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Arrays and Data Quality.   

Peptide microarrays containing diverse peptides were synthesized at Cowper Sciences, Inc., 
(Chandler, AZ) as discussed in the main text.  After completion of synthesis, each wafer was 
diced into 13 slides (25x75mm) and 4 MALDI-MS arrays. Slides were further subjected to a 
standard chemical cocktail to remove side chain protecting groups and stored under nitrogen 
prior to use.  Synthesis verification was performed by high-resolution Matrix-Assisted Laser 
Desorption Ionization Mass Spectrometry (MALDI-MS), using a previously described protocol.1  
Briefly, N-termini of peptides are labeled with TMPP (tris(2,4,6-trimethoxyphenyl) phosphine) to 
provide net positive charge, followed by selective chemical cleavage from the surface using 
gaseous ammonia. Alpha-cyano-4-hydroxycinnamic acid (CHCA) is then applied to the array 
surface using an automated sprayer (TM-Sprayer, HTX Technologies, LLC). MALDI mass spectra 
are acquired from each MALDI feature (representing each amino acid monomer and/or 
peptide) on an Autoflex Speed MALDI MS (Bruker Daltonik). Synthesis is verified when 
desired peptides are identified on the expected m/z, with a set tolerance of 0.5Da and 
minimum signal-to-noise (S/N) of 3.  
 

Fig. S1 shows the Pearson correlation coefficient between the mAb’s log10 binding values at each 

concentration and every other mAb’s log10 binding values at each concentration.  The four 

 
Figure S1.  Pearson correlation coefficients between the linear binding values of array data 
after averaging replicates.  For each monoclonal antibody, there are four concentrations (in 
increasing order, 0.125 nM, 0.5 nM, 2.0 nM, 8.0 nM).   
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replicates of each mAb and each concentration were averaged prior to calculating the correlation 

coefficient.  The data is organized from the lowest concentration (0.125 nM) to the highest 

concentration (8 nM) for each mAb.  As one moves along the diagonal, one can see that different 

concentrations of any particular mAb are generally similar, and different mAbs are quite 

dissimilar from each other.  No data was excluded from the analysis. 

 

Distributions.  Fig. S2 

shows the distributions of 

each of the datasets (each 

mAb at each concentration).  

Note that both the frequency 

scale (y-axis) and the 

binding value (x-axis) are 

log10; binding is given in 

log10 fluorescence counts.  

The background binding of 

the labeled secondary 

antibody to the arrays is 

~850 counts.  There is 

considerable variation in the 

number of high binding 

value sequences on these 

arrays, with both Ab1 and 

Ab8 having very few 

sequences that bind with 

values above 3,000 counts 

(~3.5 on the log scale) and 

TF3B5 having hundreds of 

sequences with values that 

saturate the detector at 

65,536 counts at the highest 

concentration (4.82 on a 

log10 scale).  The binding 

values of the mAbs to their 

cognate sequences are not 

shown, but with the 

exception of 4C1, the signal 

from the cognate sequence 

is saturating even at 0.125 

nM for those mAbs that had 

a cognate sequence 

synthesized on the array 

(Ab1, Ab8, 4C1, DM1A, 

Lnkb2). 

 
 

Figure S2.  Log10 binding distributions of each monoclonal 
antibody at four concentrations.  
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The distributions give an immediate indication of the specificity of each mAb.  Since the binding 

data is from peptides sampled nearly randomly over all of the 16 amino acid sequence space 

(1610 = 1012 sequences) without regard for any specific biological relevance, this platform gives a 

simple empirical comparison of specificity in an unbiased dataset.  In general, the vast majority 

of the binding for all the mAbs is near the background level and in the case of Ab8, there is 

almost no binding more than a few times the background level.  As can be seen in Fig. S1, the 

correlation between binding of different mAbs is generally low, presumably due to very different 

interactions and sequence requirements.  Thus, what one learns about binding of one mAb is 

unlikely to be useful in characterizing the binding of another.  For this reason they were modeled 

separately.   

