabolic systems
is investigated. This factor & can have any arbitrary large value. First, we assume, for each enzyme measured in isolation,
the validity of the steady-state approximation and the proportionality between reaction rate and enzyme concentration.
Under these assumptions, any time-invariant variable may behave like a metabolite concentration, i.e. S, = S, (S-type), or
like a flux, i.e. J, = aJ, (J-type). The subscripts r and a correspond to the values of the variable before and after the CCO
respectively. Similarly, time-dependent variables may behave according to S (t/a) = S,() (S-type) or to J (t/a) = aJ (1)
(J-type). A method is given to test these relationships in experimental systems, and to quantify deviations from the
predicted behaviour. A positive test for deviations proves the violation of some of the assumptions made. However, the
breakdown of the assumptions in an enzyme-catalysed reaction, studied in isolation, may or may not affect significantly

the behaviour of the system when the component reaction is embedded in the metabolic network.

1. INTRODUCTION

Enzymologists have been studying the kinetic properties of
isolated enzyme-catalysed reactions for many years. In the great
majority of the reactions the steady-state rate is proportional to
the total enzyme concentration. Many exceptions to this property
are reported, and this fact is often connected with the existence
of subunit associations (see, e.g., Kurganov, 1978). Another
common characteristic of most enzyme assays is that the rate
remains constant during the early course of the reaction. Some
examples are, however, known where the ‘initial’ rate increases
(lag) or decreases (burst) in time (see, €.g., Neet & Ainslie, 1980).
In these cases the steady-state assumption for the concentrations
of the different enzyme forms is violated.

Enzyme-catalysed reactions are the building blocks of metab-
olism, and the knowledge of their kinetic features is an important
step towards understanding how metabolic networks behave.
Nevertheless, we must note that these individual reactions are
part of a system where the components influence each other in
intricate ways. In metabolic systems the metabolite concen-
trations are not held constant, as in traditional enzyme kinetic
assays. In these systems the rates (i.e. fluxes) affect the metabolite
concentrations, and these in turn affect the rates (Kacser, 1987).
We must conclude that all the components contribute to the
system behaviour to some extent. However, if a component is
replaced by a different one, are the properties of the system
significantly changed? Or, to particularize the question, is a
particular kinetic feature of an enzyme-catalysed reaction (e.g.
rate non-proportional to enzyme concentration) relevant to the
behaviour of a metabolic variable when the enzyme concentration
is changed? As we show in the present paper, the existence of
strong deviations from proportionality between rate and enzyme
concentration (in a traditional assay) may be almost irrelevant
when the enzyme concentration is changed within a metabolic

network, whereas in other cases small deviations from pro-
portionality (measured in isolation) may be greatly amplified in
the system. Similar conclusions apply to enzymes that exhibit
lags or bursts. Furthermore, we show how the quantitative
importance of the effects that these kinetic properties of enzymes
have on a metabolic variable may be experimentally determined.
The relationships and methods developed in the present paper
apply to time-dependent metabolic systems. They enable one to
analyse the properties of the instantaneous values of a time-
dependent variable as well as the properties of the time-invariant
variables that may be defined from the time course (e.g. steady-
state values).

2. PARAMETERS AND VARIABLES

A metabolic system is, basically, a network constituted of
molecules, x,, ‘connected’ by chemical reactions. This is usually
represented by a ‘static’ metabolic map, but in our treatment we
wish to study some quantitative aspects of its dynamical be-
haviour. The rates of interconversion between each pair of
molecules are given by the rate laws, v,. These may be functions
of the concentrations, x,, involved (free metabolites, free enzymes,
enzyme-metabolite complexes, enzyme—enzyme complexes etc.),
temperature, pressure, pH, ionic strength etc.

The ‘parameters’ of the system are the quantities that can be
manipulated independently of each other. Once their values are
fixed at the initial point of time, they remain constant during the
whole interval of time that the system is studied. In what follows,
we consider as parameters the total concentration of each enzyme
(free plus complex forms) and physicochemical quantities such as
temperature and pressure. The fluxes or free concentrations that
act as inputs of the system (e.g. sources and sinks of matter and
external effectors) are either held constant or changed in time in
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RPS-plot, Reference-Point Sensitivity co-ordinate-control plot; PPS-plot, Point-to-Point Sensitivity co-ordinate-control plot. ] )
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some pre-determined way (an example of the latter situation is
given in Markus ez al., 1984).

The ‘variables’ of the system are the quantities whose values
depend on the values of the parameters. We may define two types
of variables, namely time-dependent and time-invariant, whether
their magnitudes do or do not change with time respectively. The
instantaneous concentrations x,, mentioned above, and other
quantities that are functions of these concentrations (e.g. fluxes)
are time-dependent variables. The successive values that they
take in time depend on the values to which the parameters and
initial concentrations are set at the initial time. Examples of time-
invariant variables are the stable steady-state concentrations and
fluxes, the transition time of a metabolite (Heinrich & Rapoport,
1975) or a pathway (Easterby, 1981, 1986) to a stable steady
state, the period and amplitude of variables that exhibit sustained
oscillations (Hofmann et al., 1985; Goldbeter & Moran, 1987;
Mizraji et al., 1988) and the maximum Lyapunov exponent that
characterizes a chaotic regime (Hess & Markus, 1987).

First, we centre the attention on the time-dependent variables
x,. The change of each x; with time, dx,/d¢, may be written as the
balance of all the rates, v,, that affect its concentration directly:

dx 4
1

T Zn, v,
t k=1

i=1,..q (1)

Here n,, is the stoichiometric coefficient of the molecule x, in the
reaction k. It is positive, negative or zero if x; is produced,
consumed or not altered directly by the rate v, respectively. For
a given set of values of the parameters and initial concentrations,
the solutions of eqns. (1) constitute the time courses of the
concentrations: x,(#), i =1,...,q. Introducing these x(f) into
the rate laws v,, we obtain the time courses of the fluxes: J,(?),
k=1,..,p.

The values of the time-invariant variables may be obtained
from the time course of the time-dependent variables. For
example, when a system settles to a stable steady state, an
estimate of the steady-state values of metabolite concentrations
and fluxes may be obtained from the time courses, by waiting a
‘long enough’ period of time. In a system that exhibits sustained
oscillations in time, the period of oscillation (the interval of time
between two consecutive maxima in the time course) is such a
time-invariant variable.

