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Supporting Information Text 

Materials and Methods: 

Experimental Design  
One meter deep soil mesocosms were constructed in 19.7 cm diameter impact-resistance 
polycarbonate tubes with the ”A”, “B”, and “C” horizon soils to recreate the marginal soil 
environment. Six replicate mesocosms were created per treatment, for a total of 30 mesocosms. 
Prior to packing the mesocosms to field bulk density (1.41 ± 0.04, 1.53 ± 0.18, 1.64 ± 0.07 g dry 
soil cm-3 for the “A” “B” and “C” horizons, respectively), we added slow-release coated urea (ESN 
Smart Nitrogen, 44-0-0, Agrium) to the top horizon of the +N treatment mesocosms (0.13 g kg-1 
soil), and rock phosphate (0-3-0, Espoma) to the +P treatment mesocosms (0.48 g kg-1 soil). Coated 
urea and rock phosphate were both added (at concentrations as above) to a third set for the +NP 
treatment. Two further sets of mesocosms were created - a control treatment with no nutrient 
amendments, and a low water (‒W) treatment which received half the water of all the other 
treatments once plants became established. Mesocosms were watered with 50% (-W) or 100% 
(control, +N, +P, +NP) of the mean monthly rainfall (2012-2017, NOAA) at the field site in Oklahoma 
in the summer months (roughly 100 mL each day). Soil moisture sensors (EC-20; METER Group, 
Pullman, WA) were installed in the “A” horizon of the control and ‒W treatment to confirm 
differences in soil moisture. Individual clonal ramets of the Alamo switchgrass genotype, NFSG 18-
01, from the Nested Association Mapping population generated at the Nobel Research Institute 
were planted in each mesocosm in May 2017 and grown in the greenhouse, under a natural light 
regime and a 32 °C daytime and 21°C nighttime temperature cycle. Following a period of 18 weeks, 
the mesocosms were subject to destructive harvesting, which involved longitudinally cutting open 
the polycarbonate tube and processing the soil by horizon. 
 
Sample Collection and Processing 
Roots and associated rhizosphere soil from the top “A” horizon were immediately collected for DNA 
extractions in 15 mL tubes containing 5 mL Lifeguard Soil Preservation Solution (QIAGEN) using 
chilled soil-processing trays. For metabolite extractions, roots and rhizosphere soil from all three 
horizons were collected and immediately placed on dry ice and then stored at -80 °C. Bulk soils 
from the “A” horizon were collected and stored at 4 °C for gravimetric soil moisture measurements 
and all remaining roots were collected, dried and weighed.  
 
DNA extractions 
Rhizosphere soil in Lifeguard solution was pelleted for DNA extractions by vortexing samples for 2 
min to fully resuspend soil particles before centrifuging for 5 min at 5,000 g and 4 °C, and then re-
centrifuging for 2 min after picking out remaining roots, if necessary. The resulting supernatant was 
discarded and tubes with soil pellets were stored at -80 °C. 

Soil pellets were collected by cracking surrounding tubes with a foil-wrapped, DNAse-free 
hammer on a foil-wrapped, DNAse-free ring stand underlain by dry ice. Pellets were collected in 
Whirl Paks (Nasco) and stored on dry ice. 0.5 g of each soil sample was aliquoted into a sterile, 
pre-weighed 2 mL microcentrifuge tube (screw-top, self-standing) after fragmenting the soil pellets 
in Whirl Paks with the hammer.  

Soil DNA was extracted using a modified RNA/DNA phenol chloroform co-extraction protocol 
via bead-beating (1, 2). Notably, the 5% hexadecyl-trimethyammonium bromide/0.7 M NaCl/240 
mM K-PO4 buffer (pH 8) was modified to include 1% β-mercaptoethanol, PEG 8000 was used in 
place of PEG 6000, and GlycoBlue was used to stain nucleic acid pellets. The combined RNA and 
DNA in resulting pellets were purified using a modified lithium chloride extraction protocol (3). 
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Purified DNA pellets were stored at -20 °C. DNA was quantified within a week of extraction via 
PicoGreen fluorescence (4).  

