Supporting Information:

Unveiling the Molecular Mechanisms of the Type-IX Secretion System's Response Regulator: Structural and Functional Insights

Anshu Saran^{1,2}, Hey-Min Kim³, Ireland Manning⁴, Mark A. Hancock^{5,2}, Claus Schmitz⁶, Mariusz Madej⁷, Jan Potempa^{7,8}, Maria Sola⁶, Jean-François Trempe^{5,2}, Yongtao Zhu^{4,9}, Mary Ellen Davey³, Natalie Zeytuni^{1,2}[†]

- ¹ Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, Canada. Address: 3640 Rue University, Montreal, Quebec, Canada H3A 0C7
- ²Centre de Recherche en Biologie Structurale (CRBS), Montreal, Quebec, Canada.
- ³ Department of Microbiology, The Forsyth Institute, Cambridge, MA 02142 USA
- ⁴ Department of Biological Sciences, Minnesota State University Mankato, Mankato, Minnesota, USA

⁵ Department of Pharmacology & Therapeutics, McGill University, Montreal, Quebec, Canada, H3G 1Y6.

⁶Department of Structural Biology, Molecular Biology Institute of Barcelona, Spanish Research Council, Barcelona Science Park, Barcelona, E-08028, Spain.

- ⁷ Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krak´ow PL-30-387, Poland.
- ⁸ Department of Oral Immunology and Infectious Diseases, School of Dentistry, University of Louisville, Louisville, Kentucky 40202, USA.
- ⁹ Department of Biological Sciences, Xi'an Jiaotong-Liverpool University, Suzhou, Jiangsu, China.

[†] Email address for correspondence: natalie.zeytuni@mcgill.ca

<u> Table S1</u> -	Primers used in this study.	
Primer	Sequence (5'> 3')	Purpose
<i>porX_{FJ}</i> fw	CAGCGGCCTGGTGCCGCGCGGCAGCCATATGGATAAG	pET28a- <i>porX</i> _{FJ}
	ATAAGAATACTTTGGGTCGATG	
<i>porX_{FJ}</i> rev	TTGTCGACGGAGCTCGAATTCGGATCCTTATTTAGGGT	pET28a- <i>porX_{FJ}</i>
	TAAATACCAAAAACGG	
pET28 Kan	CCCATTTATACCCATATAAATCAGCATCCATGTTGGAA	$porX_{FJ}$ mutant
fw	TTTAATCGCGGC	construction by Gibson assembly
pET28 Kan	GCCGCGATTAAATTCCAACATGGATGCTGATTTATATG	$porX_{FJ}$ mutant
rev	GGTATAAATGGG	construction by Gibson assembly
porX _{FJ}	ACCAGTAAATCCAAATCAAATTTTAGAGAGTTTAAAA	pET28a- <i>porX_{FJ}</i> L113E
L113E fw	AAGAATCTGGATG	
porX _{FJ}	CATCCAGATTCTTTTTTAAACTCTCTAAAATTTGATTTG	pET28a- <i>porX_{FJ}</i> L113E
L113E rev	GATTTACTGGT	
porX _{FJ}	GTATTTCTCTATTCTTCCAACTGCAGTACAATATGCCA	pET28a- <i>porX_{FJ}</i> T271V
T271V fw	GAAATGCAATTTTC	
porX _{FJ}	GAAAATTGCATTTCTGGCATATTGTACTGCAGTTGGAA	pET28a- <i>porX_{FJ}</i> T271V
T271V rev	GAATAGAGAAATAC	
porX _{FJ}	GAAGAAAACTTTGACATTGTTTTTTCTTGCCGAAAATAT	pET28a- <i>porX_{FJ}</i> D54A
D54A fw	GCCGGGAATGAGCG	
porX _{FJ}	CGCTCATTCCCGGCATATTTTCGGCAAGAAAAACAATG	pET28a- <i>porX_{FJ}</i> D54A
D54A rev	TCAAAGTTTTCTTC	
porX _{FJ}	CTAAAATCGCAGACTATTTGATAGCACCAGTAAATCCA	pET28a- <i>porX_{FJ}</i> K104A
K104A fw	AATCAAATTTTAC	
porX _{FJ}	GTAAAATTTGATTTGGATTTACTGGTGCTATCAAATAG	pET28a- <i>porX_{FJ}</i> K104A
K104A rev	TCTGCGATTTTAG	
porX _{FJ}	GTGACTGTTGTTTATAATTTCGTTGCTATGCTTTCGGCT	pET28a- <i>porX</i> _{FJ}
D360A/H3	GCAAAAACTGAAATGGAAGTT	D360A/H364A
64A fw		
porX _{FJ}	AACTTCCATTTCAGTTTTTGCAGCCGAAAGCATAGCAA	pET28a- <i>porX_{FJ}</i>
D360A/H3	CGAAATTATAAACAACAGTCAC	D360A/H364A
64A rev		
porX _{FJ}	ATAATGGAGAATTTTTAAACCATTCTAAAGTCAGTGCG	pET28a- <i>porX_{FJ}</i>
S384A/S38	CGATATGCTTTGTCATCAGAAG	S384A/S388E
8E rev		
porX _{FJ}	CTTCTGATGACAAAGCATATCGCGCACTGACTTTAGAA	pET28a- <i>porX_{FJ}</i>
S384A/	TGGTTTAAAAATTCTCCATTAT	S384A/S388E
S388E fw		

