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Summary
Despite extensive global research into genetic predisposition for severe COVID-19, knowledge on the role of rare host genetic variants

and their relation to other risk factors remains limited. Here, 52 genes with prior etiological evidence were sequenced in 1,772 severe

COVID-19 cases and 5,347 population-based controls from Spain/Italy. Rare deleterious TLR7 variants were present in 2.4% of young

(<60 years) cases with no reported clinical risk factors (n ¼ 378), compared to 0.24% of controls (odds ratio [OR] ¼ 12.3, p ¼ 1.27 3

10�10). Incorporation of the results of either functional assays or protein modeling led to a pronounced increase in effect size

(ORmax¼ 46.5, p¼ 1.743 10�15). Association signals for the X-chromosomal gene TLR7were also detected in the female-only subgroup,

suggesting the existence of additional mechanisms beyond X-linked recessive inheritance in males. Additionally, supporting evidence

was generated for a contribution to severe COVID-19 of the previously implicated genes IFNAR2, IFIH1, and TBK1. Our results refine the

genetic contribution of rare TLR7 variants to severe COVID-19 and strengthen evidence for the etiological relevance of genes in the inter-

feron signaling pathway.
Introduction

The SARS-CoV-2 pandemic has posed major challenges to

societies and health care systems around the world. Clini-

cally, SARS-CoV-2 infection results in a broad spectrum of

outcomes, ranging from the complete absence of symp-

toms to severe illness and even death secondary to the

associated lung disease (severe COVID-19). Extensive

research has been conducted to elucidate the causes of
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these inter-individual differences, with the aim of inform-

ing drug development programs and designing strategies

for individual risk prediction in future viral pandemics.

This has demonstrated that the observed variability is ex-

plained in part by demographic and clinical risk factors.

Specifically, increased age; male sex; and comorbidities

like diabetes, coronary artery disease (CAD), high body

weight, and hypertension,1–3 as well as the presence of

auto-antibodies4 have been suggested to be associated
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with severe COVID-19. In addition, research has shown

robust associations between severe COVID-19 and com-

mon genetic variants in the host, which are typically char-

acterized by a minor allele frequency (MAF) of >1% and

modest effect sizes.5–10

Monogenic causes have been suggested in individuals

with severe COVID-19, as based on the identification of

highly penetrant pathogenic variants in TLR7 [OMIM:

300365], TBK1 [OMIM: 604834], and IFNAR1 [OMIM:

107450] in individual families.11–14 To date, only a limited

number of studies have performed systematic investiga-

tions of the role of rare genetic variants in large severe

COVID-19 cohorts.9,15,16 At the population level, the

most compelling evidence for this to date has been re-

ported for rare variants in the X chromosome gene

TLR7.17–22 The corresponding protein TLR7 (toll-like re-

ceptor 7) is a receptor for single-stranded RNA and is cen-

tral to SARS-CoV-2 host defense.23 The suggested pathome-

chanism of TLR7 rare variants in males with severe

COVID-19 is X-linked recessive loss of function.19 Since

TLR7 escapes X-inactivation,24 this hypothesis does not

explain recent findings of rare deleterious TLR7 variants

in females with severe COVID-19.15

Given prior epidemiological evidence for a contribution

of age, sex, and additional clinical risk factors to the risk for

severe COVID-19, the aim of the present study was to

empower the search for rare variant associations by per-

forming stratified analyses in two ethnically homogeneous

cohorts. For this purpose, 52 candidate genes for severe

COVID-19, including TLR7, were sequenced in 1,772 indi-

viduals from Spain and Italy who had been hospitalized for

COVID-19 and had required respiratory support, and

5,347 individuals from the general Spanish/Italian popula-

tions. Notably, the severe COVID-19 cases were recruited

prior to vaccine availability, thus allowing analysis of the

virus-naive host reaction to SARS-CoV-2 infection. All

individuals had undergone previous array-based genotyp-

ing as part of prior genome-wide association studies

(GWASs).25,26 The candidate gene sequencing approach

was based on the cohort’s informed consent on targeted

follow-up sequencing. Together with available clinical in-

formation, sequencing data were then analyzed for sin-

gle-variant associations and gene burden using different

stratified approaches, including distinct phenotype defini-

tions and variant pathogenicity levels.
Subjects and methods

Candidate gene selection
The available informed consent documentation allowed follow-up