Extracted DNA was then fractionated via isopynic centrifugation in a cesium chloride density 
gradient, using the same method detailed by Blazewicz et al. (5). Immediately following 
centrifugation, the sample was fractionated into ~40 fractions using a syringe pump. DNA 
concentrations in each fraction were quantified via PicoGreen fluorescence, and fractions 
containing DNA were recombined with neighboring fractions to create seven “bins” of equal DNA 
content (not concentration). Microbial community composition of the DNA in each bin was 
characterized with a sequencing library prepared at the University of Oklahoma via a phasing 
amplification technique targeting the V4 region of the 16s ribosomal RNA gene with the 515F and 
806R primer set (6, 7). The Illumina MiSeq platform was used to sequence the samples in a 2x250 
bp format. We note that the process of fractionating the samples before sequencing likely altered 
the community that we observed - however, this DNA should also be cleaner as a result having 
been run through the cesium chloride gradient and the results of the sequencing run should contain 
fewer artifacts.  

  
Analysis of 16S rRNA gene sequences pipeline 
A total of 10,516,421 raw reads were imported (using the Earth Microbiome Project protocol) into 
Qiime2, and were demultiplexed, trimmed of non-biological primer sequences, and denoised using 
DADA2 (225 bp forward reads, 223 bdp reverse) (8). This resulted in 7856 denoised ASVs, which 
accounted for 3,942,210 (37%) of the total reads. These ASVs were aligned to a rooted tree and 
assigned taxonomy by a feature classifier. The feature classifier was trained on reads extracted 
using the aforementioned primer sequences from the SILVA_132 16S reference database for 99% 
identity. The resulting ASVs were grouped by initial soil sample, such that ASVs from the seven 
bins the extracted DNA had been fractionated into were re-combined to assess the nature of the 
switchgrass rhizosphere 16S community and its response to our treatments. These reads and the 
rooted tree were exported from Qiime2 for further analysis via phyloseq in R (9). 

In phyloseq, all chloroplast or mitochondrial sequences were removed from the dataset, as 
were bacterial and archaeal sequences that lacked a designation at the phylum level. 7481 ASVs 
accounting for 3,792,761 reads passed this filter, and were used to calculate ɑ-diversity metrics via 
the estimate_richness function. We tested for significant ɑ-diversity treatment effects using the lm 
and anova functions in R, and used the emmeans function to test the significance of pairwise 
comparisons between treatments. For all analyses other than ɑ-diversity, all sequences that only 
occurred once or twice across the entire dataset were removed in phyloseq. This resulted in 7093 
ASVs accounting for 3,792,087 reads, with a range of 104,776 - 194,526 reads per sample. The 
distance function was used to develop a Unifrac dissimilarity matrix by sample that was then 
assessed for significant treatment effects using the adonis function of the vegan package in R, with 
99999 permutations. We assessed significance of pairwise comparisons between treatments with 
the pairwise.adonis function of the pairwiseAdonis package, with 99999 permutations and used the 
Hochberg correction for multiple comparisons.  

Differentially abundant taxa between each of the individual treatments and the control samples 
were assessed with the DESeq function of the DESeq2 package, employing a local fit for dispersion 
estimates and optimizing for a significance cutoff of P < 0.01 after visually assessing the distribution 
of P-values. Effect sizes for the magnitude of differences in ASV abundance between the relevant 
treatment and control samples were calculated as Cohen’s d in R, using pooled standard deviations 
between the control samples and those from the relevant treatment. 

Cluster analysis of ASVs and metabolite abundances were performed using the vegan package 
in R (10). The most significant associations were selected by filtering (i) differentially abundant 
ASVs with more than three significant positive or negative correlations (Spearman’s rank 
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correlation, r > 0.7 or r < -0.7, P < 0.05) with metabolites; and (ii) metabolites with more than one 
significant positive or negative correlation (Spearman’s rank correlation, r > 0.7, or r < -0.7, P<0.05) 
with ASVs.  
 