<i>porX_{FJ}</i> stop	ACTGAGTTTAAAAAAGAATCTGGATGATTAATCAAGA	pET28a- <i>porX_{FJ}</i> REC
codon after	CTGATTACAGAAAAAAC	
121 fw		
<i>porX_{FJ}</i> stop	GTTTTTTCTGTAATCAGTCTTGATTAATCATCCAGATTC	pET28a- <i>porX_{FJ}</i> REC
codon after	TTTTTAAACTCAGT	
121 rev		
<i>porX_{FJ}</i> stop	CTGGTTTGCTCCAAAAGCAGATAAATAACCAATTCAAT	pET28a- <i>porX_{FJ}</i>
codon after	CTCATAATTTATTTAAAG	REC+THB
208 fw		
<i>porX_{FJ}</i> stop	CTTTAAATAAATTATGAGATTGAATTGGTTATTTATCT	pET28a- <i>porX_{FJ}</i>
codon after	GCTTTTGGAGCAAACCAG	REC+THB
208 rev		
porX _{FJ} 126-	CCGCGCGGCAGCCATATGACAGAAAAAACAACATTAG	pET28a- <i>porX_{FJ}</i>
end fw	ATTACCAAAAAGAATTC	THB+APS
porX _{FJ} 126-	CTGGTTTGCTCCAAAAGCAGATAAATAACCAATTCAAT	pET28a- <i>porX_{FJ}</i>
end rev	CTCATAATTTATTTAAAG	THB+APS
FJ0076	GCTAGGGATCCAACATTATCCCCCAAAACG	$\Delta por X_{FJ}$
FJ0077	GCTAGTCTAGAATTGTTGCTTGTTGTAACTTC	$\Delta por X_{FJ}$
FJ0167	GCTAGTCTAGATTAGAAGAAATGATTATTCCGTTTT	$\Delta por X_{FJ}$
FJ0079	GCTAGGTCGACGATTTTACAGCTGGATAAGAAC	$\Delta por X_{FJ}$
FJ0086	GCTAGGGATCCGATGAAAACGTGTATGATTTG	Identification of $\Delta por X_{FJ}$ CJ4057
FJ0087	GCTAGTCTAGACAGTCACAGTTTTCACTTCT	Identification of $\Delta porX_{FJ}$ CJ4057
FJ0088	GCTAGGGATCCGATGAAAACGTGTATGATTTG	pIM10- <i>porX</i>
FJ0089	GCTAGTCTAGACAGTCACAGTTTTCACTTCT	pIM10-porX
FJ0734	AATGATGTCGACTCTGCGCTTCCTATTTCG	$\Delta gldKLMNO$
FJ0735	CATATCGCATGCTTTCATACGATTTGTATCTGTAGCTGC	$\Delta gldKLMNO$
FJ1209	GCTAGGGATCCGCCAATTGCTGTTTACAAAGGAG	$\Delta gldKLMNO$
FJ1210	GCTAGGTCGACACCTGACTTACCACAGCCGAT	$\Delta gldKLMNO$
W50	TTGTAAAACGACGGCCAGTGAATTCTTGGCGACACGC	$\Delta porX_{PG}$::Erm
$\Delta por X_{PG}$	GGACTC	
F1 fw		
W50	TCTTTTTTGTCATAATTATGTTCTTCTCTATTTAGTATA	$\Delta por X_{PG}$::Erm
$\Delta por X_{PG}$	GGGTATAACGGAAGTG	1
F1 rev		
W50	AAGAACATAATTATGACAAAAAAGAAATTGCC	$\Delta por X_{PG}$::Erm
$\Delta por X_{PG}$		*
F2 fw		

W50	TGTATGAAGTATCTACGAAGGATGAAATTTTTC	$\Delta porX_{PG}$::Erm
$\Delta por X_{PG}$		
F2 rev		
W50	TCATCCTTCGTAGATACTTCATACATGAATACGATC	$\Delta por X_{PG}$::Erm
$\Delta por X_{PG}$		
F3 fw		
W50	CTATGACCATGATTACGCCAAGCTTCAGTATATTGGCC	$\Delta por X_{PG}$::Erm
$\Delta por X_{PG}$	GAATTG	
F3 rev		
pUC19	TACGCCAGCTGGCGAAAGGGGGGATG	∆ <i>porX_{PG}</i> ::Erm sequencing
sequencing		
fw		
pUC19	GCTTTACACTTTATGCTTCCGGCTCG	∆ <i>porX_{PG}</i> ::Erm sequencing
sequencing		
rev		
W50	ATCACAACGCGAACACCCTGATC	∆ <i>porX_{PG}</i> ::Erm sequencing
$\Delta por X_{PG}$		
fw		
W50	CCACAGAGGATATATTCGGATAG	∆ <i>porX_{PG}</i> ::Erm sequencing
$\Delta por X_{PG}$		
rev		
pTMCS	CGATAAGCTTGGATCCGCATGCCCCATTGGATAGATGC	pTCOW-groES-porX _{PG}
groES fw	CCTGC	
groES	GTTTTTTCCATTGTTGCTTGGTTTGTTATTG	pTCOW-groES-porX _{PG}
PorX _{PG} rev		
groES	AAACCAAGCAACAATGGAAAAAAAACATGAGACC	pTCOW-groES-porX _{PG}
<i>porX_{PG}</i> fw		
porX _{PG}	TAGCGAGGTGCGGCCGGTCGACCCCTTACTTGGGTTGC	pTCOW-groES-porX _{PG}
pTMCS	ATCGTAATTAC	
rev		
groES	TTATCTTATCCATTGTTGCTTGGTTTGTTATTG	pTCOW-groES-porX _{FJ}
porX _{FJ} F1		
rev		
groES	AACCAAGCAACAATGGATAAGATAAGAATACTTTGG	pTCOW-groES-porX _{FJ}
porX _{FJ} F2		
fw		
porX _{FJ} F2	TAGCGAGGTGCGGCCGGTCGACCCCTTATTTAGGGTTA	pTCOW-groES-porX _{FJ}
RV	ААТАССАААААС	

