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1 Watertight manifolds

A watertight surface mesh is a manifold that consists of one closed surface, i.e. it does not contain any gaps or
holes and have a clearly defined boundary and inside. By definition, a surface mesh is watertight if the following
conditions are met: (i) the mesh has no self-intersecting faces, (ii) the mesh is two-manifold, i.e. it does not
contain any non-manifold edges or non-manifold vertices, and (iii) the mesh has no boundary edges. A self-
intersection is an intersection of two facets belonging to the same mesh. A non-manifold edge is an edge that
has more or less than two incident faces. If the edge is connected to only one facet, it is a non-manifold boundary
edge.

To understand what a non-manifold vertex is, we define the star of a vertex to be the union of all its incident
faces. A non-manifold vertex is a vertex where the corresponding star is not any further connected after the
removal of the vertex. A two-manifold mesh is a mesh that has zero non-manifold edges and non-manifold ver-
tices. A watertight manifold is then a two-manifold mesh that has no self-intersecting faces and zero boundary

edges'. Figure St illustrates the differences between manifold and non-manifold vertices and edges.

Manifold Edge o/
Manifold Vertex Q/

Non-manifold Vertex x i

Figure St: A comparative illustration showing the configurations of manifold and non-manifold vertices (left) and manifold and non-
manifold edges (right). A watertight surface manifold must have zero non-manifold edges and zero non-manifold vertices. The vertex

is labeled 7, while the edge is labeled 7;.
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2 Digitally reconstructed cortical circuits and neuronal morphological types

In 2015, a firstlarge-scale model of the microcircuitry of somatosensory cortex of a two-weeks old ratis presented™.
Using detailed anatomical and physiological models gathered from experimental data, a biologically plausible
digital reconstruction of the cortical circuit is achieved. Recent circuits contains 6o different types of neuronal
morphologies®. The robustness of the presented meshing pipeline (refer to Figure S2) is evaluated by applying
the pipeline to a diverse set of neurons that are sampled from a recent digitally reconstructed circuit. We selected
6o cellular exemplars, where each cell represent a single morphological type. Table St lists those exemplars, their
morphological types and cellular identifiers (or GIDs) in the circuit. Quantitative and qualitative analysis of the

resulting meshes is discussed in Section 6 (Figs. S7 - S126).

Table S1: Summary of the selected neurons from a recent digitally reconstructed cortical circuit™? and their morphological types
and cell identifiers (GIDs) in the circuit. The analysis of the resulting meshes of each neuronal morphology is shown in each
corresponding figure in Section 6.

m-type Morphological type* GID Mesh Analysis
Li_ DAC Layer 1 Descending Axon Cell 6343 Figs. S7 & S8
L1 HAC Layer 1 Horizontal Axon Cell 662845 Figs. S9 & S1o
Li_LAC Layer 1 Large Axon Cell 674955 Figs. S11 & St

Li_NGC-DA  Layer 1 Neurogliaform Cell with Dense Axonal Arborization 653769 Figs. S13 & S14

Li NGC-SA Layer 1 Neurogliaform Cell with Slender Axonal Arborization — 688678 Figs. S15 & S16

Li SAC Layer 1 Small Axon Cell 681256 Figs. S17 & S18
L23_BP Layer 2-3 Bipolar Cell 3022157 Figs. S19 & S20
L2z BTC Layer 2-3 Bitufted Cell 2983868  Figs. Sa1 & S22
L3 CHC Layer 2-3 Chandelier Cell 3047737  Figs. 523 &. S24
L23_ DBC Layer 2-3 Double Bouquet Cell 3417463 Figs. S25 & 526
L23 LBC Layer 2-3 Large Basket Cell 3019557 Figs. 527 & 528
L3 MC Layer 2-3 Martinotti Cell 508578 Figs. S29 & S30
L23_NBC Layer 2-3 Nest Basket Cell 3039549 Figs. S31 & S32
L2 NGC Layer 2-3 Neurogliaform Cell 2980862 Figs. 533 & S34
L23_SBC Layer 2-3 Small Basket Cell 502166 Figs. 533 & S34
L2 IPC Layer 2 Inverted Pyramidal Cell 2944367  Figs. 537 & 538
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L2 TPC:A
L>_TPC:B
L3;_TPC:A
I3_TPC:C
L4 _BP

L4 BTC
L4 CHC
L4 _DBC
L4 LBC
L4 MC

L4 NBC
L4 NGC
L4 SBC
L4 SSC
L4 TPC
L4 UPC
Ls_BP
Ls_BTC
Ls. CHC
Ls_DBC
Ls_LBC
Ls MC
Ls_NBC
Ls. NGC
Ls_SBC
Ls_TPC:A

Ls_TPC:B

Layer 2 Tufted Pyramidal Cell A
Layer 2 Tufted Pyramidal Cell B
Layer 3 Tufted Pyramidal Cell A
Layer 3 Tufted Pyramidal Cell C
Layer 4 Bipolar Cell

Layer 4 Bitufted Cell

Layer 4 Chandelier Cell

Layer 4 Double Bouquet Cell
Layer 4 Large Basket Cell

Layer 4 Martinotti Cell

Layer 4 Nest Basket Cell

Layer 4 Neurogliaform Cell
Layer 4 Small Basket Cell

Layer 4 Spiny Stellate Cell

Layer 4 Tufted Pyramidal Cell
Layer 4 Untufted Pyramidal Cell
Layer s Bipolar Cell

Layer s Bitufted Cell

Layer s Chandelier Cell

Layer s Double Bouquet Cell
Layer 5 Large Basket Cell

Layer s Martinotti Cell

Layer s Nest Basket Cell

Layer s Neurogliaform Cell
Layer 5 Small Basket Cell

Layer s Thick-tufted Pyramidal Cell A

Layer s Thick-tufted Pyramidal Cell B

2925968
3328718
452629
$32420

2206966
2859275

2208302

2380929
2875360
2872311

2797995
2378362
2381531
2819361
2776911
2252026

4234789
3597773
3422989
3608613
3489410
4230916
3569992
4212531
3512410
4163878

3794149

Figs. 539 & S40
Figs. S41 & S42
Figs. 543 & S44
Figs. S45 & S46
Figs. S47 & 548
Figs. S49 & Sso
Figs. Ss1 & Ss52.
Figs. S53 & S54
Figs. Ss5 & Ss56
Figs. S57 & Ss8
Figs. Ss9 & S6o
Figs. S61 & 562
Figs. 563 & S64
Figs. S65 & S66
Figs. S67 & S68
Figs. S69 & S70
Figs. S71 & S72
Figs. S73 & S74
Figs. §75 & 576
Figs. S77 & 578
Figs. S79 & S8o
Figs. S81 & 582
Figs. 583 & S84
Figs. 585 & S86
Figs. 587 & S88
Figs. S89 & Sg90

