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Reviewers' comments: 
 
Reviewer #1 (Remarks to the Author): 
 
In this paper a combined in-silico experimental pipeline is presented to map the linear 
epitope space relating to a particular antibody. I think it is a valuable study given that the 
authors can address the following comments: 
 
- It is not clear to me whether antibody sequence information is taken into account. 
From my reading, each antibody model is trained separately on the linear epitope data. 
However there are also mentions of 'binding pairs' in the manuscript. 
 
- I would emphasize the point that authors went 'the other way' to traditional methods 
that map abs with respect to an antigen. Mapping different antibodies with respect to an 
antibody has a clear discovery purpose as it gives novelty and priority to a typically 
known target. By contrast mapping epitopes to a known ab has a seemingly tenuous 
application. Chief potential application that is only scarcely mentioned is off-target 
binding as it is a big problem in contemporary immunotherapies. Authors could expand 
upon that. 
 
- Are there similar antibodies in the PDB to the ones mapped here? If so are their linear 
epitopes (or subsets of discontinuous) within the predicted sets? 
 
- There are many linear epitope prediction softwares (e.g. 
http://tools.iedb.org/main/bcell/) I think it would be worth it to either perform 
benchmarking or say why it does not apply here. 
 
 
 
 
Reviewer #2 (Remarks to the Author): 
 
In this work, Bisarad and colleagues investigate antibody binding against random 
peptide arrays. This work is very interesting and rigorously carried out. I have a few 
comments. 
 
- have you considered data leakage in your model? That means, have you tried splitting 
the training/test data by sequence similarity? To quantify generalization of the 
predictor? 
- Are there peptides that are very similar in sequence yet have different binding? Are 
these predicted correctly? Can you make a plot where you plot delta peptide sequence 



similarity vs delta accuracy? or something like that? 
- have you tried baseline models which just take into account amino acid composition 
but not the sequence? 
- Are there differences prediction performance between the antibodies? if so, why? 
- Can you add an overview Fig 1 of the experimental/computational setup? 
- Did you perform controls (randomize peptide sequence --> does prediction accuracy 
go to random?) 
- Please provide numbers/percentages in figure 1 as to how many peptide are above 
noise. 
 
 
Reviewer #3 (Remarks to the Author): 
 
Summary 
 
Bisarad, Kelbauskas, Singh et al. present a dataset of eight antibodies with binding data 
against 122k randomly designed peptides. They show that, for each antibody, a simple 
Multilayer Perceptron (MLP) trained on this data consistently ranks the original 
(cognate) linear epitope highly among 1m different random peptides of the same length. 
The authors hypothesise this high throughput screening and ML model could be useful 
for selecting highly specific mAbs for therapeutics or diagnostics. 
 
The paper is clearly written but lacks a strong argument linking the method results (high 
ranking of the cognate epitope) with the original hypothesis, and the use case and 
impact of the work is not clear. The paper also lacks robust analyses in places. We have 
highlighted some of our main concerns below. 
 
Major 
 
      1. The paper does not address the question of whether or not the high 
throughput screening and ML model can identify polyspecific binding. Instead, the 
paper focuses on the ability of the trained MLP to rank the cognate epitope highly 
among a random background. This result is not clearly linked to the original question. 
Though many random peptides were also ranked highly by their model (above the 
cognate epitope), the authors did not test their binding experimentally. 
 
      2. In Figure 3 (page 11) the authors consider the entire protein antigen of each 
mAb, break it down into peptide chunks, and rank each chunk using their trained MLP. 
Encouragingly, the cognate epitope ranks highly. However, if the antigen were known a 
priori (as is often the case) and the goal was simply to identify any linear epitope, then 
would the more efficient experiment not be to select the e.g. 200 or 1k peptides that 



comprise the antigen and test for binding against these instead of 122k random 
epitopes? 
 
      3. Assuming the goal of the paper is actually focused on ranking the cognate 
epitope highly (this should be justified), then more robust statistics should be provided 
here. Given final comparisons are only made to peptides of the same length as the 
cognate epitope (6-7 amino acids) and only 16 amino acid types are allowed, the total 
search space is 16^6 or 16^7 (~17m-268m). If the cognate epitope were not known a 
priori, the chances of selecting the cognate epitope in each instance given 1m designs 
is 6% or 0.4%. To be robust, the authors should evaluate how highly the cognate epitope 
ranks amongst the entire possible sequence space - this should certainly be 
computationally possible for length-six designs at least. If however, the emphasis 
remains on predicting poly-specificity, with ranking of the cognate epitope being a 
measure of evidence for this, then this should be more clearly emphasised and argued 
for. 
       
      4. However, to be yet more robust, it should be assumed that the cognate 
epitope length is also not known a priori (peptides of length 5-11 are used for training). 
In this instance, the cognate epitope should be evaluated against designs of random 
lengths. Here, the sequence space expands to ~1 trillion (infeasible to exhaustively 
search), as stated in the paper (page 2), and the probability of selecting the cognate 
epitope by chance given 1m random designs is just 0.0001%. Again, it should be 
considered whether or not selecting the cognate epitope in the top X designs is the true 
goal of the paper. 
       
      5. Only one MLP model is considered for training. It would be useful to try 
alternative architectures such as a random forest or convolutional neural network 
(CNNs) for comparison. CNNs would be particularly suited to the task due to their 
ability to pick up position-independent motifs. In addition, the authors do not describe 
if/how they optimised their MLP architecture or training hyperparameters. The number 
of training epochs or iterations is also not stated. 
 