 

Number of Sequences Above the 

Median for Each mAb 

Table S1 shows the number of 

sequences for each mAb at each 

concentration that was at least 2 

standard deviations above the median 

value of binding for all sequences for 

that mAb and concentration.  The 

standard deviation was calculated for 

each peptide, each mAb and each 

concentration from the four 

experimental replicates. 

 

The numbers of mAbs above 

background by two standard 

deviations does not always grow in 

the way one might expect with 

concentration.  This is for two reasons.  First, there is a general increase in the median value as 

the concentration increases.  Thus, the value being compared to is increasing.  Second, if there 

happens to be an array that is uniformly scaled a bit higher or lower than the other replicates, that 

results in a large standard deviation which also causes the data to not exceed the 2 standard 

deviation threshold. 

 

 

 

Table S1: Number of Peptide Sequences >2 
Standard Deviations Above the Median Binding 
Value 

 Number of Sequences Above the 
Median 

mAb 0.125 nM 0.5 nM 2 nM 8 nM 

Ab1 3 23 89 195 

Ab8 0 1 2 9 

4C1 89 123 364 1146 

DM1A 19 69 321 101 

Lnkb2 30 65 116 69 

TF3B5 208 584 8428 7323 

C3 29 48 178 228 

9E10.3 28 111 5 13393 
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Linearity with concentration.  

In order to take into account 

the fact that at higher 

concentrations detector 

saturation occurs for some 

peptide binding, the points that 

saturated at one concentration 

are assumed to increase 

linearly with concentration at 

higher concentration.  Fig. S3 

justifies that assumption 

looking at the overall linearity 

of binding as a function of 

concentration for each of the 

mAbs.  In each case, the 

average binding of all peptides 

that do not saturate at any 

concentration is plotted, 

showing that there is a linear 

dependence of binding on 

concentration at least within 

the dynamic range of the 

detector.  Thus, the assay itself 

is very linear with 

concentration. 

 

Cross validation study of 

binding prediction.  Fig. S4 

shows a 10-fold cross 

validation study of sequence-

specific binding prediction 

models for each mAb as a 

density scatter plot2.  Here the 

log10 predicted binding value is 

plotted against the log10 

measured binding value.  As 

described in the main text and 

above, saturating points were 

extrapolated based on 

concentration, which is why 

 
Figure S3.  The average binding of mAbs to peptides on the 
array vs. concentration for all peptides that do not saturate 
at any concentration. 



6 
 

there are log10 binding values 

>4.82.  90% of the peptide-

binding pairs (randomly 

selected) were used to train the 

model in each case and 10% 

were used as the test set.  This 

was done for all ten possible 

90:10 combinations so that all 

peptides were ultimately 

included in the test set.  Then 

the entire prediction was 

repeated 10 times and 

averaged.  Fig. S4 plots 

100,000 predicted test binding 

values against the measured 

values.  The displayed values 

were randomly chosen from all 

4 concentrations modeled.  It 

also shows, as a red dot, the 8 

nM predicted and measured 

value of each mAb cognate 

sequence when that value is 

present on the array.  Note that 

the predicted value of the 

cognate is generally lower than 

the measured value, 

particularly in cases like Ab1 

and Ab8 where there are very 

few peptides that bind strongly.  

However, even though the 

value predicted for the cognate 

is generally lower than its 

measured value, its rank 

remains high among the 

100,000 points plotted.  Note 

also that the cognate prediction 

is being compared to 

sequences of many lengths (the 

array peptides range from 5 to 

11 residues), rather than only 

to sequences of the same 

length.  The length need not be 

exactly the length of the 

cognate sequence as long as it 

contains the cognate sequence, 

but both the predictions and 

 
Figure S4.  Density scatter plot of log10 predicted values of 
the sequence dependent binding vs. the log10 sequence 
dependent binding determined from the values measured 
on the array.  Red dots are the cognate sequences.  Only 
100,000 randomly picked data points are shown for each 
mAb of the ~500,000 total points across all concentrations. 
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the measured data tend to show higher binding for longer peptides.  Thus, when looking, for 

example, at binding to a protein, one would want to tile the protein sequence as even length 

pieces for an accurate comparison of different regions of the protein. 