Figs. So1 & S92
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Ls_TPC:C Layer s Thick-tufted Pyramidal Cell C 3466005  Figs. S93 & S94

Ls_UPC Layer s Untufted Pyramidal Cell 3547415 Figs. So5 & S96

L6 _BP Layer 6 Bipolar Cell 944429  Figs. S97 & S98

L6 _BPC Layer 6 Pyramidal Cell with Bipolar Apical-like Dendrites 744886 Figs. S99 & S100
L6_BTC Layer 6 Bitufted Cell 950455 Figs. Sto1 & Sio2
L6 CHC Layer 6 Chandelier Cell 1723993  Figs. S103 & S1o4
L6_DBC Layer 6 Double Bouquet Cell 1994509  Figs. S105 & S106
L6_HPC Layer 6 Horizontal Pyramidal Cell 1240273  Figs. S107 & S108
Le_IPC Layer 6 Pyramidal Cell with Inverted Apical-like Dendrites 1561862 Figs. S109 & S110
L6_LBC Layer 6 Large Basket Cell 1374612 Figs. Stir & Sz
L6 MC Layer 6 Martinotti Cell 22106 Figs. S113 & Sii4
L6 _NBC Layer 6 Nest Basket Cell 2204257  Figs. S1is & S116
L6_NGC Layer 6 Neurogliaform Cell 962348 Figs. Sir7. S18

L6_SBC Layer 6 Small Basket Cell 1408681 Figs. S119 & S120
L6 _TPC:A Layer 6 Tufted Pyramidal Cell with Dendritic Tuft A 1895896  Figs. S121 & S122
L6 _TPC:C Layer 6 Tufted Pyramidal Cell with Dendritic Tuft C 2147655 Figs. S123 & Si24
L6_UPC Layer 6 Untufted Pyramidal Cell 1063319 Figs. S125 & S126
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3 Reconstruction of watertight manifolds of geometrically realistic neurons

Figure S2 shows a high level overview of our pipeline including watertight surface mesh generation, tetrahe-
dralization and reaction-diffusion simulation. The principal focus of this work is the automated generation of
optimized and watertight surface meshes that can be directly plugged into the simulation. Tetrahedralization*
and reaction-diffusion simulations’ are complementary steps that are beyond the scope of this work.

The input morphology is used to construct a list of proxy meshes, where each proxy corresponds to an in-
dividual object in the morphology (soma, branches, or spines). Proxies are grouped into a single mesh object,
with which the Voxel remesher can be applied. The dimensions of the smallest structure in the proxy meshes
are evaluated and the resolution (or Voxel Size) of the Voxel remesher is adjusted accordingly. This remesher
uses an eflicient variant of the marching cubes algorithm to construct a single manifold that represent the cel-
lular membrane of the neuronal morphology. Typically, this manifold has highly tessellated surface with huge
number of facets. Therefore, mesh optimization is applied to create a corresponding watertight manifold with
a fewer number of facets that is convenient to run a simulation. The resulting surface mesh is adapted to create
a corresponding tetrahedral volumetric mesh, for example using TeTGEN®®, and is plugged into a reaction-

diffusion simulation in STEPs simulator®7:%.


https://docs.blender.org/manual/en/latest/sculpt_paint/sculpting/tool_settings/remesh.html
https://docs.blender.org/manual/en/latest/sculpt_paint/sculpting/tool_settings/remesh.html
https://wias-berlin.de/software/index.jsp?id=TetGen&lang=1
https://steps.sourceforge.net/STEPS/default.php
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NeuroMorphoVis

Neuronal Proxy Voxel Remesher Watertight
Morphology Meshes Mesh
TetGen STEPS
E F

Tetrahedral Reaction Diffusion
Mesh Simulation

Figure S2: Mesh generation & simulation pipeline. The neuronal morphology (A) is initially used to create a set of corresponding
proxy meshes of every individual component of the morphology, which are then combined into a single mesh object with overlapping
geometries using a joint operation (B). The Voxel remesher is applied to this mesh object to create a volumetric representation of
the membrane (C) with which all the overlapping structures are eliminated. This remesher creates a watertight manifold with a
continuous and smooth surface (D), which is then optimized to synthesize a volumetric mesh (E), for example using TETGEN, to
perform a stochastic reaction-diffusion simulation in STEPS (F). Spines are not shown.


https://docs.blender.org/manual/en/latest/sculpt_paint/sculpting/tool_settings/remesh.html
https://wias-berlin.de/software/index.jsp?id=TetGen&lang=1
https://steps.sourceforge.net/STEPS/default.php
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4 Surface mesh optimization

4.1  Re-tessellation via coarsening

The resulting mesh from the Voxel remesher in BLENDER? is reconstructed with an extension of the popular
marching cubes algorithm. Based on the spatial extent of the mesh and the size of its smallest structure, the
voxelization resolution is set, which often leads to reconstruct a mesh with gigantic number of facets that are
uniformly distributed along the surface of the mesh. This mesh is mathematically guaranteed to be watertight,
but it has two principal limitations when used in reaction-diffusion simulations. First, and due to its high tes-
sellation, it is accompanied with high computational costs. Second, it has low geometric quality because the
edges of its triangles are much different in length; i.e. the aspect ratio is less than one. Therefore, it will have
poor numerical accuracy that is reflected on the results of the simulation.

To resolve these issues, we have adapted and extended the GAMER — or Geometry-preserving Adaptive
MeshER - library'®; and provided an optimized extension called OMEsH (or OPTIMIZATIONMESH). As the
optimization procedure is applied per vertex, implementing the code in Python is obviously inefficient. There-
fore, OMEsH is developed in C++, but it has Python bindings, which makes it compatible with the Python
API of BLENDER. Moreover, OMEsH uses OPENMP to parallelize the embarrassingly parallel sections of the
code. Further details about the code, its implementation aspects and installation are provided in Section 8.