3. THE CO-ORDINATE-CONTROL OPERATION (CCO)

It has been traditional to investigate systems by a sensitivity
analysis of the variables with respect to specific parameters. Thus
control analysis (Kacser & Burns, 1973; Heinrich & Rapoport,
1974) considers the responses of metabolic concentrations and
fluxes to modulations of any one of the parameters of the system.
Some progress has been made to use this approach to detect
deviations from the assumption of proportionality between rate
and enzyme concentration in steady-state systems (Kacser et al.,
1990; Sauro & Kacser, 1990). In what follows, a different method
from modulating individual parameters is described. It applies to
time-dependent systems and has the advantage of not being
restricted to small (infinitesimal) changes.

Changes in the values of the parameters affect, to various
degrees, the values of the variables (control of variables by
parameters). For a time-dependent variable, one may define a
‘reference time course’ generated by a chosen set of values of the
parameters, the ‘reference parameter values’. If one or more of
the reference parameter values are altered at the initial time, the
resulting time course may be significantly different from the
reference one. In what follows, we study the control of the
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variables by a particular group of parameters, namely the total
enzyme concentrations, E,. We assume that all the m enzyme
concentrations are simultaneously changed by the same arbitrary
factor a (not necessarily = 1). If E, (j = 1, ..., m) are the values
of the enzyme concentrations that generate the reference time
course, then the new time course is obtained by using enzyme
concentrations E, (j = 1,...,m) given by:

Ei.a = an.r (2)

We call this equal and simultaneous change in all the enzyme
concentrations: the Co-ordinate-Control Operation (CCO)
(briefly introduced in Acerenza et al., 1989 ; Acerenza, 1990). The
subscripts r and « are used to indicate the value of a parameter
or variable before (reference) and after the CCO is applied
respectively. We use this operation throughout the following
treatment. This approach reveals certain simple properties of
time-dependent metabolic systems, when some assumptions are
made (see below). Furthermore we suggest how the resulting
relationships, and hence the assumptions made, may be ex-
perimentally tested in reconstituted systems or biological extracts.
We discuss the practical problems associated with attempting to
apply a CCO in a subsequent section.

4. ASSUMPTIONS

We now make some assumptions concerning the properties of
the metabolic system. These are used to derive some theoretical
consequences of the CCO in sections 5 and 6. The analysis of
cases where there is a breakdown of the assumptions is considered
in sections 9-11.

In the general case (see section 2) the g concentrations x, that
appear in eqns. (1) may be classified in two groups: n free
metabolite concentrations, S, and g —n enzyme concentration in
their different forms (free or combined with metabolites), C,. If
the steady-state approximation for the concentrations C, is
plausible, then dC,/dt = 0 for each C, (Segel, 1988). Applying
these conditions to eqns. (1), the reduced resulting system of
differential equations:

ds,

E i= l,...,n (3)

m
= Xn, v,
j=1
involves only the free metabolite concentrations as variables. In
addition, we assume that the rates v, are proportional to the
corresponding total enzyme concentrations E;:

v,=E f,

where f; are functions of the concentrations S, and parameters,
and are independent of enzyme concentrations and time. The
Michaelis—Menten rate equation, for example, fulfils eqn. (4).

Applying the CCO to a metabolic system whose rates are given
by eqn. (4), the resulting rates, v, ,, are related to the reference
rates, v; . (see eqn. 2), as follows:

j=1...m “

v

e — av.

e J=1,,m )

Then, under the assumptions described by eqns. (3) and (4), the
first important consequence of the CCO is to multiply each term
of the right-hand member of eqns. (3) by the same factor a. It is
important to note that, if matter is introduced into the system via
one or more constant input fluxes, these should also be modified
according to eqn. (5) when the CCO is applied. However, any
constant (input) concentrations, if present, should not be
modified when the rate that transforms them is given by eqn. (4).
The discussion of the case where the inputs are changed in time,
by the experimentalist, is postponed to section 5.
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5. CO-ORDINATE CONTROL OF TIME-DEPENDENT
VARIABLES

In this section we outline some consequences of the CCO,
related to the control of time-dependent variables. Some math-
ematical details of this treatment are given in Acerenza er al.
(1989).

Combining eqns. (3) and (5), we obtain the relationship
between the derivative of S; with respect to time after and before

(reference) the CCO:
ds, ds, .
(@) (%) ©

The only effect of a simultaneous change in all the enzyme
concentrations by a factor a is to make the metabolite con-
centrations change at a rate that is « times the original one. Then,
the CCO is equivalent to a change in the time scale of the time
courses of the metabolite concentrations. For each time ¢, of the
reference time courses [the reference time courses are the functions
of time, S,(¢), obtained with the reference parameter values] there
exists one time ¢, in the new time courses, at which all the
metabolite concentrations have the same values as in the reference
state at time ¢,. The value of ¢_is given by:

== ™
a
and hence:
S, (t/2) =S, (1) ®)

From eqns. (5) and (8) we obtain the analogous relationship for
the fluxes:

Jit/a) = ad; (1) &)

Eqns. (8) and (9) tell us that, when the CCO is applied to a time-
dependent metabolic system, which satisfies the assumptions
made in eqns. (3) and (4), the instantaneous values of the
metabolite concentrations are ‘shifted’ from the time ¢ to t/«,
while the instantaneous values of the fluxes are multiplied by the
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factor a and ‘shifted’ from ¢ to #/a. It is important to note that,
if matter is introduced into the system via concentrations or
fluxes that change in time, these inputs should be altered in the
same way as shown by eqns. (8) and (9) respectively when the
CCO is applied.

An immediate consequence of eqn. (8) is that if one plots the
metabolite concentrations after the CCO against o multiplied by
time the resulting curve should coincide with the reference time
course (see Figs. 1a and 15). This result is used below in section
8. [A similar procedure is used as a test for inactivation of a single
enzyme during assay (Selwyn, 1965); (see also Cornish-Bowden,
1979).]