sequencing only and precluded systematic approaches such as

exome sequencing (ES). Therefore, 55 genes were selected in

August 2020, based on evidence available at that time. These

comprised 14 genes from early GWAS loci5,25; five genes fromdiag-

nostic ES11,13; and 36 genes with functional evidence, which have

been implicated previously in viral defense or pathogen immunity

(Figure 1A). For each gene, the evidence for selection is presented
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in Table S1. Three genes (CCL3, CXCL1, CFD) were subsequently

excluded from the analysis, since the size of the respective covered

region post quality control (QC) was less than 50% of the origi-

nally targeted region. Detailed information on the coverage of

these genes, and the number of variant sites per gene, is provided

in Table S1.
Study design and phenotype definition
Coding regions were sequenced using single-molecule molecular

inversion probes (MIPs),28 in 9,104 Spanish/Italian individuals

from the Severe COVID-19 GWAS cohort25,26 (see supplemental

methods). Following post-sequencing QC, which included the

use of array-based genotype data for population inference and

relatedness filtering (Figure 1B), a total of 7,119 individuals re-

mained for analysis. Data analysis included (1) single-variant asso-

ciation analysis and (2) rare variant collapsing analysis. Both ana-

lyses were performed using four case-control definitions (Table 1)

that involved one main analysis comprising the entire cohort,

and three stratified analyses. The stratified analyses were per-

formed in order to investigate the contribution of rare variants

in individuals with otherwise low epidemiological risk (POPlowrisk,

COVhosp by risk factors) and the potential contribution of rare var-

iants to the level of disease severity (COVhosp by respiratory sup-

port). Each of the four analyses was repeated separately for males

and females, in view of prior reports of sex differences in etiolog-

ical risk.3 Notably, some COVhosp individuals (66 of 1,772) did

not have sufficient information on comorbidities and were there-

fore excluded from the risk factor-based stratifications (POPlowrisk,

COVhosp by risk factors).
Cohort characteristics
The recruitment procedure, sample collection, and DNA extrac-

tion were conducted by the Severe COVID-19 GWAS group

(Figure 1B) and are described elsewhere.26 Approvals were ob-

tained from the relevant ethics committees (listed in supplemental

methods) and informed consent was obtained. Individuals hospi-

talized for severe COVID-19 (COVhosp) were collected at several

centers in Spain and Italy in 2020 as part of the first outbreaks

of the pandemic in Europe. Severe COVID-19 was defined as

requiring respiratory support, i.e., the necessity for oxygen supple-

mentation. While other definitions exist, this approach was cho-

sen to ensure feasibility.26 Following QC (see next paragraph)

the cohort comprised (1) 1,772 COVhosp individuals (n ¼ 1,008

from Italy, n ¼ 764 from Spain; Figure 1C; Table 1); and (2)

5,347 population-based controls (n ¼ 1,408 from Italy, n ¼ 3,939

from Spain). In total, 38% of all individuals were female. Respira-

tory support for COVhosp individuals was documented as the

maximum support required during hospitalization: oxygen mask

only (level 1, lowest), non-invasive ventilation (level 2), invasive

ventilation (level 3), or extracorporeal membrane oxygenation

(ECMO) (level 4, highest). For themajority of the COVhosp individ-

uals (1,706 of 1,772) data were available on comorbid CAD, dia-

betes, and hypertension (see Figure S1 for further information

including subcohort [Italy/Spain]-specific distribution of risk

factors).
QC and data processing
After library preparation and sequencing using MIPs28 (23150

base pairs [bp], paired-end, see supplemental methods), data

were processed using an MIP-specific pipeline that included

several filter and QC steps (supplemental methods) and various
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Figure 1. Study design and cohort characteristics
(A) Candidate genes included in targeted sequencing, grouped according to source of evidence (details in Table S1). Genes known to
cause human inborn errors of immunity27 are highlighted in bold, and genes excluded during quality control due to low sequencing
coverage are crossed out.
(B)Workflow describing themain steps of sample preparation, genotyping, sequencing, and computational processing. Boxes colored in
gray indicate steps that were performed in previous studies.25,26 MIP, molecular inversion probe; PCA, principal-component analysis;
QC, quality control.
(C) Number of individuals in the Italian (left) and Spanish (right) subcohorts. The number of COVhosp individuals with no reported risk
factors (as described in Table 1) is highlighted in red. The proportion of females is shown in parentheses.
(D) Number of variants observed in the cohort in relation to their minor allele frequency (MAF). In the present study, variants with MAF
<1%were denoted as rare variants, while all others were considered common. Intensity of color shading indicates whether (dark) or not
(light) variants have been reported with allele frequency in gnomAD r2.1 exomes.
tools.29–35 DNA QC, population inference, and relatedness

filtering had been performed previously by the Severe COVID-19

GWAS group25,26 using their array-based genotype data.