 

Compositionally Dependent Binding.  Fig. S5 shows scatter plots of sequence-dependent 

binding (y-axis) vs. compositional binding (x-axis) determined as described in Methods of the 

main text.  Basically, a set of coefficients relating the number of each amino acid in the peptide 

to the binding of that amino acid is determined in a linear fit (there is also a bias term).  The 

amount of binding that can be described this way is subtracted from the total binding (subtraction 

 
Figure S5.  Sequence-dependent binding vs. compositional binding for each of the mAbs at 
0.125 nM concentration.  Each sequence is plotted as a scatter plot.  Also plotted for 
reference are the cognate sequences that are present on the array (red circles).  The top ten 
non-cognate sequences from the array are shown as light blue circles.  Both the cognate 
epitope sequences (if present on the array) and the top 10 binding array sequences are 
listed for each mAb.  
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is performed after taking the log10).  In every case but 4C1, when the cognate epitope sequence 

in present on the array (shown as red points) it represents the strongest sequence-specific binding 

(the cognate epitope sequences for TF3B5, C3 and 9E10.3 were not present on the array).  Most 

of the mAbs have a very narrow range of composition-dependent binding.  In other words, the 

only term in the linear fit that was really significant in most cases was the bias term describing 

the background binding.  Only a small fraction of the binding distribution (0.05 on the log10 

scale) could be explained by composition alone.  The two exceptions to this rule are TF3B5 and 

9E10.3, both of which show a distribution of compositional log10 binding values >0.1.  Even for 

these two mAbs, however, compositional binding is still modest compared to sequence specific 

log10 binding of 1.5-2.  The overall amount of sequence specific binding among the array 

peptides varies greatly between mAbs.   Ab1 and Ab8 have the least number of sequence-specific 

binding sequences.  Ab8 in particular is devoid of any sequences that bind with sequence-

specific binding values above 0.5, while Ab1 has only 6 such sequences.  In all other mAbs, at 

least the top 10 sequence-specific binding sequence values (light blue points) are higher than 0.5.  

TF3B5 is at the opposite end of the spectrum, having about 100 sequences that show substantial 

sequence specific binding, including a number that saturate the detector (~1.9 on the y-axis).  

Other mAbs are between these extremes.  4C1 is the one case where none of the sequences 

synthesized on the array to represent its cognate epitope sequence are the highest binding 

sequences.  This suggests that at least in the context of binding to a short linear sequence 

attached to an array surface, this mAb may be less specific than the other mAbs; there are 

apparently multiple different sequences that bind this mAb about as strongly as the cognate 

epitope sequence.  Note, however that at least in terms of prediction based on the neural network 

models, adding additional amino acids from the binding region of the antigen increases binding 

of 4C1 (see below). 

 

Also shown in Fig. S5 are the ten highest binding sequences on the array (in black type) as well 

as the sequences of the cognate epitope representations considered (in red, only present for those 

mAbs where they were measured on the same array as the rest of the data).  As seen in Fig. 1 of 

the main text, in every case but Ab8, at least several of the top ten sequences are clearly related 

to the cognate epitope sequence.  In the case of Ab8, the relationship is more difficult to discern, 

though one can see a similarity in the particular amino acids used.  The general similarity of 

some of the stronger sequence-dependent binding sequences to the corresponding cognate 

epitope suggests that sequence-specific information is indeed available on the array.  It is 

important to remember that in this work, the epitopes are taken out of their folded protein 

environment.  This may well decrease the binding value and specificity.   