6. CO-ORDINATE CONTROL OF TIME-INVARIANT
VARIABLES -

A. Co-ordinate control of time-invariant variables with
dimension of time

Time-invariant variables with dimension of time, which charac-
terize some temporal aspect of the time course of the metabolite
concentrations, satisfy eqn. (7). Examples of these variables are
transition times, period of oscillation and the reciprocal of the
maximum Lyapunov exponent (mentioned in section 2). Then, if
T, is the value of such a time-invariant variable with dimension
of time, obtained from the reference time course, after the CCO
the new value of the variable, T, is given by:

T

a

a

(10)

that is a simultaneous increase (decrease) in all enzyme con-
centrations by a factor « causes a decrease (increase) in the value
of T by the same factor.

B. Co-ordinate control of a transition to a stable steady state

If the metabolic system is one that approaches a stable steady
state, after a long enough period of time the variables exhibit

(@)

_x=20

()

104 all 2

Fig. 1. Example where assumptions eqns. (3) and (4) are valid: (a) concentration of S versus time and (5) R-plot

In (a) we show time courses of the concentration of S (Scheme 1 in section 11) corresponding to different a values. The concentrations of X, and
X, are constant. The rate laws v, and v, are proportional to the corresponding enzyme concentrations. In (b) we plot the same ordinate values
as in (a), but against a multiplied by time. In this rescaling plot the three curves coincide. It should be noted that, as a result of the rescaling
procedure, the curves in (a) corresponding to & = 0.5, 1.0 and 2.0 end in (b) at at = 2.5, 5.0 and 10.0 respectively. [In Figs. 3(a) and 3(b) we show
the same types of plots in a situation where assumption eqn. (4) is not valid.]
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approximately constant values independent of time. Therefore
eqns. (8) and (9) take the form:

Ste =S Q)
N (12)

where the superscript ss indicates steady-state values. Eqns. (11)
and (12) show the effect that the CCO has on the steady-state
metabolite concentrations and fluxes.

To characterize the transition between the initial conditions
and the steady state one may use the transition time as defined by
Easterby (1981). This is, of course, a time-invariant variable that
behaves according to eqn. (10) when the CCO is applied.

C. Co-ordinate control of sustained oscillations

Here we consider the situation where the time-dependent
variables (metabolite concentrations and fluxes) exhibit stable
oscillations in time. In this type of behaviour, the values of the
time-dependent variables repeat at constant intervals of time, T’
(period of oscillation). Two time-invariant variables are fre-
quently used to characterize oscillatory phenomena, namely the
period and the amplitude. The period is a time-invariant variable
with dimension of time, and when the CCO is applied it behaves
as shown in eqn. (10). The amplitude of oscillation (4) for a
metabolite concentration S, may be defined as half the difference
between the maximum (S™**-) and minimum (S7"™) values: A5,
= (S§mex-— Smin) /2. The maximum and minimum values, and
hence the amplitude, depend on the reference parameter values.
If we apply the CCO, and wait until the system settles to a new
stable oscillation, even though the value of the period is modified
as described by eqn. (10), the maximum and minimum values of
the metabolite concentrations are not altered (see eqn. 8):

Smax. - S'max‘
A 03

Introducing eqns. (13) into the definition of amplitude, we
immediately obtain:
As,o=As,; (14)

i.e. the value of the amplitude is unaffected by the CCO. The
fluxes J, may be calculated by introducing the metabolite
concentrations into the rate equations given in eqn. (4). If the
metabolite concentrations are periodic functions of time, with
period T, the corresponding fluxes are periodic functions of time
with the same period. Therefore when the CCO is applied the
period of these fluxes is also modified according to eqn. (10). The
metabolite concentrations corresponding to the maximum and
minimum fluxes are not modified, and therefore the same applies
to the values of f; at these points, introduced in eqn. (4).
However, as the rates are proportional to enzyme concentration,
even if the values of f, are unaltered, the new maximum and
minirium values of the flux are « times those of the reference
oscillation:

i (1s)
J;n;n - aj;tl:n.
The amplitude of oscillation (4, ) for a flux J; may be defined as:
A, = (I —Jrn)/2. Combining eqns. (15) wnth this definition,
the relatlonshlp between the flux amplitude before and after the
CCO is obtained:

=aA

Jia Jir

(16)

Besides the period and amplitude, another quantity that may be
used to characterize an oscillatory regime is the mean value in a
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cycle. The mean value of a time-dependent variable Y in an
interval of time T is defined by the expression:

T
f Y,-dt
Y, =22

T

an

It is important to note that we evaluate the mean value in an
interval of time equal to the period of oscillation. When the CCO
is applied the resulting mean value can be written as follows:

Ta
J Y,-dt
Y =20 (18)

In the following, we discuss the relationship between ¥, and ¥,
when the variable is a metabolite concentration or flux that
shows stable oscillations. As was mentioned above, the period of
oscillation, T, satisfies eqn. (10). If Y is a metabolite concen-
tration, eqn. (8) is fulfilled and can be written in an equivalent
way: S, (t) = S, (af). Using this equation together with eqns.
(10), (17) and (18), and properties of integrals, we finally obtain:

Sia=S., 19

In the case where Y is a flux, eqns. (9), (10), (17) and (18) are used
to obtain:

Ja=ad, 0)
In other words, the simultaneous change of all enzyme con-
centrations by a factor a does not affect the mean values of the
metabolite concentrations, but alters all the mean fluxes by the
same factor (being the mean values evaluated in a period of
oscillation). Eqns. (19) and (20) may be seen as equivalent.to the
steady-state conditions (11) and (12) when stable oscillations are
considered.

7. CLASSIFICATION OF THE VARIABLES

In sections 5 and 6 we considered the effects that the CCO has
on time-dependent and time-invariant variables respectively. In
each one of these groups we may distinguish variables that
behave like a metabolite concentration (S-type) or like a flux
(J-type). Such a classification may serve as a summary of the
relationships established and constitutes the basis of experimental
tests.

A. Time-invariant variables

All the time-invariant variables, Y, considered in section 6,
may be classified in two groups, S-type and J-type, according
to the expected response when the system is subject to the CCO.
We define as S-type time-invariant variables those that remain
unaltered after the CCO:

S.=S Q1)

Examples of this type of variable are S (eqn. 11), S™** and SMin-
(eqn. 13), 4 (eqn. 14) and S, (eqn. 19) J-type time-invariant
variables appear multiplied by the factor a when the CCO is
applied:

J,=al, 2

and examples of this type are J§* (eqn. 12), J;** and Jp™
(eqn. 15), 4, (eqn 16) and J, (eqn. 20) The recnprocal of T(1 / 7
also belongs to this type (see eqn. 10).