Adaptive surface coarsening reduces the number of facets in local regions with low frequency features and
preserves a decent amount of vertices to capture high frequency features as shown in Figure S3. The local re-
gions across the mesh surface are quantified using a local structure tensor, where we can evaluate the number of
vertices that can be safely eliminated without changing the structure. This evaluation is based on several factors
including the local sparseness and curvature of the surface mesh at each vertex. Once a vertex is removed, the

patch of the incident neighbors is re-triangulated to close the manifold.

4.2 Self-intersections

While the surface coarsening process is significant to eliminate unnecessary vertices from the mesh and to re-
duce its computational complexity, re-triangulation of the holes caused by the deleted vertices introduces self-
intersecting facets, leading to a non-watertight mesh as explained earlier in Section 1. These self-intersections can
be reduced and possibly removed by applying triangular smoothing across the surface of the mesh in an iterative
fashion. Figure S4 shows wireframe visualizations of the mesh shown in Figure S3 after every surface smoothing
iteration for a total of 10 iterations. Surface smoothing tends to stretch the entire surface of the mesh trying to
eliminate self-intersections, nonetheless, removing self-intersecting factes completely is not guaranteed. Typi-
cally, after 15 - 30 smoothing iterations, a relatively few self-intersecting facets — with respect to the mesh size —
might still exist as shown in Figure Ss, where 14 meshes (14 out of 60) still have self-intersecting faces even after

so iterations of surface smoothing.

10
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https://www.blender.org/
http://fetk.org/codes/gamer
https://www.blender.org/
https://www.openmp.org/
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Figure S3: Surface mesh coarsening. The neuronal mesh generated from the Voxel remesher (left) is typically highly tessellated
(~100k triangles). This mesh is re-tessellated using coarsening to create an adaptively optimized clone (right) — with ~68k triangles,
where local regions with high frequency contain more faces than flat regions.

4.3 Watertightness verification

To guarantee the robustness of our solution, we use the modeling tools in BLENDER, including the internal
mesh editing API (called BMESH), to implement an iterative watertightness verification procedure to ensure
that the optimized mesh (the blue mesh in Figure S3) is watertight. This procedure initially identifies if the
mesh has non-manifold edges, non-manifold vertices or self-intersecting faces or not. If self-intersecting facets
are detected, the corresponding vertices of those facets are identified and marked for deletion. The elimination
of these vertices is accompanied with the generation of four artifacts: (i) non-manifold edges, (ii) possible non-
manifold vertices, (iii) possible floating vertices and (iv) possible tiny floating partitions.

These artifacts are handled in the following order. Initially, if the mesh has any floating vertices, i.c. vertices
thatare not connected to any edges, we mark those floating vertices and eliminate them from the mesh all at once.
Afterwards, we count the number of partitions in the mesh. In case the mesh has more than one partition, we
select the largest partition, or the partition that has the largest number of vertices, and consider it the principal
partition in the mesh. This partition is preserved, while the other secondary partitions (with significantly less
number of vertices) are marked for removal. The vertices of the secondary mesh partitions are selected and
eliminated from the mesh. At this stage, the principal partition has no self-intersections and zero non-manifold
vertices, but it contains non-manifold edges that form multiple holes across the surface of the mesh. We then
apply an efficient hold-filling strategy that takes a list of edges corresponding to the present non-manifold edges
in the mesh to create a list of triangle facets leading to the repair of all the non-manifold edges. In the majority of
the cases, filling the holes using this approach resolves the non-watertightness problem. But in a few cases, the
newly created facets might intersect with other facets of the mesh. This case particularly happens with meshes

containing sharp edges. If this scenario occurs, a new watertightness verification iteration is applied, where

II


https://docs.blender.org/manual/en/latest/sculpt_paint/sculpting/tool_settings/remesh.html
https://www.blender.org/
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the self-intersecting facets are eliminated until a the mesh is confirmed to have no self-intersections and zero

non-manifold edges and vertices.

12
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Figure S4: Iterative smoothing of a decimated surface mesh of a neuronal morphology. The decimation procedure — or mesh coars-
ening — introduces self-intersecting facets. In every smoothing iteration, the surface of the mesh is stretched and the number of
self-intersecting facets is reduced. Nonetheless, and in certain complex geometric scenarios, it is not guaranteed to eventually remove

all the self-intersections even after large number of iterations. The number of smoothing iterations is indicated on the top right of
every rendering. Related to Fig. Ss.

3
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Figure Ss:  Number of self-intersecting facets with respect to number of smoothing iterations for the meshes created from their
corresponding neuronal morphologies. Related to Fig. S4.
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s Integration of dendritic spine models with realistic geometries
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Figure S6: Spine mesh models with realistic geometries segmented from a cortical electron microscopy volume of a two-weeks old
rat".
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6 Quantitative and qualitative measures

Figure S7: Wireframe visualizations of an Li_DAC neuron showing closeup comparisons between the highly tessellated surface mesh
generated from the Voxel remesher (left) and the adaptively optimized surface mesh generated from the optimizer (right). Comparative
quantitative and qualitative analyses of the meshes are demonstrated in Figure S8. Scale bars: § ym.

Min. Dihedral Angle®  Max. Dihedral Angle ° Radius Ratio Edge Ratio Radius to Edge Ratio  Fact Sheet
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Figure S8: Comparative quantitative and qualitative analyses of the surface mesh models of the Li_DAC neuron visualized in Fig-
ure S7.
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Figure S9: Wireframe visualizations of an Li_HAC neuron showing closeup comparisons between the highly tessellated surface mesh
generated from the Voxel remesher (left) and the adaptively optimized surface mesh generated from the optimizer (right). Comparative
quantitative and qualitative analyses of the meshes are demonstrated in Figure S1o. Scale bars: 5 pm.
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Figure S1o0: Comparative quantitative and qualitative analyses of the surface mesh models of the Li_HAC neuron visualized in Fig-

ure S9.
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Figure Six: Wireframe visualizations of an Li_LAC neuron showing closeup comparisons between the highly tessellated surface mesh
generated from the Voxel remesher (left) and the adaptively optimized surface mesh generated from the optimizer (right). Comparative
quantitative and qualitative analyses of the meshes are demonstrated in Figure S12. Scale bars: s ym.
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Figure S12: Comparative quantitative and qualitative analyses of the surface mesh models of the Li_LAC neuron visualized in Fig-

ure Si1.
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Figure S13: Wireframe visualizations of an Li_NGC-DA neuron showing closeup comparisons between the highly tessellated surface
mesh generated from the Voxel remesher (left) and the adaptively optimized surface mesh generated from the optimizer (right). Com-
parative quantitative and qualitative analyses of the meshes are demonstrated in Figure Si4. Scale bars: s ym.
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Figure S14: Comparative quantitative and qualitative analyses of the surface mesh models of the Li_NGC-DA neuron visualized in