 
Ranking based on binding.  Ranking of predicted cognate binding values is determined based 

on binding at the four concentrations of mAb.  Each concentration was separately ranked and 

then the lowest rank of the four was assigned to each peptide.  This can result with two peptides 

having the same rank, and thus the peptides were reranked so that the rankings went from 1 to N 

were N is the total number of peptides.  The same algorithm is used for all of the million random 

peptides and the cognate, so there is no bias towards the cognate sequence.  The reason this 

maximum rank approach was used is that different peptides lie in different parts of the dynamic 

range of the binding measurement. This was the least biased approach to letting the data decide 

what concentration to use for each peptide.   
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Top Random Sequences Predicted    

The top 20 ranked sequences predicted in the 1 million sequence random library for each of the 

mAbs is given in Table S2.  Note that the mAb cognate sequences are included as reference at 

the top.  Again, one can generally pick out a commonality in sequence among them.  In some 

instances, most notably Ab8, there are also unrelated sequences.  For Ab8, those tend to be 

highly positively charged sequences.  Interestingly, the N-terminus of the P53 antigen that Ab8 

was raised against has a very highly positively charged region. 

 

 

 

  

  
Table S2: Top 20 Sequences Predicted from Random Library of 1 Million 

Rank Ab1 Ab8 4C1 DM1A Lnkb2 TF3B5 C3 9E10.3 

Cognate RHSVVVP SDLWKLL QAFDSHY LEKDYEE PLEEVLN PEYLGLD SLPNPEG KLVSEED 

1 HKRHSVL RRYRRGR GPFDSLG HLEADYA PPLELVL PEYLGLD WFPNPEG FLVPEWR 

2 RRHSVVD KKSGLGK QPFDSYG VFEKDYL PLERVLD HEYKGLD SSPSPEG LLVGEKH 

3 HRHRVRD LKWGLGK LQPWDSH FERDFFD RPLQQVL WEYGGLD FWPNPEG LLVPEWL 

4 HRSSVLF VRRRYRR FGYDSNG QLERDYH RPLQRVL EYWGLDN FSPNPEG RLVPENY 

5 HRHWVVD LHSDLLK LGYDSFG FEYDYPE PLEYQLG SDYWGLD SSNPWPE GVLVPEQ 

6 HRHSFVP EPGWKGY APFDSDG SHFEADY PFEKPLR GEYVGLE GPGPWPE FLVPERW 

7 HRHHVVK YSRRRRR YQPYDSV RFEVDYE PLEAKLL HEYLGLN GLNPWPE WLVSEAL 

8 RHSVVAV KSDFGKL AAYDSHY GSLEVDY YPFEKLL DQYWGLD WPSPDGF LLVPELW 

9 VRHSVLH NDLGKLK PAGYDSW YQFERDF PLFEPLR EYSGLNS YYSPWPE GLVSEGH 

10 HHHHHHL RHRKRRR FDWDSQG FDWDYHD HPFESVL QSEYSGL WPYPEGY LLVPESY 

11 RRHSVHQ FWRRRRR AHYDSHY GFERDYL PFEKLRR RSEYLGL GWPWPEG GLVPEWE 

12 HKHSVVG RRYRRRW ASFDSYG LEWDYDP PLFEKLS FEYLGLE FSRPDPD LRLVPEA 

13 HKRHSHL LLGLLKK PGFDSVG FEKDFDY PPLEQQL SYAGLDH YHKPWPE FLVAEGS 

14 HPHSVLS RHRRRRH EPFDSHY HNFEYDF PFEVWLK SYHGLDS WNGPHPD YLVGELN 

15 HRHSEHV LLKGLLK YDFDSNG PSFEWDY VLENVLR NSYLGLD WWPPHPD VLVPVAV 

16 HSVLDPG HRRRRLR DSYDSYG KVLERDF RRYPPPL YEYSGLK FNSPNPE QLVSEGF 

17 HRHSSPK RYRRRYY LKPYDSV DLEKDYE PLEFYLA YPEYPGL HPHPDGF WLRPEWW 

18 RKSVVFF RRRHQRR SHFDSFG NSFDKDY PLEEHLK SAEYPGL WSGPWPW FLVPEHE 

19 VHRHSVQ WRPRRRR WREPWDS QLELDYA VLEKLLH KEYHGRD HPHPDGN FLVGEWG 

20 KRRSVLF RRYYRPR HGFDSRW WLEWDYV PFEVLFK DYRGLDW FPGPNPD KLVPEPF 
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Randomized Sequence Order Control 

Table S3 shows the result of training on a dataset 

(using the full model) in which the sequence order 

is randomized relative to the order of the binding 

values from the array.  As expected, after 

averaging results across multiple training runs, the 

values approach the rank of 500,000 (50%). 