It should be noted that, if Y is a J-type time-invariant variable,
then Y/a behaves like an S-type time-invariant variable (see
eqns. 21 and 22).
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B. Time-dependent variables

The time-dependent variables may also be classified as S-type
or J-type depending on the predicted behaviour when the CCO
is applied (see section 5). The effect of the CCO on an S-type
time-dependent variable is simply expressible as an alteration in
the time scale of its time course:

S, (t/a) = S (23)

The time-dependent metabolite concentrations are S-type vari-
ables (eqn. 8). In the case of J-type variables, the CCO scales
simultaneously the time and the variable according to the
following relationship:

J(t/a) = al (1) (24)

Examples of J-type variables are the time-dependent fluxes
(eqn. 9).

We therefore see that the values of an S-type (J-type) time-
dependent variable, corresponding to different « and identical at,
behave like the values of an S-type (J-type) time-invariant
variable. Similarly to the case of time-invariant variables, if Y is
a J-type time-dependent variable, Y/a behaves like an S-type
time-dependent variable.

8. TEST OF THE GENERAL RELATIONSHIPS

The data obtained from a CCO experiment may be used to test
the general relationships summarized in section 7 (eqns. 21-24).
Here we propose simple plots to test these relationships. Depend-
ing on whether the variables analysed are time-dependent or
time-invariant, the procedures are slightly different.

A. Time-invariant variables

To test the behaviour of a time-invariant variable, Y, the basic
experimental information needed is a table with the values of the
variable corresponding to different a values (Y, versus a).

The ‘Direct co-ordinate-control plot’ (D-plot) is simply the
plot Y,/Y, against a. Y, is the value of the variable when a = 1
(reference point). The expected result of a D-plot for an S-type
variable is a straight line where the quotients, Y /Y,, are equal to
1 for all a (see eqn. 21 and Fig. 2). J-type variables should give
a straight line, with tangent 1 (45°), that, extrapolated to a equal

24
4 J-type
>
~
N
14 S-type
0 — Tt
] 1 2

Fig. 2. D-plots, Y,/Y, against «, when eqns. (3) and (4) apply

The horizontal straight line is the D-plot of an S-type variable and
the straight line of 45° corresponds to a J-type variable.
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to zero, passes through the origin (see eqn. 22 and Fig. 2). If the
D-plot is not as expected, the variable shows departures from the
theoretical relationship (eqn. 21 for S-type and eqn. 22 for J-type
variables). Provided that no systematic errors in applying the
CCO have been introduced (see section 12), this result should be
interpreted as a breakdown of the assumptions introduced in
section 4. On the other hand, if the D-plot is as expected, the
deviations from the assumptions, if they exist, do not contribute
significantly to the behaviour of the variable when the enzyme
concentrations are changed.

B. Time-dependent variables

To test eqns. (23) and (24) the experimental information
needed is the time courses for different values of «, namely Y (¢).
On the basis of the properties of time-dependent variables,
discussed in section 7, we suggest to plot the data in a ‘ Rescaling
co-ordinate-control plot’ (R-plot). The R-plot for S-type vari-
ables is S,(7) against at. If the variable behaves according to eqn.
(23), the plots for different o should appear superimposed on the
reference curve (« = 1) (see Fig. 1). Similarly, in the case of J-
type variables the R-plot is J, (f)/a against at. As a consequence
of eqn. (24), the curves corresponding to the different time
courses J,(7) should appear superimposed on the reference time
course J () (where o = 1) in the R-plot (not shown). If such an
R-plot does not give coincident curves, this would be an
indication that the assumptions made in section 4 are not
fulfilled, and that these deviations contribute significantly to the
behaviour of the system variable when the enzyme concentrations
are modified.

As was mentioned in section 7, the values of an S-type (J-type)
time-dependent variable, corresponding to different « and identi-
cal at, behave like the values of an S-type (J-type) time-invariant
variable. Therefore a D-plot may be constructed with these
values.

What we have called the R-plot, for S-type time-dependent
variables, is similar to a test used to detect inactivation of an
enzyme during assay (Selwyn, 1965).

9. BREAKDOWN OF THE ASSUMPTIONS

The relationships derived in sections 5 and 6, and summarized
in section 7, are based on the assumptions introduced in eqns. (3)
and (4). If the steady-state approximation for the different forms
of the enzyme concentrations is not valid or the rates are not
proportional to the corresponding enzyme concentrations, the
system variables may exhibit significant deviations from the
predicted behaviour (eqns. 21-24) when the CCO is applied.
Here we enumerate some enzyme mechanisms that are known to
violate those assumptions and, when embedded in a metabolic
network, are potential generators of deviations.

Many proteins described in the literature have a quaternary
structure. Depending on the experimental conditions, more than
one polymeric form may coexist in significant amount. If a
protein with catalytic function shows these structural features, it
constitutes a source for the generation of rate laws that do not
behave as eqn. (4) (see, e.g., Kurganov, 1978). The simplest
example of association—dissociation between homologous sub-
units is the monomer—dimer equilibrium. In section 11 below we
analyse some effects of this type of mechanism on transients to
a stable steady state. The existence of associations between
different enzymes (heterologous associations) may generate rate
laws that depend on more than one enzyme concentration,
showing departures from eqn. (4). Some consequences of hom-
ologous and heterologous associations on the control properties
of steady-state metabolic concentrations and fluxes have recently
been addressed (Kacser et al., 1990; Sauro & Kacser, 1990).
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The time courses of some enzymic reactions show ‘lags’ or
‘bursts’ under normal assay conditions (see, e.g., Neet & Ainslie,
1980). This phenomenon is associated with the existence of slow
conformational transitions in the enzyme mechanism. In these
cases the steady-state approximation is not valid, and therefore
it is not possible to express the behaviour in time by eqns. (3).
The existence of slow conformational changes may have major
effects on the control of the time course of a variable, while
having no effect on the control properties of the steady state of
the system.