      6. The significance of the steps taken to improve the MLP performance - 
oversampling positive sequences given the large class imbalance, and "shifting" the 
sequences - are overstated. The paper says "The biggest advance in the model came 
from forcing the neural network to ignore the absolute position of the sequence in the 
vector and generalize its learning so that it recognized the sequence regardless of its 
position within the artificial register of the input vector. This form of data augmentation 
by training on translational variants is well-established to help generalize convolutional 
neural networks for image recognition tasks. It is remarkable in many respects that the 
much simpler neural network model used here (2 hidden layers of 250 nodes, fully 



connected) would be able to utilize this data augmentation to generalize in this way." 
These training techniques are standard, necessary, and not as remarkable as claimed. 
 
      7. Given the large training set size (122k), lack of sequence identity filtering, 
proven sequence similarity of the top hits (Figure 1), and oversampling of these top hits, 
the MLP appears to be simply memorising its input and struggling to predict anything 
out of distribution. It would be useful to repeat the training with strict sequence 
similarity cut-offs in the train and validation datasets - this would help justify the 
claimed benefits of the sparse sampling strategy. Additionally, models with decreasing 
training set sizes could be trained to determine the minimum training set size to still 
result in a high ranking of the cognate epitope. 
 
      8. Why were the cognate epitopes of TF3B5, C3, and 9E10.3 not included in the 
122k peptides tested for binding? There must have been space on the array and their 
exclusion is not explained, simply stated. 
 
      9. Correlation coefficients and the gradients of the lines of best fit should be 
added to Figure S4 to better understand how well the predicted and measured log10 
values agree. 
10. The language used to describe neural network training and architecture could be 
improved for clarity and to remove unnecessary complexity, e.g.: 
• “The matrix manipulations in a neural network are register-specific; an amino acid in 
the first position always “sees” the same set of processes take place as the information 
moves through the neural network.” 
• “it recognized the sequences regardless of its position within the artificial register of 
the input vector.” 
 
 
 
Minor 
 
      1. The Introduction states "Binding typically involves interactions between the 
mAb and 5-8 amino acids and in a specific spatial arrangement". However, for full-
length proteins, which this paper considers, the full epitope is often composed of 
multiple linear/conformational epitopes, typically totalling 10-20 residues (Reis et al., 
2022). This fact should be clarified here. 
       
      2. Figure 3's image quality is very low and should be improved. 
 
      3. Ideally, should additional epitope regions be identified in Figure 3 that are 
close in space to the cognate linear epitope (if they exist)? 



       
      4. Given the greater interpretability and similar performance, why was the 
concentration maximum (Table S1) not used in place of the slope value (Table 2)? 
       
      5. Can the similarity between the predicted and measured values in Figure 2 be 
quantified in some way? 
 
6. In the methods section “since neither the cognate sequences or any of the million 
random sequences ... were part of the training” should be amended to ‘since neither the 
cognate … were in the training set’. 



Response to Reviewer Comments 
Predicting Monoclonal Antibody Binding Sequences from a Sparse Sampling of All Possible Sequences  
Bisarad et al. 
COMMSBIO-23-4495-T 
 
General Comments 

This was a helpful set of reviews both in assisting us in seeing how to better crystalize a set of concepts 
that are hard to portray and in recognizing ways to make the manuscript stronger overall.   

There are two general themes that run through the comments from all reviewers.  We will address these 
first and then discuss each of their comments individually and how we responded to them.   

The goal of the work.  The first issue raised by all reviewers in various ways has to do with what the goal 
of the paper is.  Admittedly the original version of the manuscript was somewhat unclear in this regard.  
The hypothesis that we are testing is that one can build a sequence-binding relationship for a large 
combinatorial space of amino acid sequences starting with data from a very sparse and essentially 
random sample of that sequence space.  The fact that we are using mAbs as the target in binding is less 
because of their potential utility than it is because they represent the ultimate test of the ability to 
recognize a very specific sequence interaction.  We now try to put this in context more clearly both in 
the Abstract and in the introduction on page 3.  We also now describe this work in the context of our 
larger research efforts on page 1.  This is the fourth paper in a series.  The first paper used a set of 
common proteins as targets and showed that we could develop a sequence binding relationship from 
sparse sampling of a random combinatorial space that accurately described the binding of that protein 
to sequences not used to train the model.  However, this kind of binding is not very specific and that 
makes it easier to predict.  Next, we used total serum IgG as the target and demonstrated that one could 
accurately model both the immune profile of an individual and their specific response to a disease.  One 
might think that would be the hardest case, but actually polyclonal responses end up being only partially 
specific in aggregate, as they represent an average of a number of molecular interactions.  We 
demonstrated there that, not only could we represent the overall immune profile, but we could 
accurately capture the information that distinguished the immune response of one disease from that of 
another and that the model was able to reject sequence independent noise, improving disease 
classification.  Most recently we applied this to Lyme disease and showed that we could take the models 
of immune responses and project them onto the Borrelia proteome and again differentiate between 
cohorts but also identify both the known antigens used as current biomarkers as well as a number of 
new antigens.  The current study takes the concept a step farther.  Here we are using monoclonal 
antibodies with linear epitopes as the target because they are, in some sense, the ultimate in high 
sequence specificity binding systems.  As in the past, we are using a sparse, essentially random sample 
of ~100,000 sequence-binding interactions to describe a much larger combinatorial space of about 
16^10 = a trillion possible sequences.  Here we are challenging the system by using a set of targets with 
very high specificity and high affinity and asking whether the resulting model can recognize a known 
high affinity sequence. As stated above, the fact that it is a mAb is not really the point, though it does 
give the work a bit more potential practical relevance. 