 
 

Varying the length of the antigen sequence used 

as the cognate sequence.  In order to better 

understand both the ability of the model to work 

with different lengths of sequences and to 

understand to what extent sequence context in the 

cognate region of the antigen matters in the modeling, model predictions similar to those of the 

full model in Table 2 of the main text were repeated for sequence regions between 6 and 10 

residues, where the longer sequences were taken from the known binding sequence region of the 

Table S4: Antigen sequences used for rank prediction at various lengths 

mAb 6 mers 7 mers 8 mers 9 mers 10 mers 

Ab1 RHSVVV RHSVVVP FRHSVVVP FRHSVVVPY FRHSVVVPYE 

Ab8 SDLWKL SDLWKLL SDLWKLLP SFSDLWKLL SFSDLWKLLP 

4C1 AFDSHY QAFDSHY LQAFDSHY LQAFDSHYD SLQAFDSHYD 

DM1A LEKDYE LEKDYEE LEKDYEEV ALEKDYEEV ALEKDYEEVG 

Lnkb2 PLEEVL PLEEVLN KPLEEVLN PLEEVLNLA PLEEVLNLAQ 

TF3B5 EYLGLD PEYLGLD NPEYLGLD NPEYLGLDV NPEYLGLDVP 

C3 PNPEGR SLPNPEG PNPEGRYS PNPEGRYSF PNPEGRYSFG 

9E10.3 KLVSEE KLVSEED KLVSEEDL KLVSEEDLL QKLVSEEDLL 

 

Table S5: Ranks out of 1 million random sequences1 of the sequences in Table S4 

mAb 6 mers 7 mers 8 mers 9 mers 10 mers 

Ab1 4.0 ± 0.6 3.0 ± 0.7  2.6 ± 0.4 15 ± 2 25 ± 4 

Ab8 45 ± 10 7.9 ± 1.2  21 ± 7 68 ± 8 42 ± 16 

4C1 22 ± 3 15 ± 1.5  5.4 ± 0.7 6.6 ± 0.7 3.4 ± 0.7 

DM1A 6.6 ± 0.9 2.2 ± 0.5 1.4 ± 0.2 1.6 ± 0.2 1.8 ± 0.4 

Lnkb2 1.0 ± 0.0 1.4 ± 0.2  5.2 ± 0.6 6.8 ± 1.2 17 ± 3 

TF3B5 1.6 ± 0.4 1.1 ± 0.1  1.4 ± 0.2 1.8 ± 0.4 1.0 ± 0.0 

C3 7.4 ± 1.8 9.5 ± 1.4 9.6 ± 1.3 2.2 ± 0.8 3.4 ± 0.6 

9E10.3 42 ± 3 79 ± 4 13 ± 2 24 ± 3 33 ± 3 
1The one million random sequences in each case are all the same size as the antigen 
sequence used. 

Table S3 Results from Full Model 

After Training with Randomized 

Array Sequence Order 

mAb Rank 

Ab1 420,000 ± 170,000 

Ab8 140,000 ± 40,000 

4C1 310,000 ± 130,000 

DM1A 300,000 ± 130,000 

Lnkb2 370,000 ± 150,000 

TF3B5 420,000 ± 130,000 

C3 610,000 ± 100,000 

9E10.3 530,000 ± 90,000 
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antigen.  In each case the full model including weighting, shifting and removal of compositional 

binding was used.  Table S4 shows the sequences used and Table S5 shows the resulting ranks 

out of 1 million random sequences of that length.  While there is some variation in rank with 

sequence length, it is modest, with some of the predictions being slightly worse with sequences 

longer than 7 and some slightly better.  
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Mutation Substitution Matrices.  Fig. S6 is similar to Fig. 2 in the main text, showing the 

predicted binding values of every single amino acid substitution of the cognate sequence of each 

 
Figure S6.  Predicted mutation matrix for each of the mAb cognate sequences.   The y-axis is 
the cognate sequence and the x-axis is the amino acid used for substitution.  The color is 
proportional to the relative binding predicted by the neural network (see color bar).  In each 
case, the values were normalized to the predicted binding of the cognate sequence.  Note 
that any sequence with a value of 1.1 times the binding value of the cognate sequence is 
yellow.  This allowed better resolution of values less than 1.  See Fig. 2 in the main text for 
details. 
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of the mAbs.  Fig. 2 showed only four of these and compared the predicted and measured results.  