Some concentrations of metabolites within a system appear to
be linked by conservation constraints (e.g. [NAD*]+[NADH] =
constant). If the total concentrations of enzymes are negligible
with respect to the concentrations of conserved metabolites to
which they bind, the steady-state approximation is valid. In this
frequently considered situation, as there is no significant seques-
tration of the conserved metabolites by the enzymes, when the
CCO is applied eqn. (4) is also valid. Even if the total con-
centrations of the enzymes are of the same order as the conserved
metabolite concentrations, the steady-state assumption may still
be satisfied, provided that those concentrations are much smaller
than the Michaelis constant (see Segel, 1988). Owing to the low
‘affinity” (large Michaelis constant) between enzyme and metab-
olite, the fraction of the metabolite in complexed form is still
small. If, however, the total concentrations of the enzymes and
the metabolites are of the same order, but greater than the
Michaelis constant, the validity of the steady-state assumption is
no longer ensured. Furthermore, in this condition there is
considerable sequestration of the conserved metabolites, and we
may expect significant deviations in the system variables when
the CCO is applied (see Fell & Sauro, 1990).

The enzyme mechanisms mentioned above may be responsible
for the appearance of departures from the quantitative relation-
ships derived in sections 5 and 6. Furthermore, they may be the
cause of a qualitative change in the dynamics of the system if a
‘bifurcation point’ is reached when the CCO is applied. Such
situations, for example, may transform a sustained oscillation
into a stable steady state, or vice versa.

10. QUANTIFICATION OF THE DEVIATIONS

The D-plots and R-plots may be used to test the existence of
deviations from the predicted relationships (eqns. 21-24). Such a
case is illustrated in Figs. 3(e) and 3(b). Here we introduce
additional plots to assess the quantitative importance of the
deviations. These plots constitute a phenomenological descrip-
tion of the deviations. Furthermore, as we show below, they may
be useful in the search of the origin of the deviations.

In section 7 we discussed two properties of metabolic variables:
(a) if Y is a J-type variable (time-dependent or time-invariant),
then the values of the variable divided by a, Y/«, behave like an
S-type variable (time-dependent or time-invariant respectively);
(b) if Y(?) is a time-dependent variable (S-type or J-type), then
the values of the variable for the same af and different «, Y (?),
behave like a time-invariant variable (of the same type). These
properties allow us to transform the values of any of the variables
described in section 7 into the values of an S-type time-invariant
variable. If we want, for example, to compare the deviations of
an S-type variable with those of a J-type variable, or to compare
the deviations of a time-dependent variable corresponding to
different time points, such transformations should be applied.
The plots, which we introduce in this section, are defined for S-
type time-invariant variables. However, they may also be used in
the analysis of other types of variables, with application of the
appropriate transformations described above.

To quantify deviations, the data from a CCO experiment may
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be plotted in, at least, two different ways. In what follows we
define and discuss two plots, which we call ‘Reference-Point
Sensitivity co-ordinate-control plot’ (RPS-plot) and ‘Point-to-
Point Sensitivity co-ordinate-control plot’ (PPS-plot).

A. Reference-Point Sensitivity co-ordinate-control plot (RPS-
plot)

The RPS-plot is established to characterize the changes of a
variable with respect to a unique reference point (point cor-
responding to a = 1). We define a deviation function d, (for an
S-type time-invariant variable) as d. = [(S,—S,)/S/]/(—1). A
plot of d_ against a represents the relative change in the value of
the variable, with respect to the reference value (S,), per relative
change in the enzyme concentrations, a — 1 (see eqn. 2), when the
CCO is applied. The ordinate values in this plot would constitute
a measure of the quantitative importance of the deviations for
different o changes. The sign of the ordinate values is positive or
negative if the change in the variable is in the same or. opposite
direction to the change in the enzyme concentrations respectively.
In the absence of deviations the ordinate values d, are equal to
zero for all a.

B. Point-to-Point Sensitivity co-ordinate-control plot (PPS-plot)

In the previous (RPS) plot we used a unique reference point.

Alternatively, it is possible to establish a plot where each set
of enzyme concentrations serves successively as the reference
point.
" LetE, ,E,and E,,, (E, , < E, < E,,,) be three consecutive
values of the concentration of any one enzyme, and S,_,, S,
and S,,, the corresponding values of an S-type time-invariant
variable, resulting from the application of the CCO. The
point E, is momentarily considered as the reference point.
The relative change in the variable per relative change in
the enzyme concentration from E, to E,,, is: d =
[(S,.1—=S,)/S.J/(E,.,—E,/E,)] Similarly, the relative change
in the variable per relative change in the enzyme concentration
fromE to E,_ is:d_, =[(S,.,—S,)/SJ/(E,_.,—E,)/E,]. If the
increase and decrease of the enzyme concentration from the
reference point are equal (i.e. E,,,—E, = E,—E,_), then the
relative change in the variable per relative change in the enzyme
concentration at the reference point may be estimated by the
simple arithmetic mean: d, = (d,, +d_,)/2. From p experimental
points, p—2 values of d, may be calculated (d, to d,,_)).

We define the PPS-plot as d, against E,. The ordinates in this
plot may be considered as an estimate of the deviation in the
variable corresponding to each E, when the CCO is applied. In
the absence of deviations the ordinates are equal to zero. The
signs of the ordinates are positive or negative if the change in the
variable is in the same or the opposite direction to the change in
the enzyme concentrations respectively.

It should be noted that if the experimental data are given as S,
against a the relative changes in the enzyme concentrations may
be calculated directly from the values of a: (E,,,—E,)/E, =
(@, —,)/, and (E,_,—E))/E, = (a,_,—a,)/, (see eqn. 2).
In addition, the value of d, may be plotted against a,,.

The arithmetic mean used above to calculate d, may not be a
good estimation when E, ,—E, + E,—E,_,. In this case we
propose to use d,=[(E,,,—E)d_+(E,—E, )d,l/(E,,,—
E,_)). This weighted mean is equivalent to obtaining the value of
d, by linear interpolation between d,, and d_,. Here the enzyme
concentrations may also be substituted by the corresponding a
values without changing the results.

There is a link between the values of the ordinates in a PPS-
plot and the summation relationships of control analysis. This
is given in the Appendix. The construction of these plots is
illustrated in section 11.
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11. EXAMPLE

Here we show, by way of simulation, how the proposed plots
can be used to test and quantify deviations. Although the
example chosen is of a monomer—dimer equilibrium (eqn. 4 is
violated), the same treatment can be applied to any of the
deviations discussed in the preceding section.