porX _{PG}	GTCCGCCGATGCCGGGGCATGTTCTCAGCGAGGAATAC	pTCOW-groES-porX _{PG}
D58A rev	GATGTCGAAGTCG	D58A
porX _{PG}	CGACTTCGACATCGTATTCCTCGCTGAGAACATGCCCG	pTCOW-groES-porX _{PG}
D58A fw	GCATCGGCGGAC	D58A
porX _{PG}	AGATGGCATTGCGTGCATATTGGACCGCTGTCGGCAGG	pTCOW-groES-porX _{PG}
T272V rev	ATGGACAGGTAC	T272V
porX _{PG}	GTACCTGTCCATCCTGCCGACAGCGGTCCAATATGCAC	pTCOW-groES-porX _{PG}
T272V fw	GCAATGCCATCT	T272V
porX _{PG}	GATAGTCCTGAACTTCGTGGCCATGATGTCGGCTGCTC	pTCOW-groES-porX _{PG}
D361A/H3	GTACTGATAGCAAGATGATTC	D361A/H365A
65A fw		
porX _{PG}	GAATCATCTTGCTATCAGTACGAGCAGCCGACATCATG	pTCOW-groES-porX _{PG}
D361A/H3	GCCACGAAGTTCAGGACTATC	D361A/H365A
65A rev		
porX _{PG}	GGCATCCAACGAAGCAGCCTATCGCGCGCTGACGAAG	pTCOW-groES-porX _{PG}
S385A/S38	GAATGGTTCAAGCATTCGAC	S385A/S389E
9E fw		
porX _{PG}	GTCGAATGCTTGAACCATTCCTTCGTCAGCGCGCGATA	pTCOW-groES-porX _{PG}
S385A/S38	GGCTGCTTCGTTGGATGCC	S385A/S389E
9E rev		
porX _{PG}	TTTTTTGAGCGACTCGAGGAGCTGATTCGGATTC	pTCOW-groES-porX _{PG}
L117E rev		L117E
porX _{PG}	TCAGCTCCTCGAGTCGCTCAAAAAAACCTG	pTCOW-groES-porX _{PG}
L117E fw		L117E
porX _{PG}	TAGCGAGGTGCGGCCGGTCGACCCCTTACTGCTGCAGG	pTCOW-groES-porX _{PG}
stop codon	TTTTTTTG	REC
after 125		
porX _{PG}	TAGCGAGGTGCGGCCGGTCGACCCCTTACTTGGCAATC	pTCOW-groES-porX _{PG}
stop codon	CATTCCCGATAG	REC+THB
after 207		
porX _{PG}	AACAATGAGCGAAACCACGAACACGAACTACCGGCAA	pTCOW-groES-porX _{PG}
130-end fw	GAGTTCGTCCAAC	THB+APS
porX _{PG}	CGTGTTCGTGGTTTCGCTCATTGTTGCTTGGTTTGTTAT	pTCOW-groES-porX _{PG}
130-end	IGITAGITGATIGITTG	THB+APS
		norVacmutant
Λ mp fw	AAAACAGGAAGGC	construction by Gibson
Lub IM		assembly

pTCOW	GCCTTCCTGTTTTTGCTCACCCAGAAACGCTGGTGAAA	<i>porX_{PG}</i> mutant
Amp rev	GTAAAAGATGCTG	construction by Gibson
1		assembly
pTCOW	CAGTGAGGATATTGACGCTTATTTCG	groES-porX sequencing
seq FW		
pTCOW	CGCATTCACAGTTCTCCGCAAG	groES-porX sequencing
seq RV		

<u>**Table S2**</u> - Strains and plasmids used in this study.

Strain (relevant genotype)	Source or reference
E. coli strains	
NEB5a	NEB
DH5aMCR	Life Technologies
BL21	Life Technologies
S17-1	(1)
HB101	(2, 3)
F. johnsoniae strains	
UW101	(4, 5)
UW101 $\Delta por X_{FJ}$	This study
UW101 <i>AgldKLMNO</i>	This study
P. gingivalis strains	
W50 (wild type)	ATCC
$\Delta porX_{PG}$:Erm (Em ^r) in strain W50	This study
$\Delta porN$ in strain W83	(6)
Plasmids	
pET28a (Kan ^R)	Novagen
pRK2013 (IncP Tra ⁺ Km ^r)	(3)
pYT313 (Ap ^r (Em) ^r)	(7)
pYT377 (1.9 kb region upstream of <i>gldK</i> cloned in pYT313)	This study
pYT379 (3 kb region downstream of <i>gldO</i> cloned in pYT377)	This study
pIM03 (2 kb region upstream of <i>porX_{FJ}</i> cloned in pYT313)	This study
pIM06 (1.9 kb region downstream of $porX_{FJ}$ cloned in pIM03)	This study
$pCP23 (Ap^r (Tc)^r)$	(8)
pIM10 (2.0 kb region spanning <i>porX_{FJ}</i> cloned in pCP23)	This study
pUC19 (Amp ^R)	NEB
pT-COW (Amp ^R and Tc ^R in <i>E. coli</i> ; Tc ^R in <i>P</i> .	(1)
gingivalis; Mob ⁺ Rep ⁺)	
pVA2198 (Em ^r and Sp ^r)	(2)
pTCOW-groES-porX _{PG}	This study
pTCOW-groES- <i>porX</i> _{FJ}	This study
pTCOW-groES-porX _{PG} D58A	This study
pTCOW-groES-porX _{PG} T272V	This study
pTCOW-groES-porX _{PG} D58A/T272V	This study
pTCOW-groES- <i>porX_{PG}</i> D361A/H365A	This study

pTCOW-groES- <i>porX_{PG}</i> S385A/S389E	This study
pTCOW-groES- <i>porX_{PG}</i> L117E	This study
pTCOW-groES- <i>porX_{PG}</i> REC (1-125)	This study
pTCOW-groES- <i>porX_{PG}</i> REC+THB (1-207)	This study
pTCOW-groES- <i>porX_{PG}</i> THB+APS (130-end)	This study
pET28a-porX _{FJ}	This study
pET28a-porX _{FJ} D54A	This study
pET28a- <i>porX_{FJ}</i> T271V	This study
pET28a- <i>porX_{FJ}</i> D54A/T271V	This study
pET28a-porX _{FJ} D360A/H364A	This study
pET28a- <i>porX_{FJ}</i> S384A/S388E	This study
pET28a-porX _{FJ} L113E	This study
pET28a-porX _{FJ} K104A	This study
pET28a- <i>porX_{FJ}</i> REC (1-121)	This study
pET28a-porX _{FJ} REC+THB (1-208)	This study
pET28a-porX _{FJ} THB+APS (126-end)	This study

	PorX _{FJ} -SO ₄	PorX _{FJ} -Br	PorX _{FJ} -	PorX _{FJ} -Zn	PorX _{FJ} -
		(also used for	BeF ₃		T271V
		phasing)			
PDB code	8TEF	8TED	8TFF	8TFM	8THP
Crystallization	0.2 M	0.16 M calcium	0.16 M	0.16 M	0.16 M
condition	tion Lithium		calcium	calcium	calcium
	sulfate, 0.1 M	sodium	acetate,	acetate,	acetate,
	Tris pH 8.1	cacodylate pH	0.08 M	0.08 M	0.08 M
	and 35%	6.5, 14.4%	sodium	sodium	sodium
	polyethylene	polyethylene	cacodylate	cacodylate	cacodylate
	glycol 400	glycol 8000 and	pH 6.5,	pH 6.5,	pH 6.14,
		20% glycerol	14.4%	14.4%	14.4%
		(0.5 M NaBr in	polyethyle	polyethylen	polyethyle
		the drop)	ne glycol	e glycol	ne glycol
			8000 and	8000, 25%	8K, 20%
			20%	glycerol	Glycerol
			glycerol	and 0.2 mM	
			(suppleme	Zinc	
			nted with	chloride	
			166 µM		
			beryllium		
			sulphate,		
			1.162 mM		
			Sodium		
			fluoride		
			and 83 µM		
			Manganes		
			e chloride		
			in the		
			drop)		