Two patients in the Asano et al.19 study had phenotypes, age,

sex, and rare TLR7 variants that were identical to those in the pre-

sent data, suggesting a sample overlap. After recontacting the

groups responsible for the recruitment of these two individuals,

a total of 82 individuals who may have been common to other

research groups were identified. Rare TLR7 variants of previously

reported individuals are labeled accordingly (Table S2).

Single-variant analysis
Analysis of the present cohort

An additive non-singleton single-variant association test was per-

formed using logistic regression with plink36 v2.0 and Firth correc-

tion, as well as age, sex, age2, age*sex, and the first 10 principal

components (PCs) as covariates. The number of PCs was chosen

in accordance with Degenhardt et al.26 and the COVID-HGI

exome-wide association study.15 As the target region spans only

about 0.003% of the human genome, the PCs were calculated us-

ing the respective array-based genome-wide genotype data (De-

genhardt et al.26) to maximize the capture of population structure.

As case-control ratios and other sample characteristics were sub-

stantially different between both populations, logistic regression

was performed separately for the Italian and the Spanish cohorts,

and the results were then meta-analyzed using METAL.37 We

applied two thresholds for multiple testing: The ‘‘strict’’ threshold

was established using the Bonferroni method, which involved

correction for the number of analyses (four case-control defini-

tions, three sex-based stratifications) and the number of tested var-
Human
iants (strict, a ¼ 6.7 3 10�6). To take the potential correlation of

the different analyses into account, a ‘‘lenient’’ significance

threshold was applied, involving correction for the number of

tested variants only (lenient, a ¼ 4.1 3 10�5).

Replication cohorts

Whenever COVID-HGI release 7 analysis A2 summary statistics7

were used as the replication cohort, this refers to the leave-one-

out-HOSTAGE dataset (which excludes all individuals who were

common to the present cohort and the COVID-HGI). For compar-

ison andmeta-analysis of the present single-variant association re-

sults with those of the Regeneron dataset,16 the results of the

POPall analysis and the POPlowrisk analysis (without sex stratifica-

tion) were followed up for all variants with OR >5 and p < 0.05

in the present cohort. When associations for these variants were

reported in the Regeneron browser (see web resources), the respec-

tive results were filtered for (1) the use of exome data (instead of

imputed data); (2) a phenotype corresponding to that used in

the present study (‘‘COVID-19 positive severe vs. COVID-19 nega-

tive or COVID-19 status unknown’’ or ‘‘COVID-19 positive hospi-

talized vs. COVID-19 negative or COVID-19 status unknown,’’ as

defined in Kosmicki et al.16); (3) ‘‘European’’ or ‘‘pan-ancestry’’

ancestry; and (4) the analysis type ‘‘meta-analysis.’’ For each

variant, the results of the analysis that included themaximal num-

ber of cases were selected.

Gene-based rare variant collapsing analysis
Variant collapsing (or burden testing) is a widely used approach

that is applied to increase statistical power for the testing of rare

variants. Here, variants from distinct genetic regions (e.g., in the

present study, genes or gene groups) are combined, and testing
Genetics and Genomics Advances 5, 100323, October 10, 2024 3



Table 1. Case-control definitions used in the present study

Analysis Cases
n cases
(females/males) Controls

n controls
(females/males)

Case-control definitions for analyses involving population-based controls (POP)

(1) POPall Individuals hospitalized for COVID-19
who required respiratory support
(COVhosp)

1,772 (605/1,167) Individuals from the general
population with unknown
SARS-CoV-2/COVID-19
status (population controls)

5,347 (2,102/3,245)

(2) POPlowrisk COVhosp with no reported risk factorsa 378 (126/252) Same as above 5,347 (2,102/3,245)

Case-control definitions for analyses involving COVID-19 hospitalized individuals (COVhosp) only

(3) COVhosp by
risk factors

COVhosp with no reported risk factorsa 378 (126/252) COVhosp with two or more
of the reported risk factorsa

726 (244/482)

(4) COVhosp by
respiratory
support

COVhosp requiring respiratory support
level 3 (intubation) or 4 (ECMO,
highest level)

478 (115/363) COVhosp requiring respiratory
support level 1 (oxygen
mask only, lowest level)

661 (284/377)

aRisk factors for which phenotype data were broadly available: age R60 years, diabetes, hypertension, coronary artery disease. Notably, 66 of 1,772 COVhosp
individuals did not have sufficient information on comorbidities and were therefore excluded from the risk factor-based stratification (POPlowrisk, COVhosp by
risk factors). ECMO, extracorporeal membrane oxygenation.
is performed for these variant groups rather than for single

variants.