Figure S13.
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Figure S15: Wireframe visualizations of an Li_NGC-SA neuron showing closeup comparisons between the highly tessellated surface
mesh generated from the Voxel remesher (left) and the adaptively optimized surface mesh generated from the optimizer (right). Com-
parative quantitative and qualitative analyses of the meshes are demonstrated in Figure S16. Scale bars: § ym.
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Figure S16: Comparative quantitative and qualitative analyses of the surface mesh models of the Li_NGC-SA neuron visualized in

Figure Sts.
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Figure Sr7: Wireframe visualizations of an Li_SAC neuron showing closeup comparisons between the highly tessellated surface mesh
generated from the Voxel remesher (left) and the adaptively optimized surface mesh generated from the optimizer (right). Comparative
quantitative and qualitative analyses of the meshes are demonstrated in Figure S18. Scale bars: 5 pm.
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Figure S18: Comparative quantitative and qualitative analyses of the surface mesh models of the Li_SAC neuron visualized in Fig-

ure S17.
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Figure St9: Wireframe visualizations of an L23_BP neuron showing closeup comparisons between the highly tessellated surface mesh
generated from the Voxel remesher (left) and the adaptively optimized surface mesh generated from the optimizer (right). Comparative
quantitative and qualitative analyses of the meshes are demonstrated in Figure S20. Scale bars: 5 pm.
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Figure S20: Comparative quantitative and qualitative analyses of the surface mesh models of the L23_BP neuron visualized in Fig-

ure Si9.
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Figure Sa1: Wireframe visualizations of an L23_BTC neuron showing closeup comparisons between the highly tessellated surface mesh
generated from the Voxel remesher (left) and the adaptively optimized surface mesh generated from the optimizer (right). Comparative
quantitative and qualitative analyses of the meshes are demonstrated in Figure S22.. Scale bars: 5 ym.
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Figure S22: Comparative quantitative and qualitative analyses of the surface mesh models of the L23_BTC neuron visualized in
Figure Sa1.
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Figure S23: Wireframe visualizations of an L23_CHC neuron showing closeup comparisons between the highly tessellated surface
mesh generated from the Voxel remesher (left) and the adaptively optimized surface mesh generated from the optimizer (right). Com-
parative quantitative and qualitative analyses of the meshes are demonstrated in Figure S24. Scale bars: 5 jm.
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Figure S24: Comparative quantitative and qualitative analyses of the surface mesh models of the L23_CHC neuron visualized in

Figure S23.
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Figure S25: Wireframe visualizations of an L23_DBC neuron showing closeup comparisons between the highly tessellated surface
mesh generated from the Voxel remesher (left) and the adaptively optimized surface mesh generated from the optimizer (right). Com-
parative quantitative and qualitative analyses of the meshes are demonstrated in Figure S26. Scale bars: 5 pim.
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Figure S26: Comparative quantitative and qualitative analyses of the surface mesh models of the L23_DBC neuron visualized in

Figure Sas.
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Figure S27: Wireframe visualizations of an L23_LBC neuron showing closeup comparisons between the highly tessellated surface
mesh generated from the Voxel remesher (left) and the adaptively optimized surface mesh generated from the optimizer (right). Com-
parative quantitative and qualitative analyses of the meshes are demonstrated in Figure S28. Scale bars: 5 ym.
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Figure $28: Comparative quantitative and qualitative analyses of the surface mesh models of the L23_LBC neuron visualized in Fig-
ure S27.
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Figure S29: Wireframe visualizations of an L23_MC neuron showing closeup comparisons between the highly tessellated surface mesh
generated from the Voxel remesher (left) and the adaptively optimized surface mesh generated from the optimizer (right). Comparative
quantitative and qualitative analyses of the meshes are demonstrated in Figure S30. Scale bars: 5 pm.
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Figure S30: Comparative quantitative and qualitative analyses of the surface mesh models of the L23_MC neuron visualized in Fig-
ure S29.



Synthesis of geometrically realistic and watertight neuronal ultrastructure manifolds for 77 si/ico modeling

Abdellah et al.

Figure S31: Wireframe visualizations of an L23_NBC neuron showing closeup comparisons between the highly tessellated surface
mesh generated from the Voxel remesher (left) and the adaptively optimized surface mesh generated from the optimizer (right). Com-
parative quantitative and qualitative analyses of the meshes are demonstrated in Figure S32. Scale bars: 5 pm.
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Figure S32: Comparative quantitative and qualitative analyses of the surface mesh models of the L23_NBC neuron visualized in