The reviewers have reasonably voiced some skepticism about whether we have really confirmed our 
hypothesis or not.  Reviewer 3 formulated these concerns in the most specific and testable way.  That 
reviewer pointed out that we were identifying 6mers and 7mers, not 10mers, and thus the space we are 
searching is smaller (17 million or 268 million, rather than something closer to a billion).  Yes, the 
identified region is smaller than a 10mer, but the algorithm has to find the 6mers and 7mers in the 9 
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and 10mers because this is the only data it has to go on.  Given an individual 10mer sequence and a 
binding value, the algorithm does not know which 6 amino acids were involved in the binding and thus 
which ones to value.  It must learn that through comparison with many other sequences.  In addition, 
there is really no evidence that the actual biological epitopes are confined to 6mers and 7mers.  We 
know the region of the antigen it binds to contains those 6 or 7 amino acids, but that does not mean the 
context is unimportant.  To deal specifically with the comments of Reviewer 3, we have selected larger 
regions of the antigen sequence from 6 to 10 residues and predicted the rank of those sequences out of 
a million random sequences of the same length. This is shown in Table S4 and S5 in the supplementary 
material.  While there is some lowering of the rank in the longest sequences for 3 of the mAbs, it is 
pretty modest, and in a 3 other cases, the rank actually improves in the longer sequences (the table is 
reproduced here for convenience).  Note that in Table 2 of the main text now instead of showing 6mers 
and 7mers, we show all 7mers. 

mAb 6 mers 7 mers 8 mers 9 mers 10 mers 
Ab1 4.0 ± 0.6 3.0 ± 0.7  2.6 ± 0.4 15 ± 2 25 ± 4 
Ab8 45 ± 10 7.9 ± 1.2  21 ± 7 68 ± 8 42 ± 16 
4C1 22 ± 3 15 ± 1.5  5.4 ± 0.7 6.6 ± 0.7 3.4 ± 0.7 
DM1A 6.6 ± 0.9 2.2 ± 0.5 1.4 ± 0.2 1.6 ± 0.2 1.8 ± 0.4 
Lnkb2 1.0 ± 0.0 1.4 ± 0.2  5.2 ± 0.6 6.8 ± 1.2 17 ± 3 
TF3B5 1.6 ± 0.4 1.1 ± 0.1  1.4 ± 0.2 1.8 ± 0.4 1.0 ± 0.0 
C3 7.4 ± 1.8 9.5 ± 1.4 9.6 ± 1.3 2.2 ± 0.8 3.4 ± 0.6 
9E10.3 42 ± 3 79 ± 4 13 ± 2 24 ± 3 33 ± 3 
 

The point is that the model is able to find the binding motif in a 10mer with high specificity which means 
that it is not just memorizing a specific 6mer or 7mer (or 10mer), but actually recognizing what is 
important about the sequence of a 10mer.  It has learned both what matters and what to ignore.  That, 
in our view, validates the hypothesis, at least in the context of mAbs with linear epitopes.  These results 
are described on p10 of the main Results and specifically addressed on p. 15-16 in the Conclusions. 

What is it learning and what sequences is it learning from?  There are also a number of reviewer 
comments that probe the issue of to what extent the algorithm is putting together sequence 
information from a large number of different sequences that are only partially related to the cognate 
sequence vs. relying on basically getting lucky and have a few sequences that result in high binding that 
largely dictate the ability of the model to recognize the cognate needle in a haystack.  While related to 
the issue discussed above, it focuses more on similarity and number of sequences in the training set 
rather than on what size of sequence space the model is able to represent and is another important 
question.  All of the reviewers suggested that we systematically remove the most similar sequences and 
retrain the models.  Reviewer 3 made the related suggestion that we try training on smaller and smaller 
training sets (randomly reduced) and see where the models run out of information and fail, something 
we have done in two of our past publications (see above for links).  We have done both here.  Essentially 
what we are exploring is the fragility vs robustness of the models.  We decreased sequence similarity to 
the cognate in steps, training on sequences sets with <=6 amino acids in common with the 7mer 
epitope, then <=5, then <=4, <=3, and finally <=2 amino acids in common with the 7mer sequence.  The 
definition of “in common” used was having the right sequence and the right relative position, but 
occurring in any register within the 7mer (including registers where the cognate sequence and the 
comparator sequences only partially overlap).  Thus, for SDLWKLL, the sequence RGRWADLGK would be 
considered to have 3 in common with the cognate (XXXXXDLXK) because the sequence order and 
spacing of the three matches, even though the register is shifted greatly.  Table S5 in the supplementary 



material shows how many sequences were removed to achieve each reduced training set (shown below 
for convenience).  Table S6 shows the ranks that resulted using the full model (weighting, shifting and 
compositional binding) trained on each reduced peptide set.  Figure 4 in the main text presents this 
graphically (given below for convenience).  

As you might expect, the more similar sequences removed, the worse the model is.  However, even 
when one only allows at most three amino acids in common with the cognate, all but two of the mAbs 
remain in the top 0.1%.  Thus at least in those cases, the model is clearly learning to piece aspects of the 
cognate sequence together.  Ab8, on the other hand, is clearly quite fragile.  To get to a point where 
there were no more than 4 matches, only 7 of the ~122,000 sequences were removed and this proved 
fatal to the model.  Ab1 collapsed to worse than 1% when only 3 matches were allowed, although if you 

allowed one to shift the cognate 
sequence by one position in the 
antigen sequence from RHSVVVP to 
FRHSVVV, it was back up in the top 
0.1% again.  This is presented on p. 
13-14 of the Results and Discussed 
on p. 15-16 in the Conclusions. 

