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Association between the ABO locus and risk of influenza 

As highlighted in the main manuscript, among the 24 variants reported to associate with COVID-

19 by the Host Genetics Initiative2 (HGI; freeze 6), only one variant was associated with reported 

influenza infection after correcting for multiple testing (P<0.05/24=0.002): rs505922 in ABO (OR 

= 1.05 for the T allele, P=2.2x10-4). This variant increased risk of reported influenza, while it 

decreased risk of COVID-19 (OR = 0.92).  

A recent 23andMe study reported a similar pattern of opposing associations with COVID-

19 and influenza at the ABO locus. Specifically, Shelton et al.11 noted their lead COVID-19 variant 

at this locus (rs9411378:C, r2=0.80 with the HGI variant rs505922) is in LD (r2=0.57) with a 

frameshift variant in ABO (rs8176719) that determines the O blood group when present in the 

homozygous form. [We note that the HGI COVID-19 variant rs505922 is in higher LD with the 

ABO frameshift variant, r2=0.89] Shelton et al. then showed that individuals with O blood group 

have lower risk of COVID-19 (OR~0.8) but higher risk of influenza, for example an OR=1.05 

(P=1.8x10-6) for association with influenza in the 2017 season. Importantly, the associations with 

influenza in the 23andMe study11 (but not in AncestryDNA) were based on information collected 

prior to the COVID-19 pandemic. Despite this, Shelton et al. suggested that the association 

between ABO and COVID-19 could have resulted from a subtle form of collider bias (but no 

additional information provided).  

 We considered a few possibilities to explain the apparent inconsistent association at the 

ABO locus between COVID-19 and influenza. First, the association between the ABO locus and 

influenza may be a false-positive finding: neither the blood group association reported by 23andMe 

nor results from our influenza GWAS reach genome-wide significance.  
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Second, if the association between the ABO locus and influenza is a true-positive finding, 

it may represent a genetic signal distinct from the COVID-19 association. Consistent with this 

possibility, we found that the variant most strongly associated with influenza risk in our meta-

analysis of discovery and replication GWAS (rs2519093, OR=1.05, P=1.4x10-6) is (i) not in high 

LD with the HGI COVID-19 variant rs505922 (r2=0.43), suggesting that it is not the same signal; 

(ii) not in high LD with any of the three variants that define ABO blood groups, namely the 

frameshift variant rs8176719 (r2=0.31), rs8176747 (r2=0.01) and rs41302905 (r2=0.01), indicating 

that the association with influenza is unlikely to be mediated by variation in ABO blood groups; 

and (iii) in high LD (r2>0.80) with variants previously reported to associate with the viral-related 

diseases tonsillectomy31, gastrointestinal infections32 and childhood ear infections31 (see Figure 

S1 below), as well as lipid-related measurements33, stroke34, granulocyte counts35, allergic 

disease36 and C-reactive protein levels37, among others. These results are consistent with the notion 

that the influenza and COVID-19 genetic signals at the ABO locus are distinct, with the former 

being shared with many other diseases and traits. 

 

Supplementary Note Figure 1. Detailed association results between common variants at the 
ABO locus and influenza risk in the meta-analysis of AncestryDNA and biobank cohorts. 

 

Upward facing triangles represent variants with an odds ratio (OR)>1, and downward facing 
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triangles represent OR<1.  Unadjusted P-values derived from Firth-regression (two-sided test) 

implemented in REGENIE8. 

Third, we observed that COVID-19 cases were enriched among influenza controls in the 

AncestryDNA cohort (see Supplementary Note Table 1 below). As such, we hypothesized that 

this bias could also contribute to the opposing association at the ABO locus for COVID-19 and 

influenza.  

 

Supplementary Note Table 1. Prevalence of a positive test for COVID-19 among individuals 
with and without influenza in GWAS cohorts. 