Definition of variant classes

The present analyses considered two allele frequency groups: MAF

<1% and MAF <0.1% (defined as maximal MAF in this cohort or

in gnomAD r2.1 non-Finnish European [NFE] exomes). Cohort

allele frequencies were calculated using plink v2.0. Deleterious-

ness classes SYN, M1, M3, M4, and C10þM1 were used. M1, M3,

and M4 are similar to those described in Kosmicki et al.16 The

M1 class is restricted to pLoF variants that are defined as having

an Ensembl variant effect predictor (VEP)34 impact of ‘‘HIGH.’’

M3 contains all M1 variants, plus variants with a VEP impact of

‘‘moderate’’ but not missense and missense variants for which

five of five prediction algorithms (SIFT, PolyPhen2-HDIV database,

PolyPhen2-HVAR database, LRT, MutationTaster) predict deleteri-

ousness. M4 contains all M3 variants plus missense variants for

which at least one of the five algorithms predicts a deleterious ef-

fect. SYN contains synonymous variants only, and functions as a

control class. C10þM1 contains all pLoF (M1) variants and all var-

iants with a CADD v1.638 (combined annotation dependent

depletion) score greater than 10, as used by Kousathanas et al.9

TLR7-specific variant definitions

For TLR7, two additional gene-specific deleteriousness classes were

created. The first one comprised biochemically loss-of-function

(bLoF) variants, i.e., all variants reported as being loss of function

on the basis of biochemical tests in previous research.18–20 Synon-

ymous TLR7 variants were inspected for potential cryptic splicing

effects using spliceAI.39 The second class (3D-P) comprised vari-

ants that were deemed pathogenic or likely pathogenic based on

protein structural analyses. Herefore, each of the mutation sites

was analyzed in the context of its structural environment and

with regard to changes in protein folding stability. The latter ana-

lyses aimed to infer pathogenicity from the extent of mutation-

induced changes in the structural integrity of the TLR7 dimer

(see supplemental methods40–43).

Statistical analysis

For the statistical analysis of the collapsed variants, the Cochran-

Mantel-Haenszel (CMH) test (plink v1.9 implementation, domi-

nant model) was used, as previously described.44 While other

methods exist, the CMH test was chosen as it was developed for

case-control studies with subgroups of different characteristics by
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performing internal stratification while still generating overall test

statistics for the entire cohort.45Moreover, the CMH test can handle

rare events,46 which is especially useful for rare variant collapsing

analysis. The stratification categories used for the CMH test were

subcohort (Italy, Spain) and sex (male, female). Similar to the sin-

gle-variant association analyses, two thresholds for statistical correc-

tion were applied: The ‘‘strict’’ definition was performed according

to Bonferroni, and accounted for all performed tests (tested genes,

variant categories, case-control definitions, a ¼ 8.7 3 10�6). The

‘‘lenient’’ threshold considered that the case-control definitions

and the different variant categories are correlated and therefore cor-

rected for the number of tested genes only (a ¼ 9.6 3 10�4). Data

from theGenOMICC-study9 were used for a replication attempt, de-

tails for which are provided in the supplemental methods.
Results

Single-variant analyses identify etiological variant in TBK1

Within the 52 genes, 3,218 high-confidence variants were

identified across the entire cohort, 95% of which were rare

(n ¼ 3,059; MAF <1%). Of these rare variants, 28.6% had

no reported frequency in gnomAD r2.1 exomes (n ¼ 874,

Figures 1D and S2). More specifically, 2,007 singletons (i.e.,

variants that occur in only one individual) were observed,

including 111 putative loss-of-function (pLoF) variants.