We consider one metabolic pathway, whose structure is
represented in Scheme 1. The first step is catalysed by an enzyme
that presents a monomer—dimer equilibrium. X, and X, are the
constant source and sink concentrations respectively. S is the
only metabolite whose concentration is free to alter. The rate for

the first step is: v,=a, M+2a,-D (25)

where a,, and a, are the specific activities of the monomer and
dimer subunits respectively. The total concentrations of monomer
and dimer, M and D, appearing in eqn. (25), are given by
M=[-1+(1+8 Kapp.El)%]/(4Kapp.) and D=K, M. E is
the total enzyme concentration expressed in monomer units
(E, =M+2D). K,,, (the apparent equilibrium constant), a,,
and g, depend on the concentration, X,, of the substrate X,
and are independent of E|. It should be noted that if a, = a,
then v, is proportional to E,, and eqn. (4) is fulfilled. Here we
consider situations where this is not the case.

The second step in Scheme 1 is catalysed by an irreversible
Michaelis—-Menten enzyme: S

=k, E,——

cat.””2 Km + S 3
E, is the total enzyme concentration and k., and K, are
constants.

The time course of the metabolite concentration is obtained
solving the differential equation:

(26)

Uy
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where v, and v, are given in eqns. (25) and (26) respectively.
Fig. 3(a) shows the reference time course, « = 1, obtained for a
particular set of reference parameter values (given in the legend
to Fig. 3) and the time courses after application of the CCO using
values of a different from 1. The corresponding curves (not
shown) for the flux carried by the second step (flux 2) are
obtained by substituting the instantaneous values of the meta-
bolite concentration into eqn. (26).

The R-plots corresponding to Fig. 3(a) are shown in Fig. 3(b).
The five curves in each R-plot do not coincide, and this fact is a
positive test for the existence of deviations from the predicted
relationship (eqns. 23). Similar results are obtained in the R-plot
for flux 2 (not shown), which reveals significant deviations from
eqn. (24). We here characterize and quantify these deviations at
two different points of time, namely ¢ = 1 and the steady state.
The values SV, appearing in Table 1, are the ordinates cor-
responding to the abscissa az = 1 in the plot of Fig. 3(b). The
values J® are calculated from the ordinates (J®/a) corre-
sponding to the abscissa az = 1 of the R-plot corresponding to
flux 2 (not shown). The steady-state values (S and J*) are the
constant values attained after a ‘long enough’ time. From the
steady-state values another time-invariant variable, namely the
transition time of the system, can be calculated (Easterby, 1981,
1986): 7 = S*=/J*. Table 1 shows how this value changes with a.

The PPS-plot, calculated from the data of Table 1, appears in
Fig. 4. Here the deviations are different, for the different variables
(concentration of S, flux 2 and 7) and az (az = 1 and steady state,
for time-dependent variables). Because of the values chosen for
the parameters, the deviations are positive. In the case of the
metabolite concentrations (S-type variables) positive deviations
mean that, when the CCO is applied, the variable moves in the
same direction as the enzyme concentrations. For the fluxes and
the reciprocal of 7 (J-type variables) positive deviations indicate
that the change in the variable is greater than the proportional
increase expected when the CCO is applied with « greater than
unity. It is important to note that the deviation for S$* increases
with a, whereas the deviations for the other metabolite con-
centration and fluxes decrease. These properties of the PPS-plot

ds
m =v,—0, 27
Vl v,
X,—= S —= X,
Scheme 1.
36
1@ a =200

36

(b)

Fig. 3. Example where assumption eqn (4) is not valid, namely monomer—dimer equilibrium: (a) concentration of S versus time and () R-plot

In the example considered in section 11 the reference parameter values used to generate the reference time course (a« = 1, broken line) are a,, = 1,
a,=10, K, =0.1, K, =3, E, =4 and ¥, = 22 and the concentration of S at the initial time zero (§") is zero. The same values for a,, a,,
K,pp.» K, and $™ are used to calculate the curves for a = 0.5, 0.75, 1.5 and 2.0, and the values of E, and V, are multiplied by the corresponding
a (see eqn. 2). The time courses for different a are given in (a). In (b) the same concentrations of S are plotted against « multiplied by time. The
numerical simulations were carried out by using the program SCAMP (Sauro, 1986).
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Table 1. Concentration of S and flux 2 (J) versus «

The concentration appearing in this Table may be obtained from
Figs. 3(a) and 3(b). The plots for the fluxes are not shown. The
values given correspond to the steady state, ss, and at = 1, (1). 7, is
equal to S5°/J3.

a s Js s Jp Ta
0.50 3.90 6.22 3.31 5.77 0.63
0.75 6.02 11.01 437 9.78 0.55
1.00 8.76 16.39 5.29 14.04 0.53
1.50 18.12 28.31 6.79 22.88 0.64
2.00 45.77 41.29 7.94 31.94 L1

constitute a quantitative phenomenological description of the
deviations.

In what follows, we analyse how the properties of the
component rates (v, and v,) affect the resulting behaviour of
the variables when the CCO is applied. This analysis is based
on infinitesimal changes (« =~ 1) as used in control analysis. It
provides us with an interpretation of the deviations appearing in
Fig. 4. It can be shown that, in the simple example under
consideration, the ordinates of the PPS-plot for the metabolite
concentration may be estimated by:

Dy(t) = (w2 —1)CS, (28)

Here, 7y = (E,/v,)(0v,/QE,). This = elasticity is equal to unity
when the rate v, is proportional to the enzyme concentration E,.
C; = (v,/5)/(8S/dv,) is the Control Coefficient. In general, this
Control Coefficient is time-dependent, though in the limit it
represents the usual steady-state value (see the Appendix and
Kacser et al., 1990). The analogous equation for flux 2 is:

D, (1) = (w2 —1)C: (29)

It is important to note that eqns. (28) and (29) are valid in this
particular example, because 73 is independent of time (in a more
general case they must be substituted by expressions that involve

ss
34 S
2 1/7
s -
°
14
pva— N
X ¥ —% S
h— :T'-\ ‘E‘JSS
N T —t g
0.
05 1.0 15

Fig. 4. PPS-plot, d, against a, in a case where assumption eqn. (4) is not
valid: behaviour of time-invariant and time-dependent variables