Cohort N influenza cases  
(% with COVID-19) 

N influenza controls  
(% with COVID-19) 

AncestryDNA 18334 (6.69%) 276295 (11.64%) 
UKB, GHS, PMBB, 
UCLA, Mayo Clinic, 

Colorado 
14442 (10.98%) 844650 (5.73%) 

 

To address this possibility, we repeated the association between the COVID-19 risk variant 

rs505922 and influenza in the AncestryDNA cohort after adjusting for COVID-19 status. In this 

analysis, the association between rs505922 and self-reported influenza was attenuated and only 

borderline significant (OR = 1.027, P=0.07). These results indicate that the enrichment of COVID-

19 cases among influenza controls in the AncestryDNA cohort led to a biased effect size estimate 

for influenza for this variant. In contrast, we did not observe an inverse association between 

COVID-19 and influenza status in the biobank cohorts (Supplementary Note Table 1); in a meta-

analysis of GWAS from these cohorts, the association between rs505922 and influenza 

(OR=1.027, P=0.0084) had the same magnitude of effect as observed in AncestryDNA after 

adjusting for COVID-19 status. 
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 Overall, these findings suggest that there may be a weak association between the ABO 

locus and influenza risk, but that this is unlikely to be the same genetic signal observed for COVID-

19. 
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Association between the B3GALT5 locus and risk of COVID-19 

Having identified and replicated two GWAS loci for influenza (in ST6GAL1 and B3GALT5), we 

inquired if either were associated with COVID-19, based on the published HGI multi-ancestry 

meta-analysis for reported infection, risk of hospitalization or risk of severe disease (defined by 

respiratory failure or death)2. After Bonferroni correction (P<0.05/6=0.0083), we found a modest 

association between rs2837113 in B3GALT5 and risk of SARS-CoV-2 infection (OR=1.014, 95% 

CI 1.006 to 1.022, P=8.9x10-4; Supplementary Table 4). 

However, as observed for ABO, the direction of effect of rs2837113 on COVID-19 was 

opposite that of influenza, which could potentially arise if there was an inverse phenotypic 

association between the two conditions in the contributing HGI cohorts, as we observed for 

AncestryDNA (specifically, influenza controls, who are more likely to carry the rs2837113:A 

influenza-protective allele, were enriched among COVID-19 cases; Supplementary Note Table 

1). To test this possibility at least within our own data, we compared the association between 

rs2837113 and risk of SARS-CoV-2 infection in AncestryDNA, before and after adjusting for self-

reported influenza status. We found that the association was slightly attenuated after adjusting for 

influenza status (OR=1.018 before vs. OR=1.010 after adjustment; Supplementary Note Table 

2). Although inconclusive, these results raise the possibility that the association between 

rs2837113 and SARS-CoV-2 infection may be inflated if influenza controls were enriched among 

COVID-19 cases studied by the HGI. 
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Supplementary Note Table 2. Association between the B3GALT5 variant identified in the 
GWAS of self-reported influenza and risk of SARS-CoV-2 infection in the AncestryDNA 
cohort, before and after adjusting for influenza status. 

Variant, rsID, 
nearest gene 

Association with 
COVID-19 positive vs 
negative or unknown 

Odds Ratio*  
(95% CI) P-value 

Alternate 
Allele 

frequency 

N  
cases 

N 
controls 

21:39676197:G:A, 
rs2837113, 
B3GALT5 

Before adjusting for 
influenza status 

1.018 
(1.000,1.036) 0.0519 0.509 33603 191189 

After adjusting for 
influenza status 

1.010  
(0.992, 1.028) 0.2636 0.510 33396 190079 

Unadjusted P-values derived from Firth-regression (two-sided test) implemented in REGENIE8. * 

Effect allele: A 
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Genetic interaction effect between ST6GAL1 and B3GALT5 variants on risk of influenza 

Given that both ST6GAL1 (adds sialic acid to a galactose) and B3GALT5 (adds a galactose to a 

GlcNAc) play a role glycan structure synthesis, we tested for a genetic interaction effect (i.e., 

epistasis) between both loci, specifically between variants rs13322149 (ST6GAL1) and rs2837113 