Here all eight mAb predictions are shown (no measured values).  The cognate reference 

sequences used here are the same as those in Table 2 of the main text, but not always identical to 

Fig. 2 of the main text.  For details, see the main text. 

 
 

Reducing the Total Number of Sequences in the Training Set Randomly.  Fig. S7 shows the 

change in rank of the 7mer cognate sequence in a million random 7mer sequences as the number 

of sequences in the training set is reduced.  In each case a random subset of sequences was 

chosen and the full model (weighting, shifting and compositional binding removal) was used (see 

the final column of Table 2 in the main text for comparison).  The results are described in the 

main text. 

 

 

 

  

 
Figure S7.  Ranks of the 7mer cognate epitope (Table 1 in main text) in 1 million random sequences using 
training sets of array peptides in which a random subset of peptides was used.  The Y axis is the percent 
rank, with 0.0001% signifying rank 1 in a million.  The X axis is the fraction of the ~122,000 peptide 
sequences on the array used, randomly chosen.  The points and error bars represent the average and 
standard error of 5 randomly chosen training sets each evaluated by 12 randomly initiated models. 
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Removing Similar Sequences from the Array Peptide Library Before Training 

An important question is how strongly the models created depend on the similarity of a few 

sequences to the mAb cognate sequence.  To test this, starting with the cognate 7mer sequence 

(Table 1 in the main text), first only peptides with no more than 6 amino acids in common were 

used in training (note there were none with all 7 so <=6 is the full set), then only those with no 

more than 5 in common, etc. down to only those with no more than 2 in common.  The definition 

of “in common” used was having the right sequence and the right relative position, but occurring 

in any register within the 7mer (including registers where the cognate sequence and the 

comparator sequences only partially overlap).  Thus, for SDLWKLL, the sequence 

RGRWADLGK would be considered to have 3 in common with the cognate (XXXXXDLXK) 

because the sequence order and spacing of three amino acids match, even though the register is 

shifted.  Table S6 shows how many sequences were removed to achieve each reduced training 

set.  Table S7 shows the ranks that resulted using the full model (weighting, shifting and 

compositional binding) trained on each reduced peptide set.  Fig. 4 in the main text presents this 

graphically. 
 

 

Table S6: Number of Peptides Removed to Reduce Similarity 

 Number Sequences Removed to Achieve: 

mAb ≤6 
matches 

≤5 
matches 

≤4 
matches 

≤3 
matches 

≤2 
matches 

Ab1 0 0 3 150 3533 

Ab8 0 0 7 257 4386 

4C1 0 0 3 156 4005 

DM1A 0 1 4 240 4688 

Lnkb2 0 0 8 222 4381 

TF3B5 0 1 10 334 6134 

C3 0 1 26 543 7395 

9E10.3 0 0 33 701 9075 

 

Table S7: Ranks After Training on Peptide Sequences with Reduced Similarity to the Cognate 

  Ranks for the best 7mer Tile with less than: 