Soil metabolite extraction, analysis and identification 
To extract soil metabolites, 10 ml of ice-cold LC-MS-grade water (pH 7.4) was added to 15 ml 
polypropylene Falcon tubes filled with roots and rhizosphere soil and held on ice. Samples were 
vigorously vortexed for 10 sec to detach rhizosphere soil from the root. Roots were removed with 
sterile tweezers and samples were shaken on an orbital shaker (Orbital-Genie, Scientific Industries, 
Bohemia, NY) at 200 rpm for 1 h at 4 °C then centrifuged at 3220 g for 15 min at 4 °C. For each 
sample, the supernatant was filtered through a 0.45 μm syringe filter (Pall Acrodisc Supor 
membrane) into a 15 mL tube. Two ml of supernatant was aliquoted for total organic carbon (TOC) 
analysis, using a Shimadzu TOC-L Analyzer. Five additional ml of supernatant transferred into a 
15 ml Falcon tube, lyophilized using a Labconoco FreeZone 2.5 lyophilizer and stored at -80 °C.  

Dried metabolite extracts were resuspended in 1 ml LC-MS grade methanol (Honeywell 
Burdick & Jackson, Morristown, NJ, USA), vortexed, sonicated on ice for 30 min and incubated at 
4 °C overnight. Samples were centrifuged at 3220 g for 15 min at 4 °C, after which the supernatant 
was dried in a Savant SpeedVac SPD111V (Thermo Scientific, Waltham, MA) for 3 h. Dried 
samples were resuspended in 100% ice-cold methanol to achieve a final concentration of 3000 
ppm/L TOC; these were then sonicated for 15 min using an ultrasonic bath (VWR). Internal 
standards (1 μg per ml 2-amino-3-bromo-5-methylbenzoic acid, 5 μg per ml 13C-15N-l-phenylalanine 
and 2 μg per ml 9-anthracenecarboxylic acid) were spiked into the methanol used to resuspend 
samples (Supplementary Table S4). The resulting extracts were filtered with 0.22 μm 
microcentrifuge PVDF filters (Merck Millipore), and 150 μl aliquots were transferred to LC-MS vials 
for metabolite analysis.  

All chromatography was performed using an Agilent 1290 LC stack, with MS and tandem mass 
spectrometry (MS/MS) fragmentation data collected in both positive and negative ion mode using 
a Thermo Q Exactive mass spectrometer (Thermo Fisher Scientific) in the Northen Lab at Lawrence 
Berkeley National Laboratory (Table S4). For each 3 μl sample injection, full MS spectra were 
acquired for m/z 70–1,050 at 70,000 FWHM (full-width at half-maximum) resolution. MS/MS 
fragmentation data were acquired using collision energies of 10-40 eV at 17,500 resolution. Sample 
injection order was randomized and an injection blank of only methanol was run between samples. 
Normal-phase chromatography was performed using a HILIC column (Agilent InfinityLab Poroshell 
120 HILIC-Z, 150 mm × 2.1 mm, 2.7 μm) warmed to 40 °C with a flow rate of 0.45 ml min−1 
equilibrated with 100% buffer B (95:5 acetonitrile:water w/ 5 mM ammonium acetate) for 1 min, 
followed by a linear gradient diluting buffer B down to 89% with buffer A (100% water w/ 5 mM 
ammonium acetate and 5 μM methylene- di-phosphonic acid) for 10 min, then down to 70% B over 
4.75 min, then down to 20% B over 0.5 min, and then isocratically held at 20% B for 2.25 min (Table 
S4).  

Metabolite Atlas software analyzed the metabolomics data, providing extracted ion 
chromatograms and peak heights for each metabolite (11). Authentic chemical standards were 
used to confirm metabolite identification. Included in Table S4 are annotations in cases where there 
are multiple unresolvable peaks with the same m/z, retention time, and MS/MS. A total of 97 level 
1 unique metabolites and two metabolites with putative identifications were identified. 27 
metabolites were identified in both positive and negative modes and to avoid redundancy only 
identification in single mode was used for future analysis based on the peak height and quality.  All 
identified metabolites were detected in at least four out of six replicates from at least one treatment 
(Table S4). 
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Network Analysis of Rhizosphere ASV-Metabolite Associations 
To determine covariance between metabolites and microbial ASVs, we constructed a 