<u>**Table S3**</u> - Crystallization conditions and data collection parameters

Beamline	ALS502,	CMCF-BM,	ALS501,	CMCF-ID,	CMCF-	
	Lawrence	Canadian Light	Lawrence	Canadian	ID,	
	Berkeley	Source (CLS)	Berkeley	Light	Canadian	
	National		National	Source	Light	
	Laboratory		Laborator	(CLS)	Source	
	Advanced		у		(CLS)	
	Light Source		Advanced			
	(ALS)		Light			
			Source			
			(ALS)			
Detector	Pilatus3 6M	Pilatus3 6M 25	Pilatus3	Eiger X 9M	Eiger X	
	25 Hz	Hz	2M 25 Hz		9M	
Detector distance	400	347	400	152.3	223.2	
(mm)						
Wavelength (Å)	0.9823	0.919 (peak)	0.9774	1.283	0.953	
		0.953 (remote)				
Oscillation range	0.25	0.5 (peak)	0.25	0.2	0.2	
(°)		0.5 (remote)				
Time of exposure	0.25	2 (peak)	0.5	0.02	0.02	
per image (s)		1 (remote)				
Number of images	1440	800 (peak)	720	1800	900	
		360 (remote)				

		PorX _{FJ} -Br			
		(also used			PorX _{FJ} -
	PorX _{FJ} -SO ₄	for phasing)	PorX _{FJ} -BeF ₃	PorX _{FJ} -Zn	T271V
PDB code	8TEF	8TED	8TFF	8TFM	8THP
Space group	P21	P212121	P212121	P212121	P212121
Number of					
molecules per					
asymmetric unit	4	2	2	2	2
Cell dimensions					
	133.52, 57.52,	84.70, 97.85,	84.32, 97.52,	86.87, 97.06,	86.09, 97.98,
a, b, c (Å)	149.14	133.20	131.26	132.04	130.94
	90.00, 98.39,	90.00, 90.00,	90.00, 90.00,	90.00, 90.00,	90.00, 90.00,
α, β, γ (°)	90.00	90.00	90.00	90.00	90.00
	46.00-2.85	46.16-2.10	50.00-2.34	50-2.72	50-2.6(2.64-
Resolution (Å)	(2.90-2.85)	(2.15-2.10)	(2.38-2.34)	(2.77-2.72)	2.6)
Rsym or Rmerge					
(%)	10.30 (32.50)	8.40 (52.70)	10.80 (42.20)	11.3 (82.9)	9.6 (36.7)
R meas (%)	11.90 (37.90)	9.90 (62.10)	11.80 (46.00)	11.8 (87.0)	10.8 (40.9)
Rpim (%)	5.80 (19.10)	5.20 (32.60)	4.60 (18.20)	3.3 (25.7)	4.70(17.9)
Ι/σΙ	12.20 (3.85)	13.70 (3.50)	17.31 (3.25)	24.11(2.22)	18.72 (3.19)
Completeness					, , , , , , , , , , , , , , , , , , ,
(%)	100 (100)	99.60 (99.10)	100(100)	99.8(97.7)	99.9 (99.8)
Redundancy	4	6.7	6.6	12.7	5
				0.998	0.990
CC1/2	0.984 (0.891)	0.998 (0.920)	0.980 (0.910)	(0.901)	(0.865)
				0.999	0.998
CC*	0.996 (0.971)	0.999 (0.978)	0.996 (0.978)	(0.974)	(0.963)
Wavelength (Å)	0.982	0.953	0.977	1.283	0.953
Refinement					
Resolution (Å)	45.40-2.85	42.40-2.10	48.81-2.34	48.58-2.72	45.95-2.60
No. reflections					
(unique)	53000	65014	46485	31924	34201
Rwork / Rfree					
(%)	17.67/22.16	17.86/22.56	16.51/23.10	20.43/26.11	24.97/30.46
No. of atoms					
Protein	16797	8481	8476	8282	8271
Ligand/ion	59	33	27	18	10
Water	56	686	381	26	44

<u>**Table S4**</u> - Data refinement statistics of the crystals. Statistic values present in parentheses correspond to the highest resolution shell data.

B-factors					
Protein	51.269	33.187	38.540	43.062	52.464
Ligand/ion	66.654	49.76	48.698	82.374	41.502
Water	27.765	37.107	35.647	50.907	25.928
MolProbity score	1.40	1.32	1.39	1.84	1.65
Rotamer outliers					
(%)	1.92	1.37	1.69	3.04	2.07
Ramachandran					
favoured (%)	97.78	97.53	97.35	96.98	98.08
Ramachandran					
allowed (%)	2.22	2.47	2.65	2.92	1.92
Ramachandran					
outliers	0	0	0	0.1	0
R.m.s.					
deviations					
Bond lengths (Å)	0.0056	0.0084	0.0075	0.0062	0.0057
Bond angles (°)	1.238	1.484	1.378	1.329	1.067

<u>**Table S5**</u> – Intact protein LC-MS analyses of $PorX_{FJ}$ variants in the absence or presence of phosphorylation *in vitro*. Expected molecular weights for protein variants (theoretical averages) vs. observed peaks before or after AcP/Mg²⁺ reaction (+ 79.9 single phosphorylation; + 159.8 dual phosphorylation; - 18.0 dehydration; + 61.9 combined dehydration with single phosphorylation).