These plots are constructed by using the data from Table 1. The
ordinates corresponding to d,,, S% (©), S& (x), J£(O), J& (+)
and 1/7, (A) are calculated as described in section 10. The broken
line indicates the plot of all variables expected in the absence of
deviations.
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Table 2. Control Coefficients and deviations

The values of the parameters used to generate the coefficients
appearing in this Table are given in Fig. 3. Deviations Dg and D,
were obtained by using eqns. (28) and (29). They are evaluated at
two different points: ar = 1 and ss (steady state). The values of d,,
were obtained from the PPS-plot of Fig. 4. The numerical simulations
were carried out by using the program SCAMP (Sauro, 1986).

a ¢ G mi-t Dy d7 D, 4

(0.75 301 100 039 .19 121 039 040

ss 1.00 392 1.00 0.37 145 1.55 037 038

‘l 1.50 7.04 1.00 033 230 3.06 033 034

[ 075 173 070 039 068 068 028 029

at=1 1.00 175 063 037 065 065 023 025
1 150 1.76 054 033 058 059 0.18 0.19

integrals). Therefore for this particular example the signs and
magnitudes of the deviations in a PPS-plot depend on the
product of two factors: (a) the sign and magnitude of the
deviation of the rate (my —1) and (b) the sign and magnitude of
the effect that a change in the rate has on the variable (C5 or
C;?). The values of these quantities are given in Table 2. In the
case studied both factors (a and b) are positive, which results in
a positive deviation in the PPS-plot. The deviation of the rate
(mg —1) decreases with a. Cy* (af = 1) shows the same tendency,
whereas C: (steady state) is constant and equal to 1 (first step is
irreversible) and C$ (at =1) increases slightly with «. This
dependence on a exp'lains the decreasing curves exhibited by the
three variables under consideration (Fig. 4). On the other hand,
C;, (steady state) increases with a in such a way that the
product C; (my —1) increases too, being the cause of the
increase in the deviation with a in the PPS-plot. It should be
pointed out that the increase in C5 is due to an increase in the
saturation of the second enzyme with «. However, as Sis built up
from zero, the saturation effect is not important at the early
stages of the time course (az = 1).

It is important to note that, even though the values of « used
to construct the PPS-plot are relatively large, the deviations
calculated with egqns. (28) and (29), which are based on
infinitesimal changes are in reasonable agreement (see Table 2)
with the values of the ordinates, d,, in Fig. 4, although it is
recognized that this need not generally be the case.

Eqns. (28) and (29) illustrate that the existence of strong
deviations from proportionality between rate and enzyme con-
centration (e.g. 7z > 1) may be irrelevant to the behaviour of a
metabolic variable if the magnitude of the Control Coefficient
(CY) is small. However, in other cases the deviation from
prolportionality in the rate equation may be greatly amplified if
the variable shows a high value of the Control Coefficient (e.g.
S* in the situation shown above).

12. DISCUSSION

The ideal CCO consists in the change of all the enzyme
concentrations by the same factor, without any alteration in the
other parameters of the experiment. [Exceptions are time-
invariant input fluxes and time-dependent input metabolite
concentrations and fluxes (see sections 4 and 5).] It now remains
to discuss how far this operation can be applied to experimental
systems. As always, there are special problems that will be
encountered in particular applications.

The CCO may be applied to reconstituted systems. These
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systems are built up by the use of component molecules that had
been previously purified. They are, of course, much more simple
than the biological systems that they are intended to mimic.
However, they may give insight concerning, for example, the
main components and conditions needed to obtain a certain
behaviour [see, e.g., Eschrich et al. (1980), oscillations; Torres
et al. (1989), transition time; Salerno et al. (1982), transition
time]. The composition of a reconstituted system is known and
under the control of the experimentalist. Therefore the CCO
may, in principle, be applied to reconstituted systems in a
simple way. These seem to be the most immediate experimental
applications.

In the case of a biological extract, many aspects of the
composition are probably not known, which makes it more
difficult to apply the CCO. One way to approach this goal might
be to take a fraction of the extract and make a complete enzyme
inactivation (e.g. denaturation by heating or proteolytic
enzymes). By mixing the original extract and the one subjected to
inactivation in different proportions, we might obtain dilutions
of the active enzyme concentrations without altering the concen-
trations of the other components of the system. In the ideal
conditions the inactivator and the products of inactivation must
not react with non-enzymic components of the system. It is
evident that the agent used to inactivate the enzymes should be
totally removed before the mixing is done. If there is considerable
enzyme inactivation during the experiments (spontaneous or
induced by unremoved inactivator), the total enzyme concen-
trations may not be treated as parameters and will constitute a
source of deviations. An alternative method consists of successive
dilutions of the extract, which would decrease all enzyme
concentrations by the same factor. It is, however, necessary to
supplement with all the metabolites that are not generated in the
system in order to maintain the original concentrations. Such an
attempt was made by Das & Busse (1985) in studying glycolytic
oscillations in yeast extracts. Although the [NAD*]+[NADH]
and the [ATP] + [ADP]+[AMP] were maintained constant, other
cofactors may have been altered by the dilutions. The PPS-plot
for the period, which can be constructed with the data obtained
from the above publication, shows both positive and negative
deviations. This suggests a change of sign of the Control
Coefficient, but, in view of the experimental difficulties referred
to above, this interpretation may be questionable. If it is desired
to extrapolate from experiments on biological extracts to the
situation in vivo, it is important to note that in the preparation of
the extract a dilution takes place. In so doing the quantitative
importance of the deviations may be modified.

The application of the CCO to a system in vivo appears to be
difficult. One might think that the use of, for example, haploid,
diploid and tetraploid yeast cells could be a way to achieve this
goal. However, in these series the volume increases proportionally
to the gene ploidy, leaving most of the enzyme concentrations
approximately unchanged (Mortimer, 1958 ; Ciferri et al., 1969).
On the other hand, some enzyme concentrations (e.g. enzymes
bound to membranes) may suffer significant changes (Hilger,
1973). This situation is therefore far from what we define as
CCO.

