SUPPORTING INFORMATION

Enhancing the Intrinsic Antiplasmodial Activity and Improving the Stability and Selectivity of a Tunable Peptide Scaffold Derived from Human Platelet Factor 4

Nicole Lawrence,^{1*} Thomas N.G. Handley,^{2,3} Simon J. de Veer,¹ Maxim D. Harding,¹ Alicja Andraszek,¹

Lachlan Hall,¹ Karoline D. Raven,⁴ Sandra Duffy,⁵ Vicky M. Avery,⁵ David J. Craik,¹ Lara R. Malins,⁶ Brendan

J. McMorran.4*

¹ Institute for Molecular Bioscience and Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, Queensland, 4072, Australia

² Department of Radiopharmaceutical Sciences, Cancer Imaging, The Peter MacCallum Cancer Centre, Victoria 3000, Australia

³ Sir Peter MacCallum Department of Oncology, The University of Melbourne, Victoria, 3010, Australia

⁴ The John Curtin School of Medical Research, College of Health and Medicine, Australian National University, Canberra, Australian Capital Territory, 2601, Australia

⁵ Discovery Biology, Centre for Cellular Phenomics, School of Environment and Science, Griffith University, Nathan, Queensland, 4111, Australia

⁶ Research School of Chemistry and Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, Australian National University, Canberra, Australian Capital Territory, 2601, Australia

* Correspondence:

n.lawrence@imb.uq.edu.au

brendan.mcmorran@anu.edu.au

Table S1. Amino Acid Sequence and Mass of PDIP Analogues ^a

			1		
Set ID	Peptide	1 2 3 4 1234567890123456789012345678901234567890	C-terminus	Exp mw ^b	Obs mw ^c
ref 1	1	CGGPLYKKIIKKLLESGGSGGAPLYKKIIKKLCES*	amide	3718.6	3718.5
ref ²	2	-GGPLYKKIIKKLLESGGSGGAPLYKKIIKKL <u>C</u> *	thioether, amide	3441.2	3440.9
ref ³	3	G CGGPLYKKIIKKLLESGGSGGAPLYKKIIKKLCES*	amide	3775.6	3775.2
Set 1. substitute charged or hydrophobic residues	4	GCGGPLYKKIIKKLLESGGSGGAPLYKKIIKKLC*	ΔES, amide	3559.4	3558.8
	5	GCGGPLY R KIIKKLLESGGSGGAPLY R KIIKKLC*	ΔES, amide	3615.5	3614.8
	6	GCGGPLYK R IIKKLLESGGSGGAPLYK R IIKKLC*	ΔES, amide	3615.5	3614.8
	7	GCGGPLYKKII r KLLESGGSGGAPLYKKII r KLC*	ΔES, amide	3615.5	3614.8
	8	GCGGPLYKKIIK R LLESGGSGGAPLYKKIIK R LC*	ΔES, amide	3615.5	3614.8
	9	GCGGPLY RR II RR LLESGGSGGAPLY RR II RR LC*	ΔES, amide	3783.5	3783.3
	10	GCGGPLYKKIIKKLL K SGGSGGAPLYKKIIKKLC*	ΔES, amide	3588.5	3588.0
	11	GCGGPLYKKII r KLL K SGGSGGAPLYKKII r KLC*	ΔES, amide	3614.5	3614.1
	12	GCGGPLYKKIIKKLL K SGGSGGAPLYKKIIKKLCES*	amide	3774.6	3774.0
	13	GCGGPLYKKIIKKLL K SGGSGGAPLYKKIIKKLC K S*	amide	3773.7	3773.0
	14	GCGGPLYKKI V KKLLESGGSGGAPLYKKI V KKLC*	ΔES, amide	3531.4	3530.8
	15	GCGGPLYKKIIKK H LE R GGSGGAPLYKKIIKK H C*	ΔES, amide	3676.5	3676.0
	16	GCGGPLWKKIIKKLLESGGSGGAPLWKKIIKKLC*	ΔES, amide	3605.5	3605.1
Set 2. modify C-terminus	17	GCGGPLYKKIIKKLLESGGSGGAPLYKKIIKKLC	ΔES, carboxyl	3560.4	3559.6
	18	GCG A PLYKKIIKKLLESGGSGGAPLYKKIIKKLCES*	amide	3789.6	3789.3
	19	GCG A PLYKKIIKKLLESGGSGGAPLYKKIIKKLCES	carboxyl	3790.6	3790.4
	20	-GCG A PLYKKIIKKLLESGGSGGAPLYKKIIKKLCES-	backbone cyclic	3772.6	3772.0
	21	-GCG A PLYKKIIKKLLESGGSGGAPLYKKIIKKLCE N -	backbone cyclic	3799.6	3799.2
	22	-GCG A PLYKKIIKKLLESGGSGGAPLYKKIIKKLC QN -	backbone cyclic	3798.7	3798.4
	23	-GCG A PLYKKIIKKLLESGGSGGAPLYKKIIKKLC KN -	backbone cyclic	3798.7	3798.0
	24	-GG A PLYKKIIKKLLESGGSGGAPLYKKIIKKLLESGGS-	backbone cyclic	3882.7	3881.8
	25	-GGAPLYKKIIKKLLENGGSGGAPLYKKIIKKLLENGGS-	backbone cyclic	3936.7	3935.6
combined	26	-GGAPLYKKIIKKLLKSGGSGGAPLYKKIIKKLLESGGS-	backbone cyclic	3881.7	3881.1
	27	-GGAPLYKKIIKRLLESGGSGGAPLYKKIIKRLLESGGS-	backbone cyclic	3938.7	3938.0