Reducing the number of sequences 
in the training set tells a very similar 
story.  This is now Figure S7 in the 
supplementary material.  Again, as 
less sequence information (randomly 
chosen this time) is provided to train 
the algorithm, the lower the ranks of 
the mAbs in a million random 
sequences.  And, again, the really 
fragile model is Ab8, which collapses 
with even a quarter of the sequences 
being removed.  Note that each point 
is the average of 5 sets of 12 models 
and 5 randomly chosen peptide 
subsets to train on, thus even one 

 
Figure 4.  Ranks of the 7mer cognate epitope (Table 1) in 1 million 
random sequences using training sets of array peptides in which 
sequences similar to the cognate sequence have been removed.  
The Y axis is the percent rank, with 0.0001% signifying rank 1 in a 
million.  The X axis is the maximum number of amino acids that 
were in common with the epitope in the peptide array sequences 
used for training.  The points and error bars represent the average 
and standard error of 5 randomly chosen sets of 1 million 
comparison peptides each and 12 randomly initiated models.  In 
most cases, the error bar is too small to see in the plot. 
 

Table S5: Number of Peptides Removed to Reduce Similarity 
 Number Sequences Removed to Achieve 
mAb ≤6 

matches 
≤5 

matches 
≤4 

matches 
≤3 

matches 
≤2 

matches 
Ab1 0 0 3 150 3533 
Ab8 0 0 7 257 4386 
4C1 0 0 3 156 4005 
DM1A 0 1 4 240 4688 
Lnkb2 0 0 8 222 4381 
TF3B5 0 1 10 334 6134 
C3 0 1 26 543 7395 
9E10.3 0 0 33 701 9075 
 



bad model due to key sequences 
being missing is going to drop the 
average rank a huge amount (the 
average of rank 1 and rank 500,000 
is rank 250,000).  In reality, 
sometimes Ab8 would give a much 
higher rank, just by chance.  Again, 
the discussion of robustness is on p. 
13-14 of the Results and p. 15-16 of 
the Conclusions. 

Thus, we conclude that in most 
cases, the model has learned far 
more than just what a lucky 
sequence in the training set would 
have taught it and it has had to put 
the pieces together, learning what 
matters and what to ignore, rather 
than just memorizing a single 
pattern.  

Notes on changes 

In addressing the reviewer’s 
comments, we realized that it 
would strengthen our study if we 
used the same length cognate 

sequence (the same length of sequence taken from the cognate region of the antigen) for all of the 
mAbs.  Thus, we decided to use 7mer sequences for all of them.  In addition, reviewer 3 suggested, 
correctly, that it would be simpler for people to understand binding rather than the slope of the binding 
vs. concentration, so we went to using binding to calculate rank.  This, however, meant redoing all the 
calculations. So, this changed Table 2 and Figure 2 (we had already used 7mer tiles for Figure 3).  In the 
supplementary data, it changed Figures S4 and S6, removed Table S1 of the old manuscript (which gave 
binding values), and changed the sequences in Table S2.  While the numbers are slightly different, the 
message has not changed. 

 
Specific Responses (reviewer comments are in italics) 
 
Reviewer #1 (Remarks to the Author):  
 
In this paper a combined in-silico experimental pipeline is presented to map the linear epitope space 
relating to a particular antibody. I think it is a valuable study given that the authors can address the 
following comments:  
 
1) It is not clear to me whether antibody sequence information is taken into account. From my reading, 
each antibody model is trained separately on the linear epitope data. However there are also mentions 
of 'binding pairs' in the manuscript.  

 
Figure S7.  Ranks of the 7mer cognate epitope (Table 1 in main text) 
in 1 million random sequences using training sets of array peptides 
in which a random subset of peptides was used.  The Y axis is the 
percent rank, with 0.0001% signifying rank 1 in a million.  The X axis 
is the fraction of the ~122,000 peptide sequences on the array used, 
randomly chosen.  The points and error bars represent the average 
and standard error of 5 randomly chosen training sets each 
evaluated by 12 randomly initiated models. 
 



The neural network is trained using a one-hot representation of the sequences of the peptides on the 
array as the input and the binding values due to binding of the mAb in question as the output. The linear 
epitope sequences are never included in the training set.  These are what is being predicted by the 
models.  The binding pairs consist of a sequence from the array and a set of binding values as a function 
of concentration of mAb.  The trained neural network can then take any input sequence, whether used 
in the training set or not, and predict the binding to it.  The binding measurements and mAbs are 
described briefly on p.5.  The modeling is described on pages 6-9.  Additional details are provided in the 
Methods and Supplementary Material. 
 
2) I would emphasize the point that authors went 'the other way' to traditional methods that map abs 
with respect to an antigen. Mapping different antibodies with respect to an antibody has a clear 
discovery purpose as it gives novelty and priority to a typically known target. By contrast mapping 
epitopes to a known ab has a seemingly tenuous application. Chief potential application that is only 
scarcely mentioned is off-target binding as it is a big problem in contemporary immunotherapies. 
Authors could expand upon that.  
 

As described in the general comments above, while it is true that this approach could potentially be 
used for analyzing off target binding (keeping in mind that for now we are only looking at linear 
epitopes) and finding potential targets of immune responses if you look more generally at serum IgG, as 
we have done with Lyme Disease (see above), our goal in this work is focused on exploring a more 
fundamental hypothesis about using sparse sampling of larger sequence spaces to create 
comprehensive models that recognized highly specific binding sequences (see above).   That said, we do 
discuss potential applications, including off-target binding, on page 16 of the discussion. 

 
3) Are there similar antibodies in the PDB to the ones mapped here? If so are their linear epitopes (or 
subsets of discontinuous) within the predicted sets?  

It is not clear what the reviewer means by similar.  As far as we are aware, these antibodies have not 
been co-crystalized with their targets.  Note that these mAbs all bind to specific known linear epitopes. 
 
4) There are many linear epitope prediction softwares (e.g. http://tools.iedb.org/main/bcell/) I think it 
would be worth it to either perform benchmarking or say why it does not apply here.  