(B3GALT5). Such an interaction effect could arise if, for example, a lower rate of sialic acid 

addition to galactose (due to the ST6GAL1 polymorphism) resulted in stronger protection from 

influenza in individuals with a higher rate of galactose addition to a GlcNAc (due to the B3GALT5 

polymorphism). To test for epistasis between the two loci, we estimated the SNPxSNP interaction 

effect on risk of influenza separately in AncestryDNA and six biobanks with available individual-

level data (Colorado, DiscovEHR, Mayo Clinic, PMBB, UCLA, and UKB), for a combined sample 

size of 32,776 cases and 1,120,945 controls. After meta-analyzing the estimated interaction effect 

across all cohorts, we found no evidence for epistasis between the two loci (interaction OR=1.027, 

95% CI 0.975 to 1.081, P=0.32). 
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ADIPOQ and IGSF5: two additional likely effector genes of influenza risk loci 

Four genes were prioritized as likely effector genes underlying the GWAS signals identified for 

influenza (Supplementary Tables 7 and 8): ST6GAL1 and ADIPOQ at the 3q27.3 locus, and 

B3GALT5 and IGSF5 at the 21q22.2 locus. ST6GAL1 and B3GALT5 were the nearest genes to the 

GWAS lead variant at each locus and are discussed in more detail in the main text. ADIPOQ and 

IGSF5 are briefly discussed here. 

ADIPOQ: this gene encodes adiponectin, a hormone secreted by adipocytes that regulates 

energy homeostasis, glucose and lipid metabolism38. ADIPOQ was the second nearest gene to the 

lead influenza variant (121 kb upstream of rs13322149); it was identified as a likely effector gene 

of the GWAS signal because rs13322149 was in high LD (r2>0.8) with variants located in putative 

enhancers for ADIPOQ in B cells39 (Supplementary Table 8). Related to this, rs13322149 was 

also in high LD with a variant reported to associate with plasma adiponectin levels (rs73187787, 

r2=0.95)40; the rs13322149:T allele that lowers risk of influenza is in phase with the rs73187787:T 

allele that increases adiponectin levels. 

IGSF5: this gene encodes an immunoglobulin-type cell adhesion molecule with relatively 

low expression across most tissues studied by GTEx41. IGSF5 was the second nearest gene (68 kb 

downstream) to the lead influenza variant (rs2837113), with the following data suggesting it is a 

likely effector gene underlying the GWAS signal. First, a sentinel eQTL for IGSF5 in skin tissue 

studied by GTEx (rs7278671) is in high LD with the lead influenza variant rs2837113 (r2=0.89); 

the rs2837113:A allele that lowers risk of influenza is in phase with the rs7278671:G allele that 

increases IGSF5 expression in the skin (Supplementary Table 7). Second, in our exome 

sequencing study, a rare missense variant in IGSF5 was associated with higher risk of medical 

record influenza (Supplementary Table 9). 
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Study limitations 

The following limitations should be considered when interpreting results from our study.  

Phenotype misclassification. There may be some level of phenotype misclassification for 

both cases and controls.  The control group in the discovery and replication influenza GWAS may 

have included individuals (i) infected with influenza but that were asymptomatic or never tested; 

and (ii) who were not exposed to the influenza virus (some of which tested negative). The latter is 

likely to have been more common during the COVID-19 pandemic, due to public health policies 

(e.g. use of masks, social distancing) that limited exposure to airborne viruses. Similarly, the case 

group in the influenza infection GWAS was likely heterogeneous (e.g., included a range of disease 

severity). As a result, it is not straightforward to interpret genetic associations with these infection 

phenotypes, as they could capture multiple dimensions of susceptibility, for example risk of 

infection once exposed or risk of severe outcomes once infected. We addressed this limitation by 

performing sensitivity analyses which overall showed that both influenza loci remained associated 

across a range of additional phenotypes, from looser (flu-like symptoms) to stricter (positive viral 

culture) definitions of infection. Furthermore, both loci were associated with lower risk of 

hospitalization among infected cases, significantly so for the B3GALT5 variant.  

Potential confounding effects of unmeasured risk factors for influenza infection. The 

inclusion of misspecified controls reduces power to detect true associations and, in some situations 

(for example, when a variant is strongly associated with risk of virus exposure), can also increase 

the risk of false-positive associations with risk of infection after exposure, as previously noted42. 