	Non-phosphorylated (-AcP)		Phosphorylated (+AcP)								
			Single phosphorylation		Dual phosphorylation		Cyclization (dehydration)		Cyclization (dehydration) + single phosphorylation		
	Expected	Observed	Expected (+79.9)	Observed	Expected (+159.8)	Observed	Expected (-18.0)	Observed	Expected (-18.0+79.9)	Observed	
WT	60449.9	60449.1	60529.8	60528.4 (+79.3)	60609.7	60609.7 (+160.6)	60431.9	60430.9 (-18.2)	60511.8	60511.5	
D54A	60405.9	60405.2	60485.8	60485.5 (+80.3)	_	_	-	-	-	-	
T271V	60447.9	60447.4	60527.8	60527.8 (+80.4)	_	_	60429.9	60429.3 (-18.1)	-	-	
D54A/ T271V	60403.9	60403.5	-	_	_	-	-	-	_	_	
D360A/ H364A	60339.8	60338.9	60419.7	60419.4 (+80.5)	-	-	60321.8	60321.2 (-17.7)	-	-	
L113E	60465.8	60465.1 60545.4 (at T271)*	60545.7	60545.3 (+80.2)	60625.6	60626.3 (+161.2)	60447.8	60447.2 (-17.9)	60527.7	60527.0	
S384A/ S388E	60475.9	60475.9	60555.8	60555.5 (+79.6)	60635.7	60636.7 (+160.8)	60457.9	60457.7 (-18.2)	60537.8	60537.4	
K104A	60392.8	60392.2	60472.2	60472.8 (+80.6)	_	-	-	-	_	-	
REC	14203.4	14202.8	14283.3	14282.7 (+79.9)	_	_	14185.4	14185.1 (-17.7)	_	_	
REC+THB	24762.4	24761.7	24842.3	24841.9 (+80.2)	-	_	24744.4	24743.6 (-18.1)	-	_	
THB+APS	46208.0	46207.0	46287.9	46286.9 (+79.9)	_	_	_	_	_	_	

*Note: Peak also observed at 60545.4 for L113E variant was likely due to pre-existing phosphorylation at T271 prior to incubation with acetyl phosphate (AcP).

Fig. S1 - **PorX**_{FJ} structure in two crystal forms. Asymmetric unit composition of (A) primitive orthorhombic and (B) primitive monoclinic crystal forms. (C) Superposition of the three dimers shown in panels A and B. Overlay of the six monomers shown in A and B aligned according to their (D) alkaline phosphatase superfamily (APS) domain and (E) receiver (REC) domain.

<u>Fig. S2</u> - Zinc binding to PorX_{FJ} by isothermal titration calorimetry. (A) Binding isotherm of zinc titrated into PorX_{FJ} reveals two zinc sites stoichometry with N₁= 1.09 ± 0.04 sites, K_{D1}=180.83 ± 14.93 nM, Δ H₁=-2.374E4 ± 1.28E6 cal/mol, Δ S₁=-50.2 cal/mol/deg and N₂=1.19 ± 0.04 sites, K_{D2}= 59.17 ± 13.81 nM, Δ H₂=2.744E4 ± 1.26E6 cal/mol, Δ S₂=124 cal/mol/deg. (B) Buffer titrated into PorX_{FJ} as a control.

Fig. S3 – The crystal structure of PorX_{FJ} adopts the active phosphorylated-like conformation. (**A**) Superposition of the primitive orthorhombic crystal form of PorX_{FJ} with the active (PDB ID:1FQW) and inactive (PDB ID: 2CHE) conformations of the CheY response regulator reveal an active-like conformation of PorX_{FJ}, as per the positioning of the conserved Thr-Tyr pair, marked by arrows. Inactive and active conformations of CheY are colored in tan and pink, while chains A and B of PorX_{FJ} dimer are colored in blue and grey, respectively. Specific residue labels are according to PorX_{FJ} sequence. (**B**) Electron density of phosphate analogs, BeF₃ and SO_{4²⁻}, at the REC domain phosphorylation site in the different crystal forms of PorX_{FJ}. Orange, green and red spheres represent Ca²⁺, Mg²⁺ and H₂O respectively.