These were present in 31 COVhosp individuals, and 77 popu-

lation-basedcontrols (1.75%vs. 1.44%; three individuals car-

ried twovariants, respectively).Within the subset ofCOVhosp

individuals with no reported risk factors, eight singleton

pLoFs were observed in seven individuals (1.85%), all of

which were heterozygous and two of which were found in

one individual (Table S3). For these seven individuals, thedis-

tribution of age and level of respiratory support did not differ

significantly from those of the remaining COVhosp individ-

uals with no reported risk factors (Welch’s p > 0.39).

Next, formal association testing for the 1,211 non-

singleton variants was performed using Firth’s logistic

regression and the covariates age, sex, age2, age*sex, and
024



Figure 2. Association analysis for individual variants
The p values (y axis, negative log10) obtained in the association analysis of 1,211 non-singleton variants from the POPall analysis. Var-
iants are grouped according to the genes (x axis, sorted alphabetically) in which they are located. Results for case-control definitions
other than POPall are provided in Figure S3. Dotted line: Lenient significance threshold, correcting for the number of variants tested
(a ¼ 4.1 3 10�5). Dashed line: Strict significance threshold, also taking into account multiple testing due to additional case-control def-
initions (a ¼ 6.7 3 10�6). Variants with p values below the lenient significance threshold are marked in green and were only found in
genes selected based on prior GWAS evidence, i.e., FYCO1 and XCR1 at 3p21.31, IFNAR2 at 21q22.11.
10 PCs obtained from prior array-based genotyping (see

subjects and methods). This was performed separately for

the Spanish and Italian cohorts, and the results were

meta-analyzed using inverse variance based meta-analysis

(Figures 2 and S3). Overall, seven variants had p values

below the strict significance threshold (see subjects and

methods). All of these seven variants were associated at

genome-wide significance (and with the same direction

of effect) in the independent data freeze of the global

COVID-19 Host Genetics Initiative (HGI)7 (release 7, see

subjects and methods). Variants associated with nominal

significance (p < 0.05) and gnomAD r2.1 NFE exomes-

AF > 0.01% are reported in Table S4.

Given the limited statistical power for single-variant ana-

lyses, candidatevariants (definedashigheffect size estimates

[OR>5] andnominal significance [p<0.05]) fromthePOPall
andPOPlowrisk analyses (non-sex-stratified)were followedup

in the Regeneron dataset (see subjects andmethods). A total

of 62 variants, all of which had anMAF<0.2% and were ab-

sent from the COVID-19 HGI data, met these criteria. Of

those, 38 variantswere alsopresent in theRegenerondataset

(Table S5). The most significant variant was a missense

variant in TBK1 (p.Arg358His, chr12:64878163:G:A

(hg19), CADD¼ 23.3, REVEL¼ 0.259), which showed effect

sizes of >20 in both cohorts (Regeneron: OR ¼ 24.2, confi-

dence interval¼ [3.64, 160.47], p ¼ 0.00097; present study:

OR ¼ 30.0 [2.71, 332.6], p ¼ 0.0056). In a meta-analysis of

bothcohorts, this variant showed strong associationwith se-

vere COVID-19 (p ¼ 1.673 10�5, OR ¼ 26.3 [5.93, 116.2]).

Gene-based rare variant collapsing analysis confirms

TLR7 association

To increase statistical power, gene-based collapsing ana-

lyses were performed. For this purpose, variants were as-
Human
signed to (1) two allele frequency groups (MAF <0.1%

and MAF <1%); and (2) five classes of deleteriousness

(M1, M3, M4, C10þM1, SYN; see subjects and methods).

Variant counts per class are provided in Figure S2. For

each combination of MAF, deleteriousness, and gene, sta-

tistical association analyses were performed using the

CMH test. The results are reported in Figure 3 for MAF

<0.1% and in Figure S4 for both MAF <1% and sex-strat-

ified analyses, respectively. At strict threshold definition

(subjects and methods), significant associations were ob-

tained for TLR7 in (1) the POPlowrisk analysis overall

(C10þM1, MAF <0.1%; carriers: 9/378 cases vs. 13/

5,347 controls; p ¼ 1.27 3 10�10, OR ¼ 12.3 [4.7, 32.2];

Figure 3) and (2) the female-only subgroup (C10þM1,

MAF <0.1%; 4/126 vs. 5/2102; p ¼ 1.75 3 10�9, OR ¼
24.8 [5.9, 105.2]; Figure S4). Suggestive evidence (at

lenient threshold, see subjects and methods) was

obtained for two additional genes: (1) IFNAR2 [OMIM:

602376] (POPall, C10þM1, MAF<1%; 60/1772 vs. 73/

5347; p ¼ 2.61 310�4, OR ¼ 1.9 [1.3, 2.7]; Figure S4)

and (2) IFIH1 [OMIM: 606951] (COVhosp by respiratory

support, C10þM1, MAF <1%; 54/478 vs. 36/661; p ¼
3.60 3 10�4, OR ¼ 2.2 [1.4, 3.4]; Figure S4). All associa-

tions with nominal significance (p < 0.05) are listed in

Table S6.