Figure S31.
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Figure S33: Wireframe visualizations of an L23_NGC neuron showing closeup comparisons between the highly tessellated surface
mesh generated from the Voxel remesher (left) and the adaptively optimized surface mesh generated from the optimizer (right). Com-
parative quantitative and qualitative analyses of the meshes are demonstrated in Figure S34. Scale bars: 5 ym.
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Figure S34: Comparative quantitative and qualitative analyses of the surface mesh models of the L23_NGC neuron visualized in
Figure S33.
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Figure S35: Wireframe visualizations of an L23_SBC neuron showing closeup comparisons between the highly tessellated surface mesh
generated from the Voxel remesher (left) and the adaptively optimized surface mesh generated from the optimizer (right). Comparative
quantitative and qualitative analyses of the meshes are demonstrated in Figure S36. Scale bars: § pym.
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Figure S36: Comparative quantitative and qualitative analyses of the surface mesh models of the L23_SBC neuron visualized in Fig-
ure S3s.
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Figure S37: Wireframe visualizations of an L2_IPC neuron showing closeup comparisons between the highly tessellated surface mesh
generated from the Voxel remesher (left) and the adaptively optimized surface mesh generated from the optimizer (right). Comparative
quantitative and qualitative analyses of the meshes are demonstrated in Figure S38. Scale bars: s ym.
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Figure S38: Comparative quantitative and qualitative analyses of the surface mesh models of the L2_IPC neuron visualized in Fig-
ure S37.
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Figure S39: Wireframe visualizations of an La_TPC:A neuron showing closeup comparisons between the highly tessellated surface
mesh generated from the Voxel remesher (left) and the adaptively optimized surface mesh generated from the optimizer (right). Com-
parative quantitative and qualitative analyses of the meshes are demonstrated in Figure S40. Scale bars: § yum.
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Figure S40: Comparative quantitative and qualitative analyses of the surface mesh models of the L2_TPC:A neuron visualized in
Figure S39.
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Figure S41: Wireframe visualizations of an La_TPC:B neuron showing closeup comparisons between the highly tessellated surface
mesh generated from the Voxel remesher (left) and the adaptively optimized surface mesh generated from the optimizer (right). Com-
parative quantitative and qualitative analyses of the meshes are demonstrated in Figure S42. Scale bars: § pm.
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Figure S42: Comparative quantitative and qualitative analyses of the surface mesh models of the L2_TPC:B neuron visualized in
Figure S41.
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Figure S43: Wireframe visualizations of an L3_TPC:A neuron showing closeup comparisons between the highly tessellated surface
mesh generated from the Voxel remesher (left) and the adaptively optimized surface mesh generated from the optimizer (right). Com-
parative quantitative and qualitative analyses of the meshes are demonstrated in Figure S44. Scale bars: 5 m.
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Figure S44: Comparative quantitative and qualitative analyses of the surface mesh models of the L3_TPC:A neuron visualized in
Figure 543.
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Figure S4s: Wireframe visualizations of an L3_TPC:C neuron showing closeup comparisons between the highly tessellated surface
mesh generated from the Voxel remesher (left) and the adaptively optimized surface mesh generated from the optimizer (right). Com-
parative quantitative and qualitative analyses of the meshes are demonstrated in Figure S46. Scale bars: § ym.
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Figure S46: Comparative quantitative and qualitative analyses of the surface mesh models of the L3_TPC:C neuron visualized in
Figure S4s.
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Figure S47: Wireframe visualizations of an L4_BP neuron showing closeup comparisons between the highly tessellated surface mesh
generated from the Voxel remesher (left) and the adaptively optimized surface mesh generated from the optimizer (right). Comparative
quantitative and qualitative analyses of the meshes are demonstrated in Figure S48. Scale bars: s ym.
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Figure $48: Comparative quantitative and qualitative analyses of the surface mesh models of the L4_BP neuron visualized in Fig-
ure S47.
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Figure S49: Wireframe visualizations of an L4_BTC neuron showing closeup comparisons between the highly tessellated surface mesh
generated from the Voxel remesher (left) and the adaptively optimized surface mesh generated from the optimizer (right). Comparative
quantitative and qualitative analyses of the meshes are demonstrated in Figure Sso. Scale bars: § ym.
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Figure Sso: Comparative quantitative and qualitative analyses of the surface mesh models of the L4_BTC neuron visualized in Fig-

ure S49.
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Figure Ss1: Wireframe visualizations of an L4_ CHC neuron showing closeup comparisons between the highly tessellated surface mesh
generated from the Voxel remesher (left) and the adaptively optimized surface mesh generated from the optimizer (right). Comparative
quantitative and qualitative analyses of the meshes are demonstrated in Figure Ss2. Scale bars: 5 jm.
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Figure Ss2: Comparative quantitative and qualitative analyses of the surface mesh models of the L4_CHC neuron visualized in Fig-
ure Ss1.
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Figure Ss3: Wireframe visualizations of an L4_DBC neuron showing closeup comparisons between the highly tessellated surface mesh
generated from the Voxel remesher (left) and the adaptively optimized surface mesh generated from the optimizer (right). Comparative
quantitative and qualitative analyses of the meshes are demonstrated in Figure Ss4. Scale bars: 5 ym.
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Figure Ss4: Comparative quantitative and qualitative analyses of the surface mesh models of the L4_DBC neuron visualized in Fig-
ure Ss3.
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“VAVANAY

Figure Sss: Wireframe visualizations of an L4_LBC neuron showing closeup comparisons between the highly tessellated surface mesh
generated from the Voxel remesher (left) and the adaptively optimized surface mesh generated from the optimizer (right). Comparative
quantitative and qualitative analyses of the meshes are demonstrated in Figure Ss6. Scale bars: 5 pm.
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Figure Ss6: Comparative quantitative and qualitative analyses of the surface mesh models of the L4_LBC neuron visualized in Fig-
ure Sss.
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Figure Ss7: Wireframe visualizations of an L4_MC neuron showing closeup comparisons between the highly tessellated surface mesh
generated from the Voxel remesher (left) and the adaptively optimized surface mesh generated from the optimizer (right). Comparative
quantitative and qualitative analyses of the meshes are demonstrated in Figure Ss8. Scale bars: 5 pm.
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Figure Ss8: Comparative quantitative and qualitative analyses of the surface mesh models of the L4_MC neuron visualized in Fig-
ure Ss7.
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Figure Ss9: Wireframe visualizations of an L4_NBC neuron showing closeup comparisons between the highly tessellated surface mesh
generated from the Voxel remesher (left) and the adaptively optimized surface mesh generated from the optimizer (right). Comparative
quantitative and qualitative analyses of the meshes are demonstrated in Figure S6o. Scale bars: 5 ym.
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Figure S60: Comparative quantitative and qualitative analyses of the surface mesh models of the L4_NBC neuron visualized in Fig-

ure S59.

42



Synthesis of geometrically realistic and watertight neuronal ultrastructure manifolds for 77 si/ico modeling Abdellah et al.

Figure S61: Wireframe visualizations of an L4_NGC neuron showing closeup comparisons between the highly tessellated surface mesh
generated from the Voxel remesher (left) and the adaptively optimized surface mesh generated from the optimizer (right). Comparative
quantitative and qualitative analyses of the meshes are demonstrated in Figure S62. Scale bars: 5 pm.
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Figure S62: Comparative quantitative and qualitative analyses of the surface mesh models of the L4_NGC neuron visualized in
Figure S61.



Synthesis of geometrically realistic and watertight neuronal ultrastructure manifolds for 77 si/ico modeling Abdellah et al.