	Receiver domain							
	β1	η1	α1	β2		α2	β3	
POTXEJ	β1	η1	α1	β2	2	α2	β3	
PorXFJ	į.	10 10	20 20	2 3 ọ	→ 2	40 40	5 <u>0</u>	•
PorXFJ PorXPG	MDKIRILW MEKNMRPYTVLW	VDDEIDLL ADDEIDLL	KPHILFLE <mark>H</mark> KPHILFLE(K K N Y E V I	TSN <mark>NG</mark> PVLSG	L DAI ALFEE N DAI EAVON	EN <mark>FDIV</mark> I	FLDEN
								*
PorXFJ	α3	0000	β4	000	α 4) 0 0 0 0	β5	0000	α5
PorXFJ	α3 0 0 0 0 0 0 0 0	0000	β4	00000	α4 00000	β5	0000	α5 00000
	60	7 <u>0</u>	8 <u>0</u>	эö		100	110	
PorXFJ PorXPG	MPGMSGLETLSE MPGIGGLDALQK	MKEKKSAI <mark>IKE</mark> L <mark>K</mark> PYT	PMIMITKSE P <mark>VV</mark> MITKSE	CEEYIME CEEHIMI	EAIGS Q <mark>AIG</mark> G	KIADYLIKP KIADYLIKP	VNPNQI VNPNQL	LLSLK LLSLK
	Three-helix bundle domain *							
PorXFJ	معمعهمه عمه	eeeeee	مععمعمه	و و	معععه	ما	20	eeee
PorXFJ	معمقمعه معم	<u>α6</u> 22222222	معمعمعم	e e	معمعه	α7 22222222	lee	ععع
PorXFJ	120 1 KNLDDSBLTTEK	30 TTLDYOKE	140 RKTSMELA	150 MVN <mark>SVE</mark>	DWVEL	160 YKKLLEWEI	I70 KIEDIN	
PorXPG	KNLQQHSIISET	TNTNYRQE	FVQLGTQMS	GKLSFE	EWKEL	YRRIVFWEI	ELEQA.I	RQMG
	α8		n2		n3	α9 α10		<u> 66</u>
PorXFJ		مممعموم	e eeee		2222 n3			B6
PorXFJ	180 1	00000000	200	210	معقف	220	230	
PorXFJ	EILESQKVEANS	Q <mark>F</mark> G <mark>KYI</mark> ER	NYEDWFAPH	KAD <mark>KP</mark> IÇ	O <mark>S</mark> HN LF	KELVVPEIK	KKDKPI	L <mark>F</mark> VV I
PorXPG	ELLEMQKQEANR	L <mark>F</mark> A <u>RFV</u> TQ	NYREWIAKI	PDT <mark>RP</mark> TM	I <mark>S</mark> PD LF	KQKVFPLLD	NG.EK <mark>V</mark> I	FILI
_	α11		β7		α12	2	α13	
POTXEJ	$\alpha 11$		β7	لا	α12		α13	
PorXFJ	240 <u>2</u>	50 50	260	270		280 280	290	
PorXFJ PorXPG	DNLRYDQWKSFE DNFRODOWESVK	TVI <mark>S</mark> NY <mark>y</mark> k: Smlsefyt	LEKEVPYFS FEED, MYLS	SILPTAT	QYARN	AIFSGLMPI	DMEKQFI OTEKMFI	PQY <mark>W</mark> K DLWV
				*	7			
PorXFJ	٩	<u>α14</u> 00000000	ee -	β8	معع	α15 η4	e -	β9
PorXFJ	٥	α14 000000000	<u> </u>	β8	0000	α15 η4	· -	β9
DenVET	300 3		320 	330		340	350	7 (1) 1 7 1 7 1 7
PorXPG	DEESEE <mark>GKNL</mark> NE	E P M I R T L I	E <mark>R</mark> YRKHYSE	SYNKVY	ETKF G	ERLLGQIRS	LSQNQLI	NVIVI L
PorXFJ	a* 200	000000	222222		ععد	2222222	B10	
PorXFJ	2000000000			200000	عقد		410	•
PorXFJ	NFVDMLSHAKTE	ME <mark>VVK<mark>ela</mark></mark>	SDDK <mark>AYRSI</mark>	LTLSWFK	N <mark>S</mark> PLL	EIIQQAQLI	GFKLIL	TTDHG
PorXPG	NFVDMMSHARTD	SKMIR <mark>ELA</mark>	SNEA <mark>AYRSI</mark>	LTK <mark>SWFK</mark>	Η <mark>S</mark> TTY	NLFR <mark>SI</mark> AEM	GYKVVL	FTDHG
	β11 β12		β13	~	β14	η5	β1	5
PorXFJ	β11 β12		β13		β14	<u>2222</u> η5	β1	5
PorXFJ	420 4	30	440	450		460	470	-
PorXFJ	TINVKNPSKVVG	DKNTSLNL	RYKTGRSL1		YVVKE	PKTIGLPAI	NMSSSF:	IFAKN
FOLVER			NTA I GANL		EBLED			E I K E
PorVET	β16	α19	β17 ο	x20 β	18			
POINED	β16	α19 β	B17 0	x20 β	18			
POTXEJ	480 4	90	500	510				
PorXFJ PorXPG	DFFLAYVNNYNH DDFFAYPNNYNY	YV <mark>SYY</mark> KNT YVOYY <mark>R</mark> NT	Y <mark>QHGGISLE</mark> FQHGGISLE	EEMIIP EEMLVPV	LVFNP ITMQP	K K		

Fig. S4 - **Multiple sequence alignment of PorX**_{FJ} and **PorX**_{PG}. The alignment was prepared using Clustal Omega (9) and ESPript (10). The receiver, three-helix bundle and alkaline phosphatase domains are labelled in cyan, yellow and green respectively. Reference amino acid numbering and secondary structure prediction is according to the PorX_{FJ} sequence. The secondary structure alignment in blue and light green correspond to the alternate chain conformations of the primitive orthorhombic dimeric structure with α^* indicating the area of conformational difference between the two chains. Amino acid residues marked with a star correspond to functionally significant residues whose mutations are discussed in this manuscript.

<u>Fig. S5</u> – Electron density of divalent cations and phosphate analogs in the APS domain of (A) PorX_{FJ}-T271V crystal form (B) PorX_{FJ}-SO₄²⁻ primitive monoclinic crystal form and (C) PorX_{FJ}-BeF₃ primitive orthorhombic crystal form.

Fig. S6 – The structures of PorX_{FJ} and PorX_{PG} (PDB code:7PVK) exhibit a highly conserved fold. (A) A superimposition of a representative monomer and a representative dimeric assembly. (B) Superimposition of the active site of the APS domain. Ligand analogs BeF₃ and sulphate ions observed in the PorX_{FJ} structures directly overlap or are situated in close proximity to the phosphoguanylyl- $(3' \rightarrow 5')$ -guanosine (pGpG) bound to PorX_{PG}.

Fig. S7 - Monophosphatase and sulphatase activities of $PorX_{FJ}$. Catalytic activities against *p*-nitrophenyl phosphate (*p*-NPP) and *p*-nitrophenyl sulphate (*p*-NPS) substates were recorded in the presence of zinc after three days.

Fig. S8 - Intact protein LC-MS analyses of PorX_{FJ} truncation variants in the absence or presence of phosphorylation *in vitro*. The blue and red spectra correspond to non-phosphorylated and phosphorylated versions of the protein, respectively. The acetyl phosphate (AcP) phosphodonor promotes the phosphorylation of Asp54 and/or Thr271 ("+1 Pi" label). Alternatively, AcP was found to induce cyclization of Asp54 and Lys104, resulting in a dehydration reaction ("-1 H₂0" labels).

Fig. S9 - **Proposed phosphorylation mechanism by acetyl phosphate** *in vitro*. Reaction of active D54 with AcP can lead to (A) phosphorylation and/or (B) cyclization involving the formation of an internal peptide linkage between D54 and K104.

Fig. S10 - **Expression levels of PorX in** *P. gingivalis*. (A) point mutations and (B) truncation variants. Whole cell lysates underwent SDS-PAGE separation followed by Western blot analysis. A rabbit polyclonal anti-PorXPG primary antibody and a polyclonal goat anti-rabbit horseradish peroxidase-conjugated secondary antibody were employed to detect PorX (~61 kDa). The biotinylated protein MmdC (~15 kDa) was used as a loading control (6) and was detected using horseradish peroxidase conjugated Streptavidin.

The anti-PorX_{PG} did not recognize PorX_{FJ} due to sequence variations that affect epitope recognition. Among the truncation variants, PorXPG-REC (~14 kDa) and PorX_{PG}-REC+THB (~24 kDa) were not detected, while the PorX_{PG}-THB+APS variant (~46 kDa) was identified by the anti-PorX_{PG}. This selective recognition of the APS domain truncation variant by the anti-PorX_{PG} antibody may be attributed to the presence of recognizable epitopes exclusively within the APS domain. Nonetheless, the possibility of low expression levels or the instability and subsequent degradation of the PorX_{PG}-REC+THB truncation variants cannot be excluded.