We reference a review on this subject now on p. 3 (ref. 18).  However, there is a significant difference 
between what we are doing and the typical epitope prediction algorithms used.  In particular, we start 
with binding data to a large number of random sequences and predict binding to any sequence, rather 
than either starting with a target molecule and asking what sequences are likely epitopes, performing 
docking calculations or tiling the sequences of the target.   Again, we are largely using mAbs as examples 
of targets with highly specific binding sequences and using them to test the capabilities of the models 
we derived from sparsely sampled combinatorial space, though at least for mAbs with linear epitopes or 
significant linear binding regions, this could be used for prediction. 
 
 
Reviewer #2 (Remarks to the Author):  
 
In this work, Bisarad and colleagues investigate antibody binding against random peptide arrays. This 
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work is very interesting and rigorously carried out. I have a few comments.  
 
5) have you considered data leakage in your model? That means, have you tried splitting the 
training/test data by sequence similarity? To quantify generalization of the predictor?  

6) Are there peptides that are very similar in sequence yet have different binding? Are these predicted 
correctly? Can you make a plot where you plot delta peptide sequence similarity vs delta accuracy? or 
something like that?  

(Answering 5 and 6 together) The issue of removing similar sequences was discussed in the general 
comments and resulted in making a plot of rank vs. similarity (Figure 4 of the new manuscript).  As for 
whether there are similar sequences with different binding, that is what is shown in Figure 2 of the 
manuscript.  Here predicted and measured data is shown for all single mutations of the cognate 
sequences of four of the mAbs.  These sequences are clearly all very similar to the cognate sequence, 
but many result in huge binding changes.  As you can see, while the predictions are not perfect, there is 
general correspondence between the predicted single amino acid changes from our models and the 
relative measured values.  This is reflected in the correlation coefficients between them, which range 
from 0.60 to 0.87.  Note that all of these values are normalized because the measured values for the 
single amino acid changes were done using a different set of arrays and different concentrations of 
mAbs than the arrays and concentrations used to build the model.  However, in terms of relative values, 
they should be comparable.  Figure 2 from the new manuscript is below for convenience: 



 

7) have you tried baseline models which just take into account amino acid composition but not the 
sequence?  

One of the approaches that we took in developing models for mAb binding was to separate the binding 
due to composition from that due to specific sequence.  This was done by doing a simple linear fit to the 
composition using all the peptide sequences (one coefficient for each amino acid is multiplied by the 
number of that amino acid in the sequence).  This was subtracted from the measured binding and the 

 
Figure 2.  Single amino acid mutation/substitution matrix for each of the mAb cognate sequences.   The y-
axis is the cognate sequence, and the x-axis is the amino acid used for substitution.  The color is 
proportional to the binding predicted by the full neural network model (left side) and the measured 
binding for the cognate sequence and all single amino acid variants (right side).  Note that the measured 
binding values come from a different set of arrays with different sequences and layout than the arrays 
used for the bulk of the work and thus what are presented for both predictions and measurements are 
relative values rather than absolute binding.  The 2 nM concentration mAb data was used for the predicted 
values shown.  Note that any sequence with a value of 1.1 times the binding of the cognate sequence or 
higher is shown as yellow.  This allowed better resolution of values less than 1.   



remainder was considered the sequence specific part of the binding.  The result of deconvolving the 
data into composition vs. sequence dependent binding is given in Figure S5 and described on p. 9.  
Figure S5 is reproduced below for convenience:  

In most cases, the amount of binding that is strictly due to composition is small (it represents <0.1 
contribution to the log of the binding in most cases). Figure S5 visually demonstrates any model taking 
into account only amino acid composition would be a poor predicter of antibody binding.  9E10.3 shows 
one of the larger amounts of variation due to the compositional component and here dealing with this 
component and the sequence dependent binding separately in the model resulted in a more highly 
ranked prediction for the cognate sequence binding. 

 
Figure S5.  Sequence-dependent binding vs. compositional binding for each of the mAbs at 0.125 nM 
concentration.  Each sequence is plotted as a scatter plot.  Also plotted for reference are the cognate 
sequences that are present on the array (red circles).  The top ten non-cognate sequences from the array are 
shown as light blue circles.  Both the cognate epitope sequences (if present on the array) and the top 10 
binding array sequences are listed for each mAb.  



 
8) Are there differences prediction performance between the antibodies? if so, why?  

As shown in Table 2 and the new Table S5 in the revised supplementary material, the model ranked all 
of the mAbs as very high cognate epitope binding compared to 1 million random sequences, but there 
are clearly differences.  This includes marked differences in how robust the different models are, as 
alluded to in the general comments above, and in Figures 4 and S7.  The “why?” is somewhat 
speculative, but there are key differences in the amount of data that binds significantly to the different 
mAbs as shown in Figure 1, where you can see that some mAbs, such as Ab1 and Ab8, simply have very 
few high binding peptides on the array, and thus few high information sequences.  This is presumably 
what results in the more fragile models, as you can see in Figures 4 and S7 (reproduced in the general 
comments for convenience).  TF3B5, on the other hand, has rather strong binding sequences on the 
array, and a very robust prediction of high binding by the cognate sequence, again as can be seen in 
Figures 4 and S7.  The substitution matrix of Figure 2 (also shown above) gives additional clues; some of 
the mAbs require very exact amino acid sequences and others are more tolerant of substitutions.  All of 
this is discussed on pages 13 and 14. 

 
9) Can you add an overview Fig 1 of the experimental/computational setup?  

The experimental approach is simply a matter of binding a small volume of sample to an array of 
peptides on a silica surface.  There is not much to diagram there.  The neural network is very simple and 
has been diagrammed in one of our previous papers.  Please see Figure 1 of Ref. 6.   

 
10) Did you perform controls (randomize peptide sequence --> does prediction accuracy go to random?)  