^a Peptides with Cys residues (shaded) contain a disulfide bond; C-terminal amide is shown as *; except peptide 2 (thioether macrocycle), peptides with C-terminal amide or carboxylic acid (carboxyl) are disulfide macrocycles; backbone cyclic peptides are indicated by – at N- and C-termini; changes to the amino acid sequence compared to peptide 3 are shown in bold

^b Expected (exp) mass was calculated as the average mass from contributing amino acids

 $^{\rm c}$ Observed (obs) mass was determined from +4 m/z ions from mass spectrometry. Deviation of less than 0.03% of expected mass was observed for all peptides

Figure S1. HPLC Trace of PDIP Analogues. Recorded using a Shimadzu LCMS-2020 instrument with a Phenomenex 5 μ m C18 / 300 Å / 150 x 2 mm LC column. Peptides (~ 0.1 mg) were dissolved in solvent A (0.1% formic acid) and running a 2% B/min gradient (solvent B, 90% acetonitrile, 0.1% formic acid), starting from 1% solvent A. Spectra were recorded at 214 nm and are shown relative to the highest signal for each peptide. * indicates a shoulder peak with identical mass; # indicates a residual impurity of \leq 5%.

Figure S2. Integration and MS Characterization of PDIP Analogues from Analytical HPLC Trace. HPLC trace and MS data were simultaneously recorded using a Shimadzu LCMS-2020 instrument with a Phenomenex 5 μ m C18 / 300 Å / 150 x 2 mm LC column. Analogues 10, 11, 21, 22 have an apparent shoulder on the LC trace (indicated by * with relative proportions shown for the main peak/ shoulder) that was determined to have identical mass according to m/z peaks from the MS trace. Analogues 17 and 24 have residual impurity comprising \leq 5% (indicated by #).