To address the latter possibility (i.e. could the ST6GAL1 and B3GALT5 variants be associated with 

an outcome that is a risk factor for exposure to influenza?), we performed a phenome-wide 

association study for each variant but found no associated outcomes (detailed in the subsequent 
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section). As such, it is unlikely that the associations we describe for influenza arise from the 

confounding effect of a correlated outcome.  

Other notable caveats that limit the generalizability of our results include (ii) the use of 

self-reported influenza information (with its inherent limitations) in the AncestryDNA cohort, 

which is self-selected, older, more European and more female than the broader US population, as 

noted previously43 (iii) undetermined influenza strain infecting GWAS participants; and (iv) 

having severity outcomes available in only two cohorts (GHS and UKB). 
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Phenome-wide association study of ST6GAL1 and B3GALT5 variants  

Recently, Duchen et al. 42 investigated the impact of using population-level controls on the rate of 

false-positive associations with infectious diseases. Specifically, the authors made the following 

major observations: 

• Using simulated data, the authors found that when a variant X affects risk of exposure to a 

pathogen but not risk of infection once exposed, then: 

o Using population-level controls (as opposed to individuals exposed but without 

symptomatic infection) can sometimes yield a spurious association between variant 

X and risk of infection (see their Figure 2) 

o Intuitively, this makes sense: 100% of individuals with symptomatic infection had 

a previous pathogen exposure, whereas that is unlikely to be the case for 100% of 

population-level controls. In other words, the outcome that is determined by variant 

X (risk of exposure) will often be more common in individuals with symptomatic 

infection than in population-level controls.  

• The probability that variant X will show a spurious association with risk of infection when 

using population-level controls decreases with increasing prevalence of pathogen exposure 

(see their Table 2). 

o This also makes sense intuitively: at the extreme, when the prevalence of pathogen 

exposure is 100%, the outcome that is determined by variant X (risk of exposure) 

has the same frequency in both the case and control groups, and so no association 

is observed with variant X.  

• Using real world data, the authors compared results between two GWAS that used the same 

set of cases but different control groups: 
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o GWAS #1: 702 individuals infected with hepatitis C virus (HCV) but who cleared 

the virus (source: HCV consortium) vs. 1,037 individuals with persistent HCV 

infection (source: HCV consortium). Two loci discovered at P<5x10-8: HLA and 

IFNL3. 

o GWAS #2:  702 individuals infected with hepatitis C virus (HCV) but who cleared 

the virus (source: HCV consortium) vs. 370K ancestry-matched population-level 

controls with unknown HCV status (source: UKB). This GWAS identifies the same 

two loci discovered in GWAS #1 (HLA, IFNL3) and two additional loci at P<5x10-

8: STX18 and a locus on chromosome 2. 

• Additional analyses suggest that one of the novel associations discovered in GWAS #2 

(STX18) is an example of a locus that affects risk of exposure to HCV and not risk of HCV 

clearance. Specifically, the authors suggest that the STX18 variant increases risk of 

hemophilia, which in turn increases risk of exposure to HCV. This conclusion is based on 

the following observations: 

o The signal was attenuated (but not fully eliminated) after excluding individuals with 

hemophilia. 

o The signal was considerably attenuated and not significant in GWAS #1; 

o The signal was stronger when comparing all HCV cases (with cleared or persistent 

infection) against UKB population-level controls. 

 

If the type of bias described by Duchen et al. explained the two associations we discovered for 

influenza (ST6GAL1 and B3GALT5), then these loci would have to be strongly associated with an 

outcome that increased the risk of exposure to the influenza virus. 
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It is not obvious what heritable outcome(s) might strongly increase risk of exposure to the 

influenza virus and that could potentially explain the flu association with ST6GAL1 and B3GALT5. 

Nonetheless, to address this possibility, we performed a phenome-wide association study 

(PheWAS) for the ST6GAL1 and B3GALT5 variants in the UKB (N=450K) and GHS (N=175K) 

studies, testing each variant for association with 6,221 binary and 2,916 quantitative outcomes. 

We found no outcomes associated with either variant at a P<0.05/(2 variants x 9137 traits tested) 

=2.68x10-6, indicating that these variants do not have a strong effect on any outcome measured in 

these studies. As such, we think it is highly unlikely that the associations we describe for influenza 

arise from the confounding effect of a correlated outcome.
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