This is now given as Table S3 in the supplementary material.  This is referred to on p. 9 of the main text.  
The results are nearly random as expected. 

 

 
11) Please provide numbers/percentages in figure 1 as to how many peptide are above noise.  

Table S3 Results from Full Model After 
Training with Randomized Array 
Sequence Order 
mAb Rank 
Ab1 420,000 ± 170,000 
Ab8 140,000 ± 40,000 
4C1 310,000 ± 130,000 
DM1A 300,000 ± 130,000 
Lnkb2 370,000 ± 150,000 
TF3B5 420,000 ± 130,000 
C3 610,000 ± 100,000 
9E10.3 530,000 ± 90,000 
 
 



To do this we had to quantitatively define “noise” or perhaps more accurately background level, since 
peptides that don’t bind are not noise in that they contribute to building the model.  Then we had to 
quantitatively define how far above a value needs to be in order to be counted.  What we did was 
determine how many peptides at each concentration and each mAb were more than 2 standard 
deviations in that peptide’s value (determined from the four replicates taken at each concentration and 
each mAb) above the median value for the whole dataset for that concentration and mAb.  Figure 1 is 
very busy, so we put this data in Table S1 in the supplementary material and referenced it on p. 5 of the 
main text.  It is reproduced here for convenience (also referenced in the legend to Figure 1): 

The increase in numbers is not always 
very consistent at high concentration.  
This is because there is a balance 
between how large the standard 
deviation was on the array vs. the level of 
the median.  For some reason, 9E10.3 
had an array at 2 nM that was overall at 
lower scale.  This was averaged in 
because the correlation to the other 
arrays was fine, it was just scaled lower, 
but we chose not to try and manipulate 
the data scale since we wanted to 
preserve as much as possible the 
concentration dependence.  That array 
resulted in a big standard deviation for 

the peptides at that concentration and thus few peptides that were counted as >2 standard deviations 
above the background value.   

Reviewer #3 (Remarks to the Author):  
 
Summary  
 
Bisarad, Kelbauskas, Singh et al. present a dataset of eight antibodies with binding data against 122k 
randomly designed peptides. They show that, for each antibody, a simple Multilayer Perceptron (MLP) 
trained on this data consistently ranks the original (cognate) linear epitope highly among 1m different 
random peptides of the same length. The authors hypothesise this high throughput screening and ML 
model could be useful for selecting highly specific mAbs for therapeutics or diagnostics.  
 
12) The paper is clearly written but lacks a strong argument linking the method results (high ranking of 
the cognate epitope) with the original hypothesis, and the use case and impact of the work is not clear. 
The paper also lacks robust analyses in places. We have highlighted some of our main concerns below.  

Please see the general comments for a clearer description of the manuscript’s hypothesis and goal 
which is now hopefully better laid out in the introduction and address at the beginning of the 
conclusion.   

 
 
Major  

Table S1: Number of Peptide Sequences >2 Standard 
Deviations above the median binding value 
 Number of Sequences Above the Median 
mAb 0.125 nM 0.5 nM 2 nM 8 nM 
Ab1 3 23 89 195 
Ab8 0 1 2 9 
4C1 89 123 364 1146 
DM1A 19 69 321 101 
Lnkb2 30 65 116 69 
TF3B5 208 584 8428 7323 
C3 29 48 178 228 
9E10.3 28 111 5 13393 
 



 
      13) The paper does not 
address the question of whether 
or not the high throughput 
screening and ML model can 
identify polyspecific binding. 
Instead, the paper focuses on the 
ability of the trained MLP to rank 
the cognate epitope highly 
among a random background. 
This result is not clearly linked to 
the original question. Though 
many random peptides were also 
ranked highly by their model 
(above the cognate epitope), the 
authors did not test their binding 
experimentally.  

Our hypothesis is now hopefully 
more clearly stated on p. 2-3, and 
discussed in the general 
comments.   

With regard to providing 
experimental evidence that we 
can predict polyspecific binding, 
as shown in Figure S4, also given 
here for convenience), the 
models could generally predict 
the measured binding to the vast 
majority of the peptides on the 
array, at least in those mAbs for 
which there were substantial 
strong binding peptides.  The 
measured data is experimental 
data and the binding is 
polyspecific.  The predictions are 
real predictions because the 
peptides predicted in the 10-fold 
cross validation were not 
included in the training.  In those 
mAbs with substantial strong 
binding on the array, prediction 
was quite good.  Similarly in 
Figure 2 (provided above in 
response to reviewer 2) all 
possible single amino acid 
changes were made to each 

 
Figure S4.  Density scatter plot of log10 predicted values of the 
sequence dependent binding vs. the log10 sequence dependent 
binding determined from the values measured on the array.  
Red dots are the cognate sequences.  Only 100,000 randomly 
picked data points are shown for each mAb of the ~500,000 
total points across all concentraions. 



cognate sequence and were both predicted and measured.  Again, this is experimental data compared 
to binding predictions for sequences not used in the training and again shows that the model does a 
reasonable job of predicting which sequences will bind strongly and which will not. 

These ideas and the relationship between our data and our hypothesis is further discussed in the 
general comments above and further elaborated on in the conclusions of the paper. 
 
      14) In Figure 3 (page 11) the authors consider the entire protein antigen of each mAb, break it 
down into peptide chunks, and rank each chunk using their trained MLP. Encouragingly, the cognate 
epitope ranks highly. However, if the antigen were known a priori (as is often the case) and the goal was 
simply to identify any linear epitope, then would the more efficient experiment not be to select the e.g. 
200 or 1k peptides that comprise the antigen and test for binding against these instead of 122k random 
epitopes?  
 