To investigate whether genes with related functions were

enriched for rare variants, eight gene sets were defined

(Table S7) and a collapsing analysis based on each gene

set was conducted. No significant results were obtained af-

ter strict correction for multiple testing (Figure S5). Never-

theless, the most significant associations were observed for

the set of immunodeficiency genes (n ¼ 15), and this re-

mained nominally significant even after the exclusion

of TLR7.
Genetics and Genomics Advances 5, 100323, October 10, 2024 5



Figure 3. Results of the gene-based collapsing analysis for rare variants with MAF <0.1%
The p values (y axis, negative log10) are plotted for 52 genes (x axis, sorted alphabetically). The various case-control definitions (see Ta-
ble 1; excluding sex-stratified analyses) are depicted as symbols, while variant deleteriousness classes are coded according to color (M1:
pLoF, M3 and M4: pLoF and moderate effect variants including missense in two graduations, C10þM1: CADD >10 or pLoF, SYN: syn-
onymous, see subjects and methods). Dashed line: Strict significance threshold, correcting for all tests conducted: (a ¼ 8.7 3 10�6).
Dotted line: Lenient significance threshold, correcting for the number of genes tested (a ¼ 9.63 10�4). Results for sex-stratified analyses
and variants with MAF <1% are provided in Figure S4.
Identification of a low-frequency TLR7 risk variant in the

Spanish population

In view of both the highly significant results presented

above and robust prior evidence for the involvement of

TLR7 in severe COVID-19,11,12,18–21 more detailed investi-

gations were performed to characterize the rare TLR7

variant associations in the present cohort. Overall, the

identified TLR7 variants comprised 26 missense, one

30UTR, and 16 synonymous (maximum spliceAI score:

0.02) variants, but no pLoF variants (see Table S2). Two

COVhosp individuals (one male case, one female case;

none of the population-based controls) carried two distinct

rare variants in TLR7 respectively. The male individual

(p.M854I, p.L988S) was previously reported in an indepen-

dent study by Asano et al.19 (see subjects and methods). In

the female individual, biallelic occurrence of the two dele-

terious variants (p.A448V, p.R920K) could cause X-linked

recessive disease. While no direct assessment of compound

heterozygosity based onMIP sequencing data was possible,

in silico haplotype assessment using the variant co-occur-

rence tool of gnomAD v2.1.1 (see web resources)47 sug-

gested that the two variants map to different haplotypes.

The analyses also identified a missense variant exclusive

to the Spanish subcohort (rs202129610, p.D332G). This

was present in two population-based controls (MAF ¼
0.038%, one female, one male), and three COVhosp indi-

viduals (MAF ¼ 0.33%, one female, two males), The fre-

quency further increased in COVhosp individuals with no

reported risk factors (MAF ¼ 1.0%). The variant was nomi-

nally significant in the single-variant logistic regression

analysis (POPlowrisk, OR ¼ 5.77 [1.49, 22.3], p ¼ 0.011),

but was absent from the Regeneron dataset and the in silico

pathogenicity prediction of this variant was ambiguous

(CADD ¼ 18.45, REVEL ¼ 0.078). However, a previous

study reported that this variant was hypomorphic, as based
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on in vitro experiments (7% NF-kB activity19). This variant

is absent from European individuals in gnomAD v3.1.2

and has only been reported to date in Latino/Admixed

Americans (population-specific MAF of 0.019%).

Incorporation of functional and protein data increases

TLR7 rare variant effect sizes

Seventeen of the 26 TLR7 missense variants have previ-

ously been analyzed in vitro. In these experiments, seven

variants were reported to decrease or even abolish the func-

tion of TLR7.18–20 These seven variants were combined to a

new deleteriousness class (bLoF, biochemically loss of func-

tion, as proposed in Matuozzo et al.21) for the rare variant

collapsing analysis. The resulting OR (POPlowrisk, bLoF,

MAF<0.1%; 4/378 vs. 3/5347; p ¼ 1.73 3 10�10, OR ¼
34.6 [6.8,177.2]; Figure 4A) was substantially higher than

effect sizes based on in silico prediction alone (POPlowrisk,

C10þM1, MAF <0.1%; OR ¼ 12.3; see above).