NP 001350281.1 2 [Homo sapiens]/97-110	APLY
XP_003932016.1_[Saimin_boliviensis_boliviensis]/89-102	APLY
XP_017719644.1_variant_[Rhinopithecus_bieti]/88-101	APLYK
XP_011938383.1_variant_[Cercocebus_atys]/88-101 XP_014994014.2_variant_X1_04acaca_mulatta/100-113	APLY
XP_014034014.2_variant_X1_INacaca_mulatta¥180-113 XP_001102971.2_variant_X2_IMacaca_mulatta¥188-101	APLY
XP_011732059.1_variant_[Macaca_nemestrina]/88-101	APLYM
XP_005555142.1_variant_[Macaca_fascicularis]/88-101	APLY
XP_007997065.2_variant_[Chlorocebus_sabaeus]/88-101 XP_011792514.1_variant_[Chlorocebus_sationaria_palliatus]/88-101	APLYM
XP_011762544.1_variant_[Colobus_angleensis_pariatusy66-101 XP_033070349.1_variant_lTrachvoithecus_francoisiV88-101	APLY
XP_011824353.1_variant_[Mandrillus_leucophaeus]/88-101	APLY
XP_023054276.1_variant_[Piliocolobus_tephrosceles]/88-101	APLY
XP_003898820.1_variant_X2_[Papio_anubis]/88-101	APLY
XP_031520354.1_variant_X1_(Papio_anubis)/88-101 XP_004596385.1_(Ophotona_princeps/V04.107	APLY
P02777.1 IBos taurusV72-85	RPLYP
JAA35227.1_variant_1_(Pan_troylodytes)/88-101	ALLY
JAA21862.1_variant_1_[Pan_troglodytes]/88-101	ALLY
XP_032020051.1_variant_[Hylobates_moloch]/88-101	ALLY
XP_001156146.1_variant_[Pan_troglodytes]/91-104	ALLY
XP_003032301.1_variant_[Pan_paniscusy51-104 XP_004038860.1_variant_[Gorilla_uorilla_uorilla_V91-104	ALLYF
NP_002611.1_variant_[Homo_sapiens]/91-104	ALLY
XP_002814906.2_variant_[Pongo_abelii]/88-101	ALLY
XP_003265786.1_variant_[Nomascus_leucogenys]/88-101	ALLY
XP_026365398.1_variant_[Ursus_arctos_horribilis]/92-105	AVLY
XP_004703430.1_[Echinops_telfain]/97-110 NR_001075631_1_[Comptelerup_ounioulue]/93-106	AAKYP
XP_012600760.1_Microcebus_murinus/95-108	ASBY
XP 004465380.1 [Dasypus novemcinctus]/95-108	DNVY
P30034.2_[Sus_scrofa]/72-85	NLLY
XP_013834226.1_[Sus_scrofa]/104-117	NLLYP
HC291032.1_variant_[Sus_scrofa]/1-14	NLLY
AF_004283630.1_[0/c/nus_0/ca/999-112 XP_007463282.1_[/inotes_vexillifer/99-112	NPLY
XP_028347323.1 X2 [Physeter catodon]/87-100	NPLYP
XP_007126320.1_X1_[Physeter_catodon]/99-112	NPLYE
XP_006059693.1_[Bubalus_bubalis]/105-118	NPLYP
NP_001094532.1_[Bos_taurus]/105-118	NPLY
XP_027400534.1_[Bos_indicus_x_Bos_taurus]/105-118	NPLYP
XP_010836481.1 [Bison_bison_bison]/105-118	NPLY
XP_013820172.1_[Capra_hircus]/104-117	NPLYE
P30035.1_[Ovis_aries]/72-85	NPLYP
XP_027826873.1_[Ovis_aries]/105-118	NPLYF
XP_007179899.1_[Balaenoptera_acutorostrata_scammoni]/100-113	NPLYP
XP_004383406.1_[Increcrus_manatus_latitostrsy95-108 KAE6132036.1_[Phyllostomus_discolor/89-102	APMY
XP 006729875.1 [Leptonychotes weddellii]93-106	APLY
XP_004766332.1_[Mustela_putorius_furo]/95-108	APVH
XP_031319111.1_pf4-like_[Camelus_dromedarius]/92-105	APLYK
XP_015101836.1_X2_[Vicugna_pacos]/92-105	APLY
XP_005212609.1_X1_[Vicugna_pacosy104-117 XP_015423895.1_X1_[Mvotis_davidiiV93-106	APLYP
XP 006770711.1 X2 [Myotis davidii]/92-105	APLY
×P_014402080.1_×1_[Myotis_brandtii]/93-106	APTYP
XP_005874883.1_X2_[Myotis_brandtii]/92-105	APTYP
XP_006871655.1_[Chrysochloris_asiatica]/92-105	APIY
XP_006993980.1_[Peromyscus_maniculatus_bairdiij/92-105 XP_032006172.1_[Hylobates_molocb/98-101	VOLVE
NP_001007730.1_[Rattus_norvegicus]/92-105	VPLY
XP_008841694.1_[Nannospalax_galili]/93-106	TPLH
XP_017535630.2_X1_[Manis_javanica]/93-106	TPLH
XP_017535631.2_X2_[Manis_javanica]/92-105	TPLH
XP_021066668.1_[NUS_Danan/93-106 XP_032772621.1_[Pattus_rattus/92-105	FRIVE
EGW00998.1 ICricetulus griseus V1-14	APLY
XP_031197956.1_[Mastomys_coucha]/92-105	APLY
XP_028608476.1_[Grammomys_surd aster]/92-105	APLYM
NP_064316.1_[Mus_musculus]/92-105	APLY
XP_021018338.1_[Mus_caroli]/92-105 XP_028469311.1_[Angioals_smobilities/92.105	APLYM
XP_00535953511.1_[Arvicola_amphibility/s2-105 XP_00535953511_[Microtus_ochmuaster/92-105	APLY
XP_006142984.1_[Tupaia_chinensis]/94-107	APRY
XP_007087003.1_[Panthera_tigris_altaica]/91-104	APLY
AAA72670.1_recombinant_platelet_factor_4_partial_[synthetic_construct]/60-73	APLYI
XP_004038862.2_[Gorilla_gorilla_gorilla]%7-100	APLY
XP_002814908.1_[Pongo_abelli j988-101 XP_001155980.1_[Pan_tmclodytes]/88-101	APLYP
XP_003265787.1 [Nomascus leucovenvs]/88-101	APLY
NP_002610.1_1_[Homo_sapiens]/88-101	APLY
XP_003832379.1_[Pan_paniscus]/88-101	APLY
JAA35228.1_[Pan_troylodytes]/91-104	APLYK
JAA21861.1_variant_1_[Pan_troglodytes]/91-104	APLY
XP_005608775.1_X2_[Equus_caballus]/92-105 XP_003364722.1_X1_[Equus_caballus]/92-106	APLYP
XP 025242278.1 X2 [Theropithecus gelada //88-101	APLY
XP_025242277.1_X1_[Theropithecus_gelada]/97-110	APLY
XP_017743288.1_X1_[Rhinopithecus_bieti]/93-106	APLY
XP_023054284.1_X1_[Piliocolobus_tephrosceles]/93-106	APLYM
XP_023054285.1_X2_[Piliocolobus_tephrosceles]/88-101 XR_023070344.1_X1_[Trackusithesus_fraction]/88-102	APLY
AF_035070344.1_A1_fracrypthecus_trancolsty93-106 XP_010357311_1_X2_IRbinopithecus_trancolsty90-101	APLY
XP 039324410.1 X2 [Saimin boliviensis boliviensis]/89-102	APLY
XP_011938389.1_[Cercocebus_atys]/88-101	APLY
XP_005555139.1_[Macaca_fascicularis]/88-101	APLY
EHH53726.1_[Macaca_fascicularis]/88-101	APLYP
XP_011824349.1_[Mandrillus_leucophaeus]/88-101	APLYP
AF_011162047.1_[Colobus_angolensis_paillatus]/88-101 XP_012319819_1_[Aotus_papermase_V99-102]	APLY
XP_007997069.1_[Chlorocebus_sabaeus]/88-101	APLY
XP_001102788.2_[Macaca_mulatta]/88-101	APLY
XP_002745778.1_[Callithrix_jacchus]/89-102	APLYP
XP_039324409.1_X1_[Saimiri_boliviensis_boliviensis]/1-14	APLYM