mAb Epitope 
Sequence 

≤6 
matches 

≤5 
matches 

≤4  
matches 

≤3  
matches 

≤2 
 matches 

Ab1 RHSVVVP 3.0 ± 0.7  2.2 ± 0.4 4 ± 0.4 30000 ± 4000 22,000 ± 1,300 

Ab8 SDLWKLL 7.9 ± 1.2  10 ± 3 320,000 ± 
20,000 

290,000 ± 
8,000 

380,000 ± 30,000 

4C1 QAFDSHY 15 ± 1.5  12 ± 1 13 ± 3 14 ± 1 210 ± 30 

DM1A LEKDYEE 2.2 ± 0.5 4.2 ± 0.9 82 ± 5 1000 ± 110 160,000 10,000 

Lnkb2 PLEEVLN 1.4 ± 0.2  1.8 ± 0.4 3.6 ± 0.7 1.2 ± 0.2 21,000 ±4,000 

TF3B5 PEYLGLD 1.1 ± 0.1  1.0 ± 0.0 1.0 ± 0.0 6.0 ± 1.1 60,000 ± 6,000 

C3 SLPNPEG 9.5 ± 1.4 8.4 ± 1.0 14 ± 1 57 ± 7 4500 ± 300 

9E10.3 KLVSEED 79 ± 4 63 ± 4 160 ± 20 860 ± 170 200,000 ± 5,000 
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Data and Algorithm Availability 

Dataset.  The averaged data for all 8 mAbs is available on Zenodo 

https://zenodo.org/records/12510566.  The data is in an excel spreadsheet, 

‘Averaged_Array_Data.xlsx’.  Column 1 contains the sequence corresponding to that row of 

data.  Column 2 is either 0 or 1, with 1 meaning that the sequence and data in that row is for a 

mAb cognate sequence purposely included on the array.  These sequences are removed by the 

algorithm prior to neural network training.  The remaining 32 columns are the data for each mAb 

at each concentration (each value is the average of 4 measurements).  The top row contains the 

name of the mAb and the second row contains the concentration.  The subsequent values are the 

average measured binding values.  Note that there are more values here than were used in the 

analysis because all sequences over 11 residues in length were excluded in the analysis.  The 

values given are binding values in counts.  The detector saturated at 65536 counts.  The data for 

each of the four replicates averaged is also included as “Dataset_repx.xlsx” where “repx” is rep1 

through rep4.  These files have the same format as the averaged file. 

 

Algorithm.  The Matlab script is available on Zenodo as well 

https://zenodo.org/records/12510566   (‘mAb_sequence_binding_relationship_updated.m’) 

containing all the functions at the end.  At the top of the script there are a series of values that can 

be varied: 

Table S8: User defined variables in the Matlab Script 

Variable Options (Default) Description 

current_mAb Ab1, Ab8, 4C1, DM1A, 

Lnkb2, TF3B5, C3, 9E10.3 

The name of the mAb to analyze 

Data_file (Averaged_Array_Data.xlsx) 

or Dataset_repN.xlsx 

The name of the data file 

num_rep User defined (12) The number of neural network 

models averaged 

numrand User defined (1000000) The number of random sequences 

predicted 

num_layers User defined (2) The number of hidden layers 

num_nodes User defined (250) The number of nodes/layer 

miniBatchSize User defined (1000) The number of sequences analyzed 

per mini batch 

MaxEpochs User defined (20) The number of training Epochs 

InitialLearnRate User defined (0.002) Learning rate during training 

https://zenodo.org/records/12510566
https://zenodo.org/records/12510566
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LearnRateDropFactor User defined (0.9) Rate at which the learning rate drops 

during training 

shift User defined (5) The number of different registers of 

each sequence in the input vector 

used during training.  0 means no 

register shifting 

weight_high_binders true/false (true) Determines if weighting of high 

binding values is used 

maxdensity User defined (300) If weighting used, this is the number 

of sequences per bin after copying 

maxcopy User defined (100) If weighting used, this is the 

maximum number of any one 

sequence 

conc2compare 0.125, 0.5, 2, 8 (8) If weighting used, this is the 

concentration used to set the number 

of copies of high biding sequences 

EndMarkers true/false (true) Determines if end markers are used 

adjust_saturated_points true/false (true) Determines if saturated points are 

extrapolated based on concentration 

Composition_fit true/false (true) Determines if compositional binding 

is subtracted from the data before 

training the model 

ExcludeLong true/false (true) Determines if the longest sequences 

are excluded from the training 

maxlen 8-13 (11)   shorter than 8 

would remove too much data 

If longest sequences are excluded, 

this is the maximum length used 

 

The script is set up to run as long as the data file is in the same directory as the script.  Note that 

this script was developed under Matlab release 2022a, though it should work on a range of 

release versions.  
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