Figure $63: Wireframe visualizations of an L4_SBC neuron showing closeup comparisons between the highly tessellated surface mesh
generated from the Voxel remesher (left) and the adaptively optimized surface mesh generated from the optimizer (right). Comparative
quantitative and qualitative analyses of the meshes are demonstrated in Figure S64. Scale bars: § ym.
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Figure S64: Comparative quantitative and qualitative analyses of the surface mesh models of the L4_SBC neuron visualized in Fig-
ure S63.
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Figure S65: Wireframe visualizations of an L4_SSC neuron showing closeup comparisons between the highly tessellated surface mesh
generated from the Voxel remesher (left) and the adaptively optimized surface mesh generated from the optimizer (right). Comparative
quantitative and qualitative analyses of the meshes are demonstrated in Figure S66. Scale bars: 5 ym.
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Figure S66: Comparative quantitative and qualitative analyses of the surface mesh models of the L4_SSC neuron visualized in Fig-
ure S6s.
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Figure S67: Wireframe visualizations of an L4_TPC neuron showing closeup comparisons between the highly tessellated surface mesh
generated from the Voxel remesher (left) and the adaptively optimized surface mesh generated from the optimizer (right). Comparative
quantitative and qualitative analyses of the meshes are demonstrated in Figure S68. Scale bars: 5 pm.
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Figure S68: Comparative quantitative and qualitative analyses of the surface mesh models of the L4_TPC neuron visualized in Fig-
ure S67.
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Figure S69: Wireframe visualizations of an L4_UPC neuron showing closeup comparisons between the highly tessellated surface mesh
generated from the Voxel remesher (left) and the adaptively optimized surface mesh generated from the optimizer (right). Comparative
quantitative and qualitative analyses of the meshes are demonstrated in Figure S7o. Scale bars: 5 pm.
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Figure S70: Comparative quantitative and qualitative analyses of the surface mesh models of the L4_UPC neuron visualized in Fig-
ure S69.
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Figure S71: Wireframe visualizations of an Ls_BP neuron showing closeup comparisons between the highly tessellated surface mesh
generated from the Voxel remesher (left) and the adaptively optimized surface mesh generated from the optimizer (right). Comparative
quantitative and qualitative analyses of the meshes are demonstrated in Figure S72. Scale bars: 5 ym.
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Figure S72: Comparative quantitative and qualitative analyses of the surface mesh models of the Ls_BP neuron visualized in Fig-

ure S71.

48



Synthesis of geometrically realistic and watertight neuronal ultrastructure manifolds for 77 si/ico modeling Abdellah et al.

Figure S73: Wireframe visualizations of an Ls_BTC neuron showing closeup comparisons between the highly tessellated surface mesh
generated from the Voxel remesher (left) and the adaptively optimized surface mesh generated from the optimizer (right). Comparative
quantitative and qualitative analyses of the meshes are demonstrated in Figure S74. Scale bars: 5 ym.
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Figure S74: Comparative quantitative and qualitative analyses of the surface mesh models of the Ls_BTC neuron visualized in Fig-
ure S73.
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Figure S75: Wireframe visualizations of an Ls_ CHC neuron showing closeup comparisons between the highly tessellated surface mesh
generated from the Voxel remesher (left) and the adaptively optimized surface mesh generated from the optimizer (right). Comparative
quantitative and qualitative analyses of the meshes are demonstrated in Figure S76. Scale bars: 5 m.
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Figure S76: Comparative quantitative and qualitative analyses of the surface mesh models of the Ls_CHC neuron visualized in Fig-
ure S75.
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Figure S77: Wireframe visualizations of an Ls_DBC neuron showing closeup comparisons between the highly tessellated surface mesh
generated from the Voxel remesher (left) and the adaptively optimized surface mesh generated from the optimizer (right). Comparative
quantitative and qualitative analyses of the meshes are demonstrated in Figure $78. Scale bars: 5 pm.
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Figure S78: Comparative quantitative and qualitative analyses of the surface mesh models of the Ls_DBC neuron visualized in Fig-
ure S77.
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Figure S79: Wireframe visualizations of an Ls_LBC neuron showing closeup comparisons between the highly tessellated surface mesh
generated from the Voxel remesher (left) and the adaptively optimized surface mesh generated from the optimizer (right). Comparative
quantitative and qualitative analyses of the meshes are demonstrated in Figure S80. Scale bars: § m.
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Figure S80: Comparative quantitative and qualitative analyses of the surface mesh models of the Ls_LBC neuron visualized in Fig-
ure S79.
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Figure S81: Wireframe visualizations of an Ls_MC neuron showing closeup comparisons between the highly tessellated surface mesh
generated from the Voxel remesher (left) and the adaptively optimized surface mesh generated from the optimizer (right). Comparative
quantitative and qualitative analyses of the meshes are demonstrated in Figure S82.. Scale bars: 5 pm.
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Figure S82: Comparative quantitative and qualitative analyses of the surface mesh models of the Ls_MC neuron visualized in Fig-
ure S81.
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Figure $83: Wireframe visualizations of an Ls_NBC neuron showing closeup comparisons between the highly tessellated surface mesh
generated from the Voxel remesher (left) and the adaptively optimized surface mesh generated from the optimizer (right). Comparative
quantitative and qualitative analyses of the meshes are demonstrated in Figure $84. Scale bars: 5 pm.
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Figure S84: Comparative quantitative and qualitative analyses of the surface mesh models of the Ls_NBC neuron visualized in Fig-

ure S83.
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Figure S85: Wireframe visualizations of an Ls_NGC neuron showing closeup comparisons between the highly tessellated surface mesh
generated from the Voxel remesher (left) and the adaptively optimized surface mesh generated from the optimizer (right). Comparative
quantitative and qualitative analyses of the meshes are demonstrated in Figure S86. Scale bars: 5 pm.
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Figure $86: Comparative quantitative and qualitative analyses of the surface mesh models of the Ls_NGC neuron visualized in Fig-