Figure S3. Alignment of Homologous sequences identified from a BLASTP⁴ search of a nonredundant protein database. The query sequence was the C-terminal 14 amino acids from human platelet factor 4 (row 1). Results included Platelet factor 4 sequence from a diverse range of mammals. Conserved amino acids are shown in blue, divergent amino acids are unshaded.

106K

E G D G

< L M H < L M H < L M H < L M H

VM

Figure S4. Comparative Structural and Cell Penetrating Characteristics of Analogues with Reduced Potency. Peptides: 2, truncated scaffold; 3, full length scaffold; 14, Ile to Val substitution; 15, Leu to His (2) and Ser to Arg (1) substitutions. (A) Spectra were collected for 50 μ M peptides in aqueous solution (aq, 100 mM NaF, 10 mM KH₂PO₄) adjusted to either pH 7.4 or pH 5.0, and 50% aqueous solution with 50% trifluoroethanol (aq/TFE). Spectral minima at 218–222 nm indicates α -helical structure; (B) Selective entry of peptides labelled with AlexaFluor-488 into infected red blood cells (iRBC) compared to uninfected RBC (uRBC). Data represent mean fluorescence intensity for 100,000 events (flow cytometry) following treatment of RBC with increasing concentrations of labelled peptides for 1 h, from a single experiment.