A method where enzyme concentrations can be manipulated
in vivo consists in using conditions when co-ordinate repressions/
inductions of pathways occur. These are well known in both
fungal and bacterial micro-organisms. By definition the CCO
requires the concentrations of all enzymes in the system to be
simultaneously altered, and this is certainly not the case in the
above systems. Nevertheless, such studies may approach the
requirements of a CCO if the system outside the pathway does
not interact significantly with it when such repressions/inductions
are effected. It is an almost universal observation that single null
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mutants in one pathway do not impose double (or multiple)
requirements on other pathways. This argues against important
interactions between pathways. The absence of such interactions,
however, will have to be established rigorously or the system will
have to be manipulated to eliminate them. An approach to this
has been achieved in studying co-ordinate de-repression in the
arginine pathway of Neurospora crassa (Stuart et al., 1986).
Introduction of a regulatory mutant (cpc-1) decreases the con-
centrations of the enzymes by about 3-fold compared with their
‘basal’ (reference) concentrations in the wild-type. The effects on
the flux to arginine of this substantial factorial change, however,
are virtually buffered by a strong negative feedback inhibiting an
early enzyme of the pathway. When grown in minimal medium,
a comparison of the two strains shows only a 16 %, decrease in
the flux in the mutant. This feedback effect can, however, be
abolished by growth on citrulline-supplemented medium, which
effectively ‘shortens’ the pathway to the last three steps. When
this is done, it is found that the 3-fold decrease in enzyme
concentrations results in a 3-fold decrease in flux. In this instance,
therefore, no evidence of deviations due to the last three enzymes
is observed.

The non-existence of deviations, as a result of a CCO ex-
periment, is informative by itself. This fact indicates that either
the assumptions (eqns. 3 and 4) are fulfilled or their violation is
unimportant concerning the behaviour of the variables. On the
other hand, the discovery of deviations strongly suggests that the
properties of one or more components of the network do not
coincide with the assumptions made. Furthermore, a positive test
for deviations shows that these features of the components have
a significant effect on the behaviour of the variables when the
enzyme concentrations are changed. The experimental design for
performance of the CCO does not necessarily rely on a detailed
knowledge of the structure of the metabolic system. However, if
we want to have an interpretation of the deviations, the existing
profuse amount of information concerning the structure of
metabolic systems and the kinetic properties of its component
reactions may be useful. This information (e.g. non-proportion-
ality between a rate, v,, and an enzyme concentration, E,) may
suggest candidates for the ‘cause’ of the deviations in a variable
of the system (Y). To test the candidate, the values of the Control
and Elasticity Coefficients (e.g. Cy, and (w3 —1) should be
experimentally obtained, in the same conditions used when the
CCO was applied (see section 11). We conclude that the CCO
and co-ordinate-control plots may be used as a first approach to
study the control properties of time-dependent metabolic systems.
They constitute a possible way to obtain relevant information
and may guide the design of later experiments, leading to a
deeper understanding of how metabolic networks work.
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Relationship of the CCO to control analysis: summation relationships

(a) The assumptions of egns. (3) and (4) of the main paper are
valid

Let us consider a time-invariant variable Y. A small relative
change in Y, dY/Y, originated by simultaneous small relative
changes in all the enzyme concentrations, dE,/E(= a—1), can
be written as the sum of the contributions of each individual
enzyme:

dy = dE
S=scy (A1)
Y 5% E
where Cy is the Control Coefficient of the variable Y, by the
enzyme concentration E,, and it is defined as follows:

oy (A2)

j

Cy =
Ej

~ |t
[«3]

When the changes in E, correspond to a CCO (see eqn. 2)
dE/E, = a—1 (for j=1,...,m). If the assumptions introduced
in eqns. (3) and (4) of the main paper are valid, the relative
change in the variable, dY/Y, is zero in the case of an S-type
time-invariant variable, S, and a—1 for a J-type time-invariant
variable, J (see eqns. 21 and 22 of the main paper). Introducing
these results into eqn. (A1), we obtain:

=C5 =0 (A3)
k

¢, —1=0 (A%)
k

Eqns. (A3) and (A4) are the summation relationships for S-type
and J-type time-invariant variables respectively. Examples of
these variables are given in part A of section 7 of the main paper.
Particular cases of eqns. (A3) and (A4) are the summation
relationships for the Control Coefficients of the steady-state
metabolite concentrations and fluxes (Kacser & Burns, 1973;
Heinrich & Rapoport, 1974). The reciprocal of a time-invariant
variable with dimension of time, 1/T, fulfils eqn. (A4). Note that
CyJT = —Cj, and therefore, for these variables:

xCE =-1
k
This general relationship was previously obtained for particular

definitions of transition time (see Heinrich & Rapoport, 1975;
Torres et al., 1989; Meléndez-Hevia et al., 1990), but is general

for any variable that obeys the transformation eqn. (10) of the
main paper.

The summation relationships for the Control Coefficients of
S-type and J-type time-dependent variables can be written as
follows:

2C5-T =0 (AS)
k

2C—-1-T"=0 (A6)
k

The ‘Time Coefficients” T° and 7Y are defined by 7Y =
(t/Y)/(0Y/0r), where Y stands for S or J (see Acerenza et al.,
1989).

() Deviations from the assumptions of eqns. (3) and (4) of the
main paper

Eqns. (A3)—(A6) are derived by using the assumptions intro-
duced in eqns. (3) and (4) of the main paper. If these assumptions
are not fulfilled, the left-hand members of eqns. (A3)~(A6) are
not equal to zero. It may be shown that, when the CCO is applied
with small changes (« =~ 1), those left-hand members are not
equal to zero but are approximately equal to a deviation term (D)
given by eqns. (A7)~(A10) respectively:

Sa_Sr
Sr

Dy = (A7)
a—1
((Ja/ a)— J,)
p,=+ Lt _J (A8)
a—1
(Sa(ata =0- S,(t))
Dy = 50 (A9)
a—1
([Ja(ata = 1)/a]— J,(t))
D,(1) = 20 (A10)
a—1

It is important to note that these D values are the better
approximations to the left-hand members of eqns. (A3)—+(A6) the
closer « tends to 1.

The deviations given in eqns. (A7)~(A10) are those plotted
against « in a PPS-plot (see section 10 of the main paper). The
only difference is that in the PPS-plot we use the mean between
positive and negative a—1 values to compensate (partially) the
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error introduced by the use of relatively large changes. It is
easy to show that all D values are zero when the assumptions
eqns. (3) and (4) of the main paper apply.
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