Detailed methods:

Isothermal titration calorimetry (ITC)

Binding affinity measurements were performed at 20°C using an isothermal titration calorimeter (Microcal iTC200, Malvern). 50 μ M PorX_{FJ} was diluted in buffer E and placed in the sample cell. Buffer E supplemented with 750 μ M zinc chloride was placed in the syringe and titrated into the protein samples. Each titration was 10 μ l in volume and lasted for 10.3 sec followed by an equilibration period of 240 s.

Inductively coupled plasma mass spectrometry (ICP-MS)

PorX_{FJ} variants and method blanks, were digested in PTFE vessels using trace metal grade concentrated nitric acid at room temperature overnight, followed by 2 h at 90°C. Digestates were diluted with deionized water to 2 % w/w nitric acid and the concentrations of Mg, Mn, Co, Zn, and Cd were determined by ICP-MS. A Thermo X- Series 2 ICP-MS with collision cell technology (CCT) and chilled spray chamber was used in kinetic energy discrimination (KED) mode with 8 % hydrogen in helium to reduce interferences. The protein-divalent metal cation stoichiometries were determined by dividing the total number of the protein and each divalent metal cation number of moles.

Phosphodiesterase activity assay in vitro

PorX_{FJ} variants (2.5 μ M wild-type or mutants) in buffer G (50 mM Tris pH 8, 150 mM sodium chloride) were screened for their phosphodiesterase activity. Similarly, the phosphorylated variants were incubated in buffer G supplemented with 20 mM AcP and 5 mM MgCl₂ for 1 h at 37°C prior to measurements. For metal screening, wild-type PorX_{FJ} was incubated in buffer G alone or supplemented with 0.5 mM ZnCl₂, CuCl₂, MnCl₂, MgCl₂, or CaCl₂. For activity pH screening, phosphorylated and non-phosphorylated PorX_{FJ} were incubated in 150 mM NaCl, 3 μ M ZnCl₂, supplemented with 50 mM acetic acid (pH 6), 50 mM Tris (pH 7-9) or CAPS buffer (10-11) for 30 min at 37°C. The catalysis of bis(4-nitrophenyl) phosphate (bis-*p*NPP), *p*-nitrophenyl phosphate (*p*NPP) or *p*-nitrophenyl sulphate (*p*NPS) (0-10 mM) and the formation of *p*-nitrophenol product were monitored at 405 nm on a Synergy H1 microplate reader (BioTek). The bis-*p*NPP reaction was monitored for 2 h at 37°C, while the *p*NPP and *p*NPS reactions were monitored for 3 days at 37°C. All assays were performed in quadruplicates. However, the

absorbance measurements of the T271V mutant could not be obtained for bis-pNPP concentrations exceeding 5 mM.

Protein phosphorylation assay in vitro

For intact protein mass spectrometry, purified $PorX_{FJ}$ variants were incubated at 100 μ M in buffer F (25 mM Tris pH 7.5, 10 mM MgCl₂, 1 mM MnCl₂, 2 mM dithiothreitol, 5 mM AcP, 0.01 mM sodium orthovanadate). After 20 min at 37°C (or 1h at room temperature for PorX_{FJ} D54A/T271V due to precipitation issues), the reactions were quenched by flash-freezing in liquid nitrogen.

Protein dimerization assay in vitro

PorX_{FJ} variants (100 μ M wildtype or mutants) were incubated in buffer E supplemented with either 300 μ M ZnCl₂ or 20 mM acetyl phosphate (AcP) and 5 mM MgCl₂ for 1 h at room temperature. The mixture was then subjected to size exclusion chromatography (Superdex 200 increase 10/300 GL or Superdex 75 increase 10/300 GL), pre-equilibrated with buffer E.

Functional characterization in F. johnsoniae

Bacterial strains, plasmids, and growth conditions

F. johnsoniae UW101 (4, 5) was the wild-type strain used in this study. *F. johnsoniae* strains were grown at 25° in CYE liquid (11) or TYES (12). For solid media, 15 g agar was added per liter. *E. coli* strains were grown in Luria-Bertani medium (LB) at 37°C (13). For most experiments, *F. johnsoniae* strains were propagated from -80 °C glycerol stocks on CYE agar and incubated for 48-72 h at 25°C before they were used as starter cultures. All primers and plasmids used in this study are listed in Table S1 and S2, respectively. Antibiotics were used at the following concentrations when needed: ampicillin, 100 µg/ml; erythromycin, 100 µg/ml; kanamycin, 35 µg/ml; and tetracycline, 20 µg/ml unless indicated otherwise.

Construction of the deletion mutants in F. johnsoniae

For deletion of $porX_{FJ}$ (Fjoh_2906), a 2.0-kbp fragment spanning part of Fjoh_2905 and the first 105 bp of $porX_{FJ}$ was amplified using primers 0076 (introducing a BamHI site) and 0077 (introducing an XbaI site), and the Phusion DNA polymerase (Thermo Fisher Scientific, Waltham, MA). The fragment was digested with BamHI and XbaI and ligated into pYT313 (14), which had been digested with the same enzymes, to generate pIM03. A 1.9-kbp fragment spanning Fjoh_2907, Fjoh_2908, and the last 45 bp of *porXFJ* was amplified using primers 0167 (introducing an XbaI site) and 0079 (introducing a SalI site). The fragment was cloned into XbaI and SalI sites of pIM03 to generate the deletion construct pIM06. Plasmid pIM06 was introduced into *F*. *johnsoniae* UW101 by triparental conjugation as previously described (15). An erythromycinresistant clone was streaked for isolation, and grown overnight in CYE liquid with shaking at 25°C in the absence of antibiotics. These cells were plated on CYE agar containing 5% sucrose and incubated at 25°C for 2-3 days. Sucrose-resistant colonies were streaked for isolation and screened by PCR using primers 0086 and 0087, which flank *porXFJ*, to identify the deletion mutant CJ4057. The same procedure was used to delete *gldKLMNO* using the plasmids and primers listed in Table S1 and Table S2, respectively.

Complementation of the porX deletion mutant

Primers 0086 (introducing a BamHI site) and 0087 (introducing an XbaI site) were used to amplify a 2009-bp fragment spanning *porX* with its putative promoter. The fragment was digested with BamHI and XbaI and ligated into pCP23 (8), which had been digested with the same enzymes, to generate pIM10. The plasmid was transferred to the *porX* mutant by triparental conjugation. Tetracycline was used for screening of the complemented colonies.