Figure S5. Dose Response Curves Showing *In Vitro* Growth Inhibition of *Plasmodium falciparum* 3D7 Parasites Treated with Serially Diluted Peptides. RPMI culture media was either supplemented with 5% human serum, 2.5 mg/mL Albumax II, Ser + Alb (red); or 5 mg/mL Albumax II, Alb (black). Parasites were incubated with serially diluted peptides in supplemented culture media for 72 h at 37 °C, 5% CO₂ and 5% O₂. Growth inhibition was examined using a high throughput microscopic assay where parasite counts were determined from DAPI-stained nuclei.⁵ Data points represent two independent experiments with standard error. Curves were fitted using GraphPad Prism v 10.0.2 [inhibitor] versus response with four parameters and constraining the top of the curve to 100%. IC₅₀ values determined from the curves are shown in Table 1.

Figure S6. Dose Response Curves Showing Hemolysis of Human RBCs Treated with Serially Diluted Peptides. RBCs at 0.25% hematocrit in phosphate buffered saline (PBS) were incubated with peptides for 1 h at 37 °C. RBC hemolysis was determined by measuring hemoglobin released into the culture supernatant compared to 0% (no treatment) and 100% (0.1% Triton-X 100) controls. Data represent the mean and standard error from two biological replicates. The minimal hemolytic concentration required to lyse 10% of RBCs (HC₁₀) was determined from the dose-response curves using Graphpad Prism v 10.0.2. HC₁₀ values are summarized in Table 1.

Figure S7. Relationship Between PDIP Analogues Binding to POPC/POPS (4:1) Bilayers and In Vitro Activity Against P.

falciparum. P/L ($RU_{peptide}/mw_{peptide}$)/(RU_{lipid}/mw_{lipid}) was determined from the end of the association phase (170 s) of SPR sensorgrams, for 16 µM PDIP analogues binding to POPC/POPS (4:1) bilayers; *P. falciparum* IC₅₀ values were determined from *in vitro* cultures of *P. falciparum* 3D7 assayed in RPMI culture media supplemented with 5 mg/mL Albumax II (serum free condition). Reference lines are shown for parent peptide **3**.

REFERENCES

(1) Lawrence, N.; Dennis, A. S. M.; Lehane, A. M.; Ehmann, A.; Harvey, P. J.; Benfield, A. H.; Cheneval, O.; Henriques, S. T.; Craik, D. J.; McMorran, B. J. Defense peptides engineered from human platelet factor 4 kill *Plasmodium* by selective membrane disruption. *Cell Chem. Biol.* **2018**, *25* (9), 1140-1150.

(2) Lawrence, N.; Philippe, G. J. B.; Harvey, P. J.; Condon, N. D.; Benfield, A. H.; Cheneval, O.; Craik, D. J.; Troeira Henriques, S. Cyclic peptide scaffold with ability to stabilize and deliver a helical cell-impermeable cargo across membranes of cultured cancer cells. *RSC Chem. Biol.* **2020**, *1* (5), 405-420.

(3) Palombi, I. R.; Lawrence, N.; White, A. M.; Gare, C. L.; Craik, D. J.; McMorran, B. J.; Malins, L. R. Development of antiplasmodial peptide–drug conjugates using a human protein-derived cell-penetrating peptide with selectivity for infected cells. *Bioconjug. Chem.* **2023**, *34* (6), 1105-1113.

(4) Johnson, M.; Zaretskaya, I.; Raytselis, Y.; Merezhuk, Y.; McGinnis, S.; Madden, T. L. NCBI BLAST: a better web interface. *Nucleic Acids Res.* **2008**, *36* (Web Server issue), W5-9.

(5) Duffy, S.; Avery, V. M. Development and optimization of a novel 384-well anti-malarial imaging assay validated for high-throughput screening. *Am. J. Trop. Med. Hyg.* **2012**, *86* (1), 84-92.