correlation network based on the relative abundances of metabolites and relative abundances of 
ASVs across all treatments. To prevent false positives, we only included ASVs with non-zero 
abundances in at least 15 of the 25 samples. Spearman correlations were calculated for each of 
the metabolite-metabolite, ASV-ASV and metabolite-ASV pairs. A Random Matrix Theory (RMT)-
based approach determined 0.710 as the correlation coefficient cutoff that controls false discovery 
in our network by separating noise vs. non-random correlations (12). This RMT-based approach 
has been previously used to construct correlation-based networks of complex microbial systems 
(13, 14), and is available through the Molecular Ecological Network Analysis (MENA) pipeline 
(http://ieg4.rccc.ou.edu/MENA/). To construct the networks, we included only metabolite-ASV pairs 
with an abundance correlation coefficient above the threshold of 0.710, and discarded links within 
metabolite species or within 16S ASVs to construct the network. Discarding non-metabolite-ASV 
links partly alleviates the potential bias caused by compositional data, as the abundances of ASVs 
and metabolites were independently derived; also, compositional data bias should be a minor 
problem in high-diversity communities (15). Positive and negative correlations correspond to 
positive and negative links, respectively. 

Based on previously developed criteria (14, 16, 17), we defined putative ‘keystone metabolites’ 
or ‘keystone ASVs’ from an individual node’s role in network topology as follows: the network was 
separated into modules using a fast greedy algorithm, and the within-module connectivity (zi) and 
among-module connectivity (pi) were calculated for each node (16). Nodes with zi >2.5 are 
designated as module hubs, while nodes with pi >0.62 were designated as connectors among 
different modules. Nodes with both zi >2.5 and pi > 0.62 stretch among the whole network were 
designated as network hubs (17). These module hubs and network hubs were defined as keystone 
metabolites or keystone ASVs based on the node’s identity. Correlation calculations, network 
construction, and network topology analysis were conducted with the igraph package (18). The 
network was visualized using Cytoscape (19). In addition, to identify associations between 
metabolites, microbial communities, and treatments, we performed hierarchical clustering analysis 
using the vegan package (10). For the analysis we selected differentially abundant ASVs 
determined with the DESeq2, that had more than three significant positive or negative Spearman’s 
rank correlations with metabolites (r > 0.7, P < 0.05) and metabolites with more than one significant 
positive or negative correlation with ASVs (r > 0.7, P < 0.05). 
 
Plant phenotype response to serotonin 

To test the effect of serotonin on plant growth, surface-sterilized Alamo switchgrass seeds 
were sown on ⅕ Murashige and Skoog (MS) basal salt mixture M524 (Phyto Technology 
Laboratories) (0.87 g/L MS salts, pH 7.3, and 8 g/L agar). Nine biological replicates (n = 9) of seven-
day-old seedlings were transferred to ⅕ MS agar plates supplemented with 0.1 mM serotonin 
(Sigma-Aldrich) or with purified H2O. Plates with seedlings were incubated at 24 °C on a 16 h/8 h 
day/night cycle, with humidity maintained at 70% and irradiance at 250 μE m−2 s−1. After twenty-
five days, switchgrass plants were harvested, and root and shoot biomass were measured. Root 
length and root number were quantified using the SmartRoot plugin (version 4.21) in ImageJ 
(version 2.0.0) (20). Significant differences between treatments were determined using an ANOVA 
test (P < 0.05). 
 