Analysis of cell motility

Cells of the wild type *F. johnsoniae* and *porX_{FJ}* deletion mutant were grown for 17 h at 25°C in motility medium (16) without shaking. Tunnel slides were constructed using double stick tape, glass microscope slides, and glass coverslips, as previously described (17). Ten microliters of cultures were introduced into the tunnel slides, incubated for 5 min, and observed for motility using an Olympus CX41 phase-contrast microscope at room temperature (22°C). Images were recorded using a Moment CMOS camera and analyzed using Ocular (Teledyne Photometrics, Tuscon, AZ). Rainbow traces of cell movements were made using Fiji (https://imagej.net/) and the macro–Color FootPrint (18).

Growth of F. johnsoniae on chitin

Chitin powder (practical grade from shrimp shells; Sigma C7170) was prepared as a 1% slurry essentially as described previously (19) and used as a stock solution to prepare the chitin media. Cells of *F. johnsoniae* were streaked on fresh TYES agar and incubated at 25°C for 2 d. Cells were scraped off the plates, suspended in 1 ml Stanier medium (20), pelleted by centrifugation at 4,200 × g for 3 min to remove the residual TYES medium, and resuspended in Stanier medium to a concentration (OD_{600}) of 1.0. Then 0.1 ml of the inoculation cell suspension was introduced into 50 ml of Stanier medium supplemented with 0.05% (w/v) chitin in 250-ml flasks, and incubated at 25°C with shaking (200 rpm). 2.5 µg/ml of tetracycline was added for growth of the complemented strain. At various times, 1 ml samples were removed. Cells and residual chitin were collected by centrifugation at 17,000 × g for 10 min. Growth was assessed by determining the total cellular protein in the pellets using the Bradford assay as previously described (21).

References:

- 1. C. Matsumoto-Mashimo, A. M. Guerout, D. Mazel, A new family of conditional replicating plasmids and their cognate Escherichia coli host strains. *Res Microbiol* **155** (2004).
- 2. F. Bolivar, K. Backman, Plasmids of Escherichia coli as cloning vectors. *Methods Enzymol* **68** (1979).
- 3. D. H. Figurski, D. R. Helinski, Replication of an origin-containing derivative of plasmid RK2 dependent on a plasmid function provided in trans. *Proc Natl Acad Sci U S A* **76** (1979).
- 4. M. J. McBride, *et al.*, Novel features of the polysaccharide-digesting gliding bacterium Flavobacterium johnsoniae as revealed by genome sequence analysis. *Appl Environ Microbiol* **75** (2009).
- 5. M. J. McBride, T. F. Braun, GldI Is a Lipoprotein that Is Required for Flavobacterium johnsoniae Gliding Motility and Chitin Utilization. *J Bacteriol* **186** (2004).
- 6. A. M. Lasica, *et al.*, Structural and functional probing of PorZ, an essential bacterial surface component of the type-IX secretion system of human oral-microbiomic Porphyromonas gingivalis. *Sci Rep* **6**, 1–22 (2016).
- Y. Zhu, *et al.*, Genetic analyses unravel the crucial role of a horizontally acquired alginate lyase for brown algal biomass degradation by Zobellia galactanivorans. *Environ Microbiol* 19, 2164–2181 (2017).

- 8. S. Agarwal, D. W. Hunnicutt, M. J. Mcbride, Cloning and characterization of the Flavobacterium johnsoniae (Cytophaga johnsonae) gliding motility gene, gldA. *Proc Natl Acad Sci U S A* **94**, 12139–12144 (1997).
- 9. F. Madeira, *et al.*, Search and sequence analysis tools services from EMBL-EBI in 2022. *Nucleic Acids Res* **50**, gkac240–gkac240 (2022).
- 10. X. Robert, P. Gouet, Deciphering key features in protein structures with the new ENDscript server. *Nucleic Acids Res* **42**, W320–W324 (2014).
- 11. M. J. Mcbride, M. J. Kempf, Development of techniques for the genetic manipulation of the gliding bacterium Cytophaga johnsonae. *J Bacteriol* **178**, 583–590 (1996).
- 12. K. D. Cain, B. R. LaFrentz, Laboratory Maintenance of Flavobacterium psychrophilum and Flavobacterium columnare. *Curr Protoc Microbiol* **6** (2007).
- 13. J. Sambrook, E. F. Fritsch, T. Maniatis, *In: Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York.* (1989).
- Y. Zhu, *et al.*, Genetic analyses unravel the crucial role of a horizontally acquired alginate lyase for brown algal biomass degradation by Zobellia galactanivorans. *Environ Microbiol* **19** (2017).
- 15. D. W. Hunnicutt, M. J. McBride, Cloning and characterization of the Flavobacterium johnsoniae gliding motility genes gldD and gldE. *J Bacteriol* **183** (2001).
- 16. J. Liu, M. J. McBride, S. Subramaniam, Cell surface filaments of the gliding bacterium Flavobacterium johnsoniae revealed by cryo-electron tomography. *J Bacteriol* **189** (2007).
- A. Shrivastava, R. G. Rhodes, S. Pochiraju, D. Nakane, M. J. McBride, Flavobacterium johnsoniae RemA is a mobile cell surface lectin involved in gliding. *J Bacteriol* 194 (2012).
- 18. D. Nakane, K. Sato, H. Wada, M. J. McBride, K. Nakayama, Helical flow of surface protein required for bacterial gliding motility. *Proc Natl Acad Sci U S A* (2013). https://doi.org/10.1073/pnas.1219753110.
- 19. M. Dworkin, S. Falkow, E. Rosenberg, K.-H. Schleifer, E. Stackebrandt, *The Prokaryotes* A Handbook on the Biology of Bacteria (Third Edition Volume 5: Proteobacteria: Alpha and Beta Subclasses) (2006).
- 20. R. Y. Stanier, The Cytophaga Group: A Contribution To The Biology Of Myxobacteria. *Bacteriol Rev* 6 (1942).

21. Y. Zhu, *et al.*, Outer membrane proteins related to SusC and SusD are not required for Cytophaga hutchinsonii cellulose utilization. *Appl Microbiol Biotechnol* **99** (2015).