Two points to consider.  First, as described above, identifying epitopes is a possible use of this 
technology, but it is not really the fundamental point of the manuscript.  That said, yes tiling of a known 
antigen can be done and has been done many times before, but it requires a custom set of peptides be 
made for every antigen.  The benefit of the random array approach described here is that it provides a 
single, common, commercially available, array that you could bind any antibody to.   More importantly it 
provides a model you can apply to any sequence.  For example, if you are wondering if your SARS-CoV-2 
spike protein mAb will bind to a new variant of the virus, you don’t need to make a new array or even do 
another experiment.  The model you have predicts for any sequence.  We hasten to point out, however, 
that the arrays and models used here do have limitations in this regard.  This particular array uses only 
16 amino acids, and the models do not yet incorporate information from protein structure that will be 
needed to move beyond linear epitopes.  These are the things our lab is working on now from a practical 
perspective, but the current study says that the fundamental hypothesis is valid… we can derive very 
specific information about sequence binding from arrays of random sequences binding to targets with 
very specific binding sequences.  That is the foundation that makes it possible to move to the next level 
of complexity.  The practical and fundamental value of this work is discussed on pages 16-17. 

 
      15) Assuming the goal of the paper is actually focused on ranking the cognate epitope highly (this 
should be justified), then more robust statistics should be provided here. Given final comparisons are only 
made to peptides of the same length as the cognate epitope (6-7 amino acids) and only 16 amino acid 
types are allowed, the total search space is 16^6 or 16^7 (~17m-268m). If the cognate epitope were not 
known a priori, the chances of selecting the cognate epitope in each instance given 1m designs is 6% or 
0.4%. To be robust, the authors should evaluate how highly the cognate epitope ranks amongst the 
entire possible sequence space - this should certainly be computationally possible for length-six designs 
at least. If however, the emphasis remains on predicting poly-specificity, with ranking of the cognate 
epitope being a measure of evidence for this, then this should be more clearly emphasised and argued 
for.  
 

This is an important issue and is largely dealt with in the general comments above and discussed in the 
text on p. 15-16.  Note that Table 2 is now showing only 7mer cognate sequences (not 6 or 7), 
demonstrating one can stick with one tile size for all the mAbs.  To take that further, 6-10mer sequences 
from the antigen sequences were used in Tables S3 and S4 showing that the tile size has only a modest 



effect on the ability to recognize the cognate region (sometimes improving rank a little and sometimes 
decreasing rank a little).   The reviewer is correct that these are important issues to explore and the 
addition of these new figures strengthens the overall argument of the paper.  

There is poly-specificity of the models, something that you can see in Figure 2 with the point mutations 
and Figure S4 with the diverse peptide sequences of the array (at least for the mAbs which have 
reasonable binding over a range), previous publications from our group have already shown that for 
other samples.  That said, what we really wanted to test with these mAbs was whether the sparse, 
unbiased sampling could be used to train a model that would be able to recognize a known interaction 
of a target with a particular amino acid sequence that is extremely specific, which is why we are using 
mAbs that have linear epitopes.  Measuring weaker protein peptide interactions or interactions of many 
IgG molecules with a target represents an average of multiple interactions.  Here we are exploring 
recognition of a particular interaction. 

As for statistics, in Table 2 the whole process is performed over 120 times for each of the 8 mAbs, with 5 
sets of 12 independently derived models for an mAb each applied to 2 unique sets of 1M random 
sequences.  Thus, the rank is statistically very well known.  Clearly it is not going to change appreciably 
between sampling 10 million and sampling 268 million.  It is important to both use multiple models 
(which have random starting points) and multiple sets of random sequences, as we have done, to make 
sure we have considered both sources of variability of the rank.  While one could do all of the 268 
million possibilities for one model and one mAb, doing it for many models and 8 mAb is a lot of 
computation that does not gain anything statistically. 

 
      16) However, to be yet more robust, it should be assumed that the cognate epitope length is also 
not known a priori (peptides of length 5-11 are used for training). In this instance, the cognate epitope 
should be evaluated against designs of random lengths. Here, the sequence space expands to ~1 trillion 
(infeasible to exhaustively search), as stated in the paper (page 2), and the probability of selecting the 
cognate epitope by chance given 1m random designs is just 0.0001%. Again, it should be considered 
whether or not selecting the cognate epitope in the top X designs is the true goal of the paper.  

Again, see Tables S3 and S4 and the general comments above.  Hopefully it is now clear what we were 
trying to achieve here and why we chose to focus in this manuscript on mAbs and the ability to 
recognize their specific sequences. 

      
      17) Only one MLP model is considered for training. It would be useful to try alternative 
architectures such as a random forest or convolutional neural network (CNNs) for comparison. CNNs 
would be particularly suited to the task due to their ability to pick up position-independent motifs. In 
addition, the authors do not describe if/how they optimised their MLP architecture or training 
hyperparameters. The number of training epochs or iterations is also not stated.  

To address the last question first, one advantage of a relatively simple neural network model such as the 
one used here is that it is fairly easy to optimize with relatively few hyperparameters to tune.  We have 
performed optimization of the numbers of hidden layers and nodes as well as experimenting with 
different learning rates, number of epochs trained, minibatch size, dropout percentages, etc.  This is 
now noted on p. 18 of the methods.  As for CNNs, we have used CNN models.  They work, but in terms 
of the kind of prediction discussed here (continuous, linear epitopes), have thus far not been shown to 



give predictions any more accurate than the simpler models.  Thus, we used the simpler fully connected 
model, which appears to be robust (you can vary number of layers and nodes considerably with similar 
results).  Where CNNs, and perhaps even transformer models,  may be more useful is as we start to try 
and predict the binding of discontinuous epitopes that, by definition, depend on the interaction of many 
small pieces over larger regions of sequence.  
 