ure S8s.
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Figure $87: Wireframe visualizations of an Ls_SBC neuron showing closeup comparisons between the highly tessellated surface mesh
generated from the Voxel remesher (left) and the adaptively optimized surface mesh generated from the optimizer (right). Comparative
quantitative and qualitative analyses of the meshes are demonstrated in Figure $88. Scale bars: 5 pm.
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Figure $88: Comparative quantitative and qualitative analyses of the surface mesh models of the Ls_SBC neuron visualized in Fig-
ure S87.
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Figure S89: Wireframe visualizations of an Ls_TPC:A neuron showing closeup comparisons between the highly tessellated surface
mesh generated from the Voxel remesher (left) and the adaptively optimized surface mesh generated from the optimizer (right). Com-
parative quantitative and qualitative analyses of the meshes are demonstrated in Figure S9o. Scale bars: 5 ym.
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Figure Sgo: Comparative quantitative and qualitative analyses of the surface mesh models of the Ls_TPC:A neuron visualized in
Figure S589.
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Figure So1: Wireframe visualizations of an Ls_TPC:B neuron showing closeup comparisons between the highly tessellated surface
mesh generated from the Voxel remesher (left) and the adaptively optimized surface mesh generated from the optimizer (right). Com-
parative quantitative and qualitative analyses of the meshes are demonstrated in Figure S92. Scale bars: 5 pim.
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Figure S92: Comparative quantitative and qualitative analyses of the surface mesh models of the Ls_TPC:B neuron visualized in
Figure Sor.
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Figure S93: Wireframe visualizations of an Ls_TPC:C neuron showing closeup comparisons between the highly tessellated surface
mesh generated from the Voxel remesher (left) and the adaptively optimized surface mesh generated from the optimizer (right). Com-
parative quantitative and qualitative analyses of the meshes are demonstrated in Figure So4. Scale bars: 5 ym.
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Figure S94: Comparative quantitative and qualitative analyses of the surface mesh models of the Ls_TPC:C neuron visualized in
Figure S93.
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Figure Sos: Wireframe visualizations of an Ls_UPC neuron showing closeup comparisons between the highly tessellated surface mesh
generated from the Voxel remesher (left) and the adaptively optimized surface mesh generated from the optimizer (right). Comparative
quantitative and qualitative analyses of the meshes are demonstrated in Figure So6. Scale bars: 5 ym.
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Figure S96: Comparative quantitative and qualitative analyses of the surface mesh models of the Ls_UPC neuron visualized in Fig-
ure S9s.
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Figure S97: Wireframe visualizations of an L6_BP neuron showing closeup comparisons between the highly tessellated surface mesh
generated from the Voxel remesher (left) and the adaptively optimized surface mesh generated from the optimizer (right). Comparative
quantitative and qualitative analyses of the meshes are demonstrated in Figure S98. Scale bars: 5 pm.
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Figure S98: Comparative quantitative and qualitative analyses of the surface mesh models of the L6_BP neuron visualized in Fig-

ure So97.
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Figure S99: Wireframe visualizations of an L6_BPC neuron showing closeup comparisons between the highly tessellated surface mesh
generated from the Voxel remesher (left) and the adaptively optimized surface mesh generated from the optimizer (right). Comparative
quantitative and qualitative analyses of the meshes are demonstrated in Figure S1oo. Scale bars: 5 pim.
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Figure Sioo: Comparative quantitative and qualitative analyses of the surface mesh models of the L6_BPC neuron visualized in

Figure 599.
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Figure Sto1: Wireframe visualizations of an L6_BTC neuron showing closeup comparisons between the highly tessellated surface mesh
generated from the Voxel remesher (left) and the adaptively optimized surface mesh generated from the optimizer (right). Comparative
quantitative and qualitative analyses of the meshes are demonstrated in Figure S102. Scale bars: 5 pm.
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Figure Sio2: Comparative quantitative and qualitative analyses of the surface mesh models of the L6_BTC neuron visualized in
Figure Sror.
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Figure S103: Wireframe visualizations of an L6_CHC neuron showing closeup comparisons between the highly tessellated surface
mesh generated from the Voxel remesher (left) and the adaptively optimized surface mesh generated from the optimizer (right). Com-
parative quantitative and qualitative analyses of the meshes are demonstrated in Figure S1o4. Scale bars: § ym.
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Figure S104: Comparative quantitative and qualitative analyses of the surface mesh models of the L6_CHC neuron visualized in
Figure S103.

64



Synthesis of geometrically realistic and watertight neuronal ultrastructure manifolds for 77 si/ico modeling Abdellah et al.

Figure S1os: Wireframe visualizations of an L6_DBC neuron showing closeup comparisons between the highly tessellated surface
mesh generated from the Voxel remesher (left) and the adaptively optimized surface mesh generated from the optimizer (right). Com-
parative quantitative and qualitative analyses of the meshes are demonstrated in Figure S106. Scale bars: 5 ym.
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Figure S106: Comparative quantitative and qualitative analyses of the surface mesh models of the L6_DBC neuron visualized in
Figure Sios.
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Figure S107: Wireframe visualizations of an L6_HPC neuron showing closeup comparisons between the highly tessellated surface
mesh generated from the Voxel remesher (left) and the adaptively optimized surface mesh generated from the optimizer (right). Com-
parative quantitative and qualitative analyses of the meshes are demonstrated in Figure S108. Scale bars: 5 pm.
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Figure S108: Comparative quantitative and qualitative analyses of the surface mesh models of the L6_HPC neuron visualized in
Figure S107.
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Figure S109: Wireframe visualizations of an L6_IPC neuron showing closeup comparisons between the highly tessellated surface mesh
generated from the Voxel remesher (left) and the adaptively optimized surface mesh generated from the optimizer (right). Comparative
quantitative and qualitative analyses of the meshes are demonstrated in Figure St1o. Scale bars: 5 pim.
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Figure Suro: Comparative quantitative and qualitative analyses of the surface mesh models of the L6_IPC neuron visualized in Fig-
ure S109.
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Figure Stui: Wireframe visualizations of an L6_LBC neuron showing closeup comparisons between the highly tessellated surface mesh
generated from the Voxel remesher (left) and the adaptively optimized surface mesh generated from the optimizer (right). Comparative
quantitative and qualitative analyses of the meshes are demonstrated in Figure Sir2. Scale bars: s ym.
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Figure St12: Comparative quantitative and qualitative analyses of the surface mesh models of the L6_LBC neuron visualized in Fig-

ure Si1.
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Figure Si13: Wireframe visualizations of an L6_MC neuron showing closeup comparisons between the highly tessellated surface mesh
generated from the Voxel remesher (left) and the adaptively optimized surface mesh generated from the optimizer (right). Comparative
quantitative and qualitative analyses of the meshes are demonstrated in Figure Si14. Scale bars: 5 pm.
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Figure Sur4: Comparative quantitative and qualitative analyses of the surface mesh models of the L6_MC neuron visualized in Fig-
ure S113.
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Figure Sus: Wireframe visualizations of an L6_NBC neuron showing closeup comparisons between the highly tessellated surface mesh
generated from the Voxel remesher (left) and the adaptively optimized surface mesh generated from the optimizer (right). Comparative
quantitative and qualitative analyses of the meshes are demonstrated in Figure S116. Scale bars: § ym.
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Figure Su6: Comparative quantitative and qualitative analyses of the surface mesh models of the L6_NBC neuron visualized in