Microbial growth curves with serotonin 
To test the effect of serotonin on microbial growth responses, we selected six bacterial isolates 
from common rhizosphere genera: Reyranella, Mucilaginibacter, Methylobacterium, 
Paenarthrobacter, Burkholderia, and Mesorhizobium. Growth curves were performed in 1/10 R2A 
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medium for 130 hours with either 0, 0.1, or 0.5 mM serotonin. Four replicates of each isolate were 
inoculated in a 96-well plate and grown at 30 °C, shaking once per hour at 200 rpm before optical 
density measurement at 600 nm (OD600). After 130 hours of isolate growth with 0, 0.1 or 0.5 mM 
serotonin, the culture OD600 was compared to that of a control treatment without serotonin (0 mM). 
Optical density responses were analyzed using a Kruskal-Wallis test after the OD600 of uninoculated 
blanks was subtracted from the inoculated samples. The growth curve experiments have been 
repeated twice. 
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Fig. S1. Box-whisker plots (median and 25-75% quartiles) of 16S amplicon sequence variant α-
diversity metrics for switchgrass rhizosphere microbial communities grown under five treatments: 
controls (‘C’) with nutrient-poor marginal soil, ‘+P’, ‘+N’, and ‘+NP’ mesocosms with phosphorus 
and/or nitrogen amendments in the top soil horizon, and ‘-W’ mesocosms which received 50% 
less water relative to the other treatments. Letters represent significantly different post hoc 
pairwise comparisons via Tukey’s test (P < 0.05, n=6). 
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Fig. S2. Differences in microbial community composition by treatment, illustrated by (A) a barplot 
of relative abundances of all bacterial phyla that made up more than 1% of the total rhizosphere 
community and (B) principal components analysis of Unifrac distance matrices drawn from the 
distribution of ASVs in each sample (ellipses indicate 75% confidence intervals). 
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Fig. S3. Influence of (A) phosphorus amendment and (B) reduced watering on switchgrass 
rhizosphere microbial community structure assessed by DESeq2 analysis (adjusted P < 0.01). 
ASVs that increased (+ Log2 fold-change) versus decreased in prevalence (- Log2 fold-change) 
in response to +P or -W treatment are shown. ASVs are presented at the highest available 
taxonomic resolution, and are colored by class for Proteobacteria and by phylum for all other 
phyla.  
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Fig. S4. Heatmap of metabolite relative abundances in the rhizosphere of switchgrass grown with 
five soil nutrient and water treatments. Five treatments include (i) ‘control’ with nutrient-poor 
marginal soil,  (ii) ‘+P’, (iii) ‘+N’, and (iv) ‘+NP’, and (v) ‘-W’ treatment, which received 50% 
reduced water relative to the other treatments. Hierarchical clustering shows three main clusters 
representing (i) metabolites that were more abundant in +N, +NP treatments (blue lines); (ii) 
metabolites that were more abundant in no N added treatments (brown lines); (iii) metabolites 
that were more abundant in +N, +NP, and reduced water treatments (pink lines). 
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Fig. S5. Serotonin effects on switchgrass root and shoot biomass of 25 day-old switchgrass 
seedlings (n=9) grown with exogenous application of 0.1 mM of serotonin or controls.  Significant 
differences between added-serotonin (+SER) and controls (-SER) were assessed by ANOVA; 
asterisks reflect P < 0.05. 
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Fig. S6. Growth curves of isolates grown in 1/10 R2A medium with 0 (blue), 0.1 (orange), or 0.5 
mM (green) serotonin added. 16S rRNA gene sequences of heterotrophic bacteria isolated from 
marginal fields cultivated with switchgrass, have been compared to ASVs that showed significant 
Spearman correlations (both positive and negative) with serotonin relative abundances in this 
experiment. Isolates with a match (Evalues <1 × 10–10 and ≥97% of gene sequence homology) to 
the ASVs with a significant negative Spearman correlation with serotonin are highlighted in blue 
color and isolates matched to the ASVs with a positive correlation represented in red color. The 
growth curve experiments have been repeated twice to ensure the reproducibility of the effect of 
serotonin. Asterisk indicates significantly different optical density (OD600) at 130 hours of isolate 
growth in serotonin treatments and a control treatment without serotonin (0 mM) at P < 0.05 by 
means of Kruskal-Wallis test. Error bars show the standard error of the mean. 
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Dataset S1 (separate file). Mean relative abundance of rhizosphere ASVs by phylum across all 
samples. 

Dataset S2 (separate file). Pair-wise comparisons for treatment differences in β-diversity for 
switchgrass rhizosphere 16S ASV communities exposed to N, P, and moisture stress in the 
greenhouse.  

Dataset S3 (separate file). DESeq2 responsive ASVs, their taxonomy, and the treatments they 
responded to. 

Dataset S4 (separate file). Metabolite identifications and response to treatments.   

Dataset S5 (separate file). List of network connectors, module hubs, network hub and their 
topological features; correlation strengths between network nodes. 
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