
1 Supporting Information

1.1 Measuring Diversity in MMoE and MMoEEx
In principle, MTL problems are expected to benefit from higher representational diversity, by which we mean that
the representations provided by the different experts capture different aspects of the input data. At least in theory,
the MMoEEx architecture was constructed to promote higher diversity among representations, however as mentioned
before, we did not observe any clear relationship between diversity and improved performance as measured by the
expert diversity metrics discussed in the Methods and Materials section. Moreover, after retraining our models we
observed that none of the diversity metrics were consistent between runs, see figure 1. For context we show the
training and validation loss of the three models in Figure 2. Also, note that all three metrics follow the same pattern
within a training session. This result supports the point of view that, at least for the task at hand, a large amount
of diversity is not required to find a solution.

Figure 1: Smoothed time series plot of the evolution of the three diversity metrics (determinant, permanent and
score) for two different training runs for both the MMoE (left) and the MMoEEx models (right).

1.2 Loss-Balanced Task Weighing for MMoE and MMoEEx
Despite the overall effectiveness of soft parameter models in achieving high average task performance, it is important
to acknowledge the potential for negative transfer learning which could lead to a multi-task model under-performing
on specific tasks. To address this issue, Loss-Balanced Task Weighting (LBTW) was proposed in the literature as a
valuable tool for mitigating potential negative transfer effects. LBTW applies a dynamic update to the task weights
in the loss function used during model training. Detailed information regarding the specific loss function and weight
updates used by LBTW can be found in the Methods and Materials section. Here, we present results obtained by
applying LBTW to the MMoE and MMoEEx architectures, and compare them to the previously described training
and generalisation performance of the MMoE and MMoEEx architectures without task-balancing.
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Figure 2: Smoothed time series plot of the evolution of the training and validation loss for all three models.

The hard parameter model trained with LBTW achieved a minimum validation loss of 0.718, which is higher
than the loss of 0.680 obtained through the standard training procedure. Because LBTW was originally designed
for soft parameter sharing models only, the lack of improvement in this case was not unexpected. However, the
LBTW-trained MMoE and MMoEEx models unfortunately also exhibited higher validation losses compared to the
standard training procedures. More specifically, the LBTW-trained MMoE model achieved a validation loss of 0.626,
while the standard training procedure resulted in a loss of 0.533. Similarly, the LBTW-trained MMoEEx model had
a validation loss of 0.634, whereas the standard training procedure yielded a lower validation loss of 0.551. For a
visual representation of the individual validation losses at the end of the training run, refer to Figure 3.

1.3 Calculation of Extracellular Potentials
The membrane currents passing through cellular membranes in the vicinity of an electrode give rise to measurable
extracellular potentials. One of the downstream applications of the distilled biophysically-detailed models we have
presented in this paper is predicting such extracellular potentials, as was shown in Figure ?? of the main text. In
this supplementary information we discuss the calculation of the extracellular potential based on the prediction of
our multi-task learned models in more detail. To calculate them we rely on volume conductor theory [1], which
dictates that assuming an infinite homogeneous and isotropic extracellular medium, the potential ϕ resulting from a
multi-compartment neuron model is given by,

Ve(re, t) =
1

4πσ

N∑
n=0

In(t)

|re − rn|
. (1)

In this equation [2], In(t) denotes the transmembrane currents in a compartment positioned at rn, and re indicates the
the position of the electrode. The sum runs over all N compartments of the biophysically-detailed neuron model, and
σ is the extracellular conductivity which is experimentally determined to be around 0.3Sm−1 for cortical grey matter
[3]. The multi-task learning models predicted membrane potentials, and not membrane currents, but given full knowl-
edge of both the membrane potentials and the cell model itself, the corresponding membrane currents could be directly
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Figure 3: Swarm plots of the validation loss for each of the compartments (basal, oblique, apical) of the three
LBTW-trained models: Hard Parameter Sharing (MH), Multi-gate Mixture-of-experts (MMoE), and Multi-gate
Mixture-of-Experts with Exclusivity (MMoEEx).
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Figure 4: From left to right. Illustration of a biophysically-detailed model of a multi-compartment cortical layer
V pyramidal cell model. Membrane voltages as calculated by a biophysically-detailed simulations of the multi-
compartment model, used as the ground truth throughout this paper. Membrane voltages as predicted by our
best-performing multi-task learning architecture, one time step at a time (1 ms). Comparison between the ground
truth and predicted extracellular potentials calculated at eight points representing the position of the electrodes.

inferred (see the LFPy documentation regarding the method "get_transformation_matrix_vmem_to_imem"). Us-
ing the inferred membrane currents and the software package LFPy [4], we calculated the resulting extracellular
potentials.

Extracellular potentials are a compound result of the contributions of different neuron compartments, and due
to the fact that we do not explicitly train our models to predict them, accurate prediction of extracellular potentials
is not necessarily a given. While on average our predictions are about as accurate as the experimental variance of
the Hay model, some compartments or specific patterns of neural activity may be more or less accurately predicted.
For instance as shown in Figure 4, the predictions of membrane voltages in apical and oblique compartments match
the ground truth closely, whereas predictions for basal compartments are generally less accurate. As a result of this
spatial variance, extracellular potentials near the soma are less accurately predicted in this specific case. Therefore,
the use of these distilled biophysically-detailed neuron models in downstream prediction of extracellular potential
should be handled with care.

For simulations driven by an external population the LFP can be predicted directly using the methods discussed
in this section [2]. However when internal connectivity is involved, the application of the methods from this paper
require an additional preprocessing step. As can be seen in the examples shown in the paper, the model is capable of
reproducing spiking behavior without having explicitly learned the binary somatic spike prediction task. To predict
LFPs, in the case of network simulations with internal connectivity, we advise to set a threshold on the voltage in
the soma in each neuron and use that to determine whether or not there is an outgoing spike from that neuron.
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