      18) The significance of the steps taken to improve the MLP performance - oversampling positive 
sequences given the large class imbalance, and "shifting" the sequences - are overstated. The paper says 
"The biggest advance in the model came from forcing the neural network to ignore the absolute position 
of the sequence in the vector and generalize its learning so that it recognized the sequence regardless of 
its position within the artificial register of the input vector. This form of data augmentation by training 
on translational variants is well-established to help generalize convolutional neural networks for image 
recognition tasks. It is remarkable in many respects that the much simpler neural network model used 
here (2 hidden layers of 250 nodes, fully connected) would be able to utilize this data augmentation to 
generalize in this way." These training techniques are standard, necessary, and not as remarkable as 
claimed.  

Our intention was simply to point out what mattered in the improvement of the apparent accuracy of 
the predictions for these models and this dataset (weighting, shifting of sequence register, removal of 
compositional binding), not to claim these as fundamentally new algorithms.  That said, what we are 
doing, as the reviewer points out above, is not a CNN and really rather different.  CNNs look at pieces of 
the sequence.  This always considers the whole sequence, just in different registers.  However, we have 
used language on p. 15 to make it clear that we are not claiming a new algorithmic breakthrough, but 
only describing what was required to enhance the predictive capability.   
 
      19) Given the large training set size (122k), lack of sequence identity filtering, proven sequence 
similarity of the top hits (Figure 1), and oversampling of these top hits, the MLP appears to be simply 
memorizing its input and struggling to predict anything out of distribution. It would be useful to repeat 
the training with strict sequence similarity cut-offs in the train and validation datasets - this would help 
justify the claimed benefits of the sparse sampling strategy. Additionally, models with decreasing 
training set sizes could be trained to determine the minimum training set size to still result in a high 
ranking of the cognate epitope.  
 

This was discussed as part of the general comments and in Figures 4 (rank in models trained with similar 
peptides removed) and S7 (rank in models trained with decreasing total numbers of array peptides).   At 
some level, memorization and learning by example are closely related, but what one can conclude is 
that the model has both learned, in a piecemeal fashion, what amino acids are important at which 
relative positions and which are not as important.  This issue is now discussed on p. 15-16. 

 
      20) Why were the cognate epitopes of TF3B5, C3, and 9E10.3 not included in the 122k peptides 
tested for binding? There must have been space on the array and their exclusion is not explained, simply 
stated.  

In order to make these arrays cheaply and in large numbers, we need to keep the total number of 
synthetic steps low.  In principle, to be able to make ANY arbitrary set of 11-mers on the array by 
stepwise synthesis would require the use of all 16 amino acids at each residue, so a total of 16x11=176 



total photolithographic steps.  While not impossible, this greatly reduces the ability to make large 
numbers of very high-quality arrays.  So instead, we designed near-random arrays using 64 steps, but 
this limits the number of specific sequences you can design into the array.  Note that TF3B5 and 9E10.3 
were synthesized on a separate array with their single amino acid variants (Figure 2), but this was a 
different array with completely different sequences, and we did not want to do a direct comparison of 
binding values between this and the arrays used for the rest of the work.  Thus, we did not include the 
values of the cognate binding from these other arrays in Figure S4.  Figure 2 is based on relative values.  
This is now stated in the legend to Figure 2. 
 
      21) Correlation coefficients and the gradients of the lines of best fit should be added to Figure S4 
to better understand how well the predicted and measured log10 values agree.   

Done and we repeated the predictions multiple times to give better statistics, See Figure S4. 

 
            22) The language used to describe neural network training and architecture could be improved for 
clarity and to remove unnecessary complexity, e.g.:  
• “The matrix manipulations in a neural network are register-specific; an amino acid in the first position 
always “sees” the same set of processes take place as the information moves through the neural 
network.”  
• “it recognized the sequences regardless of its position within the artificial register of the input vector.”  
 
Modified, see p. 8-9 
 
Minor  
 
      23) The Introduction states "Binding typically involves interactions between the mAb and 5-8 
amino acids and in a specific spatial arrangement". However, for full-length proteins, which this paper 
considers, the full epitope is often composed of multiple linear/conformational epitopes, typically 
totalling 10-20 residues (Reis et al., 2022). This fact should be clarified here.  

We are referring to linear epitopes here rather than discontinuous ones.  We have generalized the 
statement so that it no longer quotes a particular number.  See p. 3  
        
      24) Figure 3's image quality is very low and should be improved.  

Corrected 
 
      25) Ideally, should additional epitope regions be identified in Figure 3 that are close in space to 
the cognate linear epitope (if they exist)?  

The coloring is automatic/objective and based on binding and is continuous between green and red.  
Indeed it is on a log scale, making even weak binding quite evident.  If you look carefully at Ab8, for 
example, you can find a couple of regions that are “off-green” and represent a little binding.  9E10.3, as 
pointed out in the paper, is the poster child for having multiple very similar sites and there you see 
binding to 3 regions.  We have clarified this on p. 13. 
        



      26) Given the greater interpretability and similar performance, why was the concentration 
maximum (Table S1) not used in place of the slope value (Table 2)? 

Done, we no longer are using slope for any of the calculations.   
        
      27) Can the similarity between the predicted and measured values in Figure 2 be quantified in 
some way?  

Correlation coefficients between the measured and predicted values are now added to Figure 2. 
 
             28) In the methods section “since neither the cognate sequences or any of the million random 
sequences ... were part of the training” should be amended to ‘since neither the cognate … were in the 
training set’.  

 
Modified 
 
 
 



REVIEWERS' COMMENTS: 

 

Reviewer #1 (Remarks to the Author): 

 

The authors responded to my comments. 

 

 

Reviewer #2 (Remarks to the Author): 

 

The authors have addressed all of my comments. 
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