Figure Stis.
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Figure S1r7: Wireframe visualizations of an L6_NGC neuron showing closeup comparisons between the highly tessellated surface
mesh generated from the Voxel remesher (left) and the adaptively optimized surface mesh generated from the optimizer (right). Com-
parative quantitative and qualitative analyses of the meshes are demonstrated in Figure Su8. Scale bars: 5 pm.
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Figure Su8: Comparative quantitative and qualitative analyses of the surface mesh models of the L6_NGC neuron visualized in

Figure Su17.
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Figure S1r9: Wireframe visualizations of an L6_SBC neuron showing closeup comparisons between the highly tessellated surface mesh
generated from the Voxel remesher (left) and the adaptively optimized surface mesh generated from the optimizer (right). Comparative
quantitative and qualitative analyses of the meshes are demonstrated in Figure S120. Scale bars: 5 pm.
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Figure S120: Comparative quantitative and qualitative analyses of the surface mesh models of the L6_SBC neuron visualized in Fig-

ure Sir9.
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Figure St21: Wireframe visualizations of an L6_TPC:A neuron showing closeup comparisons between the highly tessellated surface
mesh generated from the Voxel remesher (left) and the adaptively optimized surface mesh generated from the optimizer (right). Com-
parative quantitative and qualitative analyses of the meshes are demonstrated in Figure S122. Scale bars: § ym.
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Comparative quantitative and qualitative analyses of the surface mesh models of the L6_TPC:A neuron visualized in
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Figure S123: Wireframe visualizations of an L6_TPC:C neuron showing closeup comparisons between the highly tessellated surface
mesh generated from the Voxel remesher (left) and the adaptively optimized surface mesh generated from the optimizer (right). Com-
parative quantitative and qualitative analyses of the meshes are demonstrated in Figure S124. Scale bars: 5 pim.
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Figure S124: Comparative quantitative and qualitative analyses of the surface mesh models of the L6_TPC:C neuron visualized in

Figure Sr23.
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Figure Sr25: Wireframe visualizations of an L6_UPC neuron showing closeup comparisons between the highly tessellated surface
mesh generated from the Voxel remesher (left) and the adaptively optimized surface mesh generated from the optimizer (right). Com-
parative quantitative and qualitative analyses of the meshes are demonstrated in Figure S126. Scale bars: 5 pim.
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Figure S126: Comparative quantitative and qualitative analyses of the surface mesh models of the L6_UPC neuron visualized in

Figure Sras.

75



Synthesis of geometrically realistic and watertight neuronal ultrastructure manifolds for 2% silico modeling Abdellah et al.

7 Comparative performance analysis

On average, and in comparison to previous meshing algorithms that are exclusively implemented in BLENDER,
e.g.: skinning modifiers'?, implicit surface polygonization and union boolean operators'#, our technique has a
decent and scalable performance. This is evaluated by applying those BLENDER-based meshing techniques to a
cortical pyramidal neuronal morphology?, but with increasing branching orders (3, 4, s and 7). The comparative
performance benchmarks are illustrated in Figure S127. It has to be noted that while the other approaches
can generate models with realistic geometries as well, none of them is capable of achieving the watertightness

criterion.

Skinning
Modifiers
[12]

Union
Operators

(1) 45.7

Implicit
Surfaces
[14]

Voxelization
[Proposed]

50

Time (Secs)

Figure S127: Comparing the performance of our proposed technique with other neuronal meshing techniques implemented exclu-
sively in BLENDER using four morphologies of a pyramidal neuron, but with different branching orders as illustrated in the legends.
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8 Software

8.1 Code

The voxelization-based remeshing algorithm is implemented in BLENDER? based on its Python API. The tech-
nique is integrated within the Meshing Toolbox of the NEurRoMorrHOV1s" add-on. The mesh optimization
algorithms are implemeted in the OMESH — or OptimizationMesh- library. OMEsH adapts and extends the
GAMER - or Geometry-preserving Adaptive MeshER - library'®. The optimization code is written in C++

and is integrated in NEUROMORPHOV1s' using Python bindings that are generated using pybindr'®.

8.2 Software guide

To use our implementation to generate watertight surface manifolds of neuronal —or astrocytic— morphologies,
users can install NeuroMorphoVis and select the Voxelization remesher in the Mesh Reconstruction Toolbox.
If the OMEsH bindings are located within the /zbs directory, resulting meshes will be automatically optimized.
Otherwise, the user must compile it and copy the generated shared object to the /zbs directory. Users should
use the same version of Python that is used by BLENDER. The following command should be used to install

OMEsH within NEUROMORPHOV1IS.
BLENDER_PYTHON_VERSION setup.py build _ext install -prefix
PATH_TO_LIB_DIRECTORY
8.3 Analysis code

The mesh analysis code is added to the scrzpts directory of NEUROMORPHOVIS.

8.4 Complementary software

As we provide a full pipeline that takes input morphologies and creates optimized tetrahedral volumetric meshes
for reaction-diffusion simulations, the following third-party software components are necessary to complement
our software ecosystem. Note that our meshing implementation in NEUROMORPHOV1S requires the installa-

tion of BLENDER (at least version 3.0) to run the add-on.
1. BLENDER, which can be downloaded from https://www.blender.org.
2. TETGEN, which can be downloaded from https://wias-berlin.de/software/index.jsp?id=TetGen.

3. STEPs, which can be downloaded from https://steps.sourceforge.net/STEPS/default.php.

9 Supplementary data

Supplementary data including the resulting meshes of the 60 morphologies described in Table S1 and their

analysis factsheets are available on Zenodo (https://doi.org/10.5281/zenodo.10558475).
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