Expanded View Figures

Figure EV1. FR prevents 5-HT-induced constriction and $G\alpha_q/G\alpha_{11}$ can be downregulated by lentiviral transduction.

(A) Original traces of 5-HT dose-response curves $(10^{-9}M-10^{-5}M)$ after pre-incubation with DMSO, Ket $(10^{-6}M)$ or FR $(10^{-6}M)$ in PAs. (B) PCR analysis of Gq protein subtypes in native mPASMCs and mPASMCs transduced with lentiviral sh-G11, sh-Gq RNA (negative controls). Murine lung tissue was used as positive control. (C-F) Statistical analysis of relative G α_{11} (C), G α_{q} (D), G α_{i} (E), and G α_{s} (F) mRNA expression in native mPASMCs (n = 3) and mPASMCs transduced with lentivirus (sh-control (ctrl), sh-G11, sh-Gq RNA or both, n = 3 independent experiments normalized to 18S housekeeping gene. (G, H) Original Western Blot (G) and analysis (H) of G $\alpha_{q/11/14}$ protein expression of native mPASMCs and mPASMCs transduced with lentivirus (sh-control (ctrl), sh-G11, sh-Gq RNA or both, n = 3 independent experiments). GAPDH was used as housekeeper. Data information: Values are expressed as mean ± SEM. (C-F, H) One-way ANOVA, Tukey's post hoc test. Source data are available online for this figure.

Figure EV2. FR prevents and reverses Gq-mediated constriction in mouse and pig PAs.

(A) Original traces of U-46619 dose-response curves $(10^{-10} \text{ M} - 10^{-5} \text{ M})$ after pre-incubation with DMSO, SQ (10^{-6} M) , FR (10^{-6} M) , or FR + Y-27632 (10^{-5} M) in mouse PAs. (B) Original traces of ET-1 dose-response curves $(10^{-12} \text{ M} - 10^{-7} \text{ M})$ after pre-incubation with DMSO, Bos (10^{-6} M) , FR (10^{-6} M) , FR + Y-27632 (10^{-5} M) in mouse PAs. (C, D) Dose-response curves of DMSO and FR $(10^{-9} \text{ M} - 10^{-5} \text{ M})$ after 5-HT $(5 \times 10^{-7} \text{ M}, \text{DMSO}: n = 6, \text{FR}: n = 5, \text{C})$ or U-46619 $(10^{-7} \text{ M}, \text{DMSO}: n = 8, \text{FR}: n = 6, \text{D})$ pre-constriction in murine PAs. (E-G) Dose-response curves of DMSO and FR $(10^{-8} \text{ M} - 10^{-6} \text{ M})$ after U-46619 $(3 \times 10^{-7} \text{ M}, \text{DMSO}: n = 5, \text{FR}: n = 5, \text{E})$, Phe $(3 \times 10^{-5} \text{ M}, \text{DMSO}: n = 6, \text{FR}: n = 6, \text{F})$, or KCI $(3 \times 10^{-2} \text{ M}, \text{DMSO}: n = 2-4, \text{ FR}: n = 2-4, \text{ G})$ pre-constriction in porcine PAs. Data information: Values are expressed as mean ± SEM. Source data are available online for this figure.

Figure EV3. FR strongly relaxes PAs ex vivo.

(A, B) Original traces of Bos (A) or Ilo (B) dose-response curves (10^{-9} M - 10^{-5} M) followed by single dose FR (10^{-6} M) application after pre-constriction with ET-1 (3×10^{-9} M) in mouse PAs.

Figure EV4. FR does not affect HPV but reduces RVSP in vivo.

(**A**, **B**) Original traces of PAP in the IPL model during perfusion with DMSO (**A**) or FR (10^{-6} M, **B**) and exposure to hypoxic air (0% O₂/100% N₂). (**C**) Statistical analysis of PAP increase evoked by hypoxic air during DMSO (n = 7 mice) or FR (n = 6 mice) perfusion. (**D**) Statistical analysis of basal RVSP 1h after DMSO (n = 8) or FR ($2.5 \mu g/mouse$, n = 8) i.t. application in healthy mice housed under normoxic (21% O₂) conditions. (**E**) Statistical analysis of basal heart rate in these mice (DMSO: n = 8; FR: n = 8). (**F**) Statistical analysis of RVSP increase in response to 5-HT (5×10^{-3} M, 10μ I) i.v. bolus injection in these mice (DMSO: n = 8; FR: n = 8). (**G**) Basal heart rate 1h after DMSO (n = 9) or FR ($2.5 \mu g/mouse$, 1h before, n = 8) application in mice with pre-existing Hx-induced PH (DMSO: n = 9; FR: n = 8). (**H**, I) Relative change of LVSP (I) after acute DMSO (n = 4) or FR ($10 \mu g/mouse$ i.p., n = 5) application in mice with pre-existing Hx-induced PH. Data information: Values are expressed as mean ± SEM. (**C**-**G**) Unpaired student's t-test. (**H**, I) Two-way ANOVA, Bonferroni post hoc test. Source data are available online for this figure.

Figure EV5. FR effects on Hx-induced PH in vivo and mPASMCs as well as mLECs in vitro.

(A) Statistical analysis of LVSP in mice treated with the solvent DMSO or FR (10 µg/mouse i.p., Monday to Friday) during exposure to Nx (21% O_2 , DMSO: n = 8, FR: n = 7) or SuHx (10% O_2 , DMSO: n = 10, FR: n = 10) for 3 weeks. (B, C) Statistical analysis of relative Orail (B) and TRPC1 (C) mRNA expression in native mPASMCs (n = 8) and mPASMCs treated with solvent DMSO or FR (10⁻⁶M) with or without additional PDGF (40 ng/ml) + 5-HT (10⁻⁶M) stimulation for 12 h, each n = 6 normalized to 18 S housekeeping gene, ns indicate different wells derived from at least two different passages. (D) Amount of TUNEL⁺ CD31⁺ mLECs after 2 days without treatment (n = 6) or with DMSO (n = 6) or FR (10⁻⁶M, n = 6) treatment. (E) Statistical analysis of LVSP in mice treated with the solvent DMSO (n = 9) or FR (10 µg/mouse i.p., Monday to Friday, n = 9) in the last 2 weeks of 5 weeks SuHx exposure. (F, G) vWF/ α -SMAC staining of PAs in lung sections from SuHx-DMSO (n = 9) or FR (10 µg/mouse i.p., Monday to Friday, n = 9) in the last 2 weeks of 5 weeks SuHx exposure. Data information: Values are expressed as mean ± SEM. (A-D) One-way ANOVA, Tukey's post hoc test, (E, H) Unpaired student's t-test. Source data are available online for this figure.