To create a structure-based variant class, protein struc-

ture data for TLR7 were used for 3D modeling and protein

energy calculation (subjects and methods, supplemental

methods). Based on this approach, eight of the 26 rare

missense variants were classified as either damaging (n ¼
4) or probably damaging (n ¼ 4) to the protein structure,

and were aggregated into a new variant class (3D-P). Statis-

tical analysis of this 3D-P class yielded even higher ORs

(POPlowrisk, 3D-P, MAF <0.1%; 7/378 vs. 4/5,347; p ¼
1.74 3 10�15, OR ¼ 46.5 [10.9, 198.7]) than the aforemen-

tioned variant classifications (see Figures 4A and S6). In

alignment with prior studies that identified TLR7 associa-

tions in younger individuals,11,12,18–21 the analysis was

repeated by defining cases as individuals with severe

COVID-19 aged <60 years, with no consideration of other

risk factors, and comparing these individuals with all pop-

ulation controls. Using the 3D-P TLR7 (MAF <0.1%) class,
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Figure 4. Forest plot for TLR7 rare variant gene burden accord-
ing to variant classification
(A) Odds ratios (ORs) of collapsed variants in TLR7 are shown for
POPlowrisk at different minor allele frequency groups (MAF) and
deleteriousness predictions (class). Within each group, results are
presented for all individuals and for sex-stratified analyses. Error
bars indicate 95% confidence intervals. SYN, synonymous;
C10þM1, CADD>10 or pLoF; bLoF, biochemical evidence for a
loss-of-function effect; 3D-P, variant class based on 3D protein
structure, see subjects and methods. SYN variants with MAF
<0.001 were only present in controls (OR¼ 0.0, no confidence in-
terval calculable).
(B) Presence of 3D-P TLR7 (MAF<0.1%) variant carriers (black
dots) in all COVhosp individuals (gray blue), COVhosp with age
<60 y (light blue) and COVhosp with no reported risk factors
(‘‘no RF,’’ dark blue). The number of individuals within each set
is indicated by area and is specified in the outer legend. Percent-
ages in brackets represent carrier ratios.
the proportion of carriers increased across the following

three subgroups: all COVhosp individuals (0.45%); younger

COVhosp individuals (age<60 years, 1.25%); COVhosp indi-

viduals with no reported risk factors (1.85%; Figure 4B).

Investigation of domain- and sex-specific variant effects

in TLR7

To date, X-linked TLR7 deficiency, as mediated by rare-

deleterious variants, has mainly been reported in

males,11,12,18–20 and a classical X-linked recessive mode of

inheritance has been suggested.11,12,18,19 However, two

recent association studies also reported an enrichment of

rare variants in females.15,21 Given the present finding of

an enrichment of rare heterozygous TLR7 variants in fe-

males, and previous observations of TLR7 escaping

X-inactivation in immune cells,24 analyses were performed

to explore other potential mutational mechanisms. First,

the distribution of deleterious rare variants across the

TLR7 protein was studied in females with no reported

risk factors (i.e., POPlowrisk; C10þM1, MAF <0.1%). In fe-

male cases, an overrepresentation of these variants was
Human
observed in the leucine-rich-repeat (LRR) domain (see

Figure 5A). Since the LRR domain is involved in the dimer-

ization of TLR7 monomers, which is essential for the acti-

vation of downstream signaling pathways,48 we hypothe-

sized that missense variants located in this domain could

potentially confer a dominant-negative effect by affecting

protein dimerization. We approached this by using the

TLR7 protein structure, and observed that four non-synon-

ymous variants (Q138R, H298R, H630Y, I759V; all

singleton, all missense) in the entire cohort were located

within 5 Ångström of the dimerization interface (I5AN;

hashed residue labels in Figure 5). Two of these I5AN

variants (Q138R, H630Y) were present in female COVhosp

individuals with no reported risk factors, and were among

the 3D-P variants (indicating a damaging structural

effect, see above). No I5AN variant was observed in female

controls (POPlowrisk females, I5AN, MAF <1%; 2/126 vs.

0/2101; p ¼ 2.1 3 10�6; Figure 5). The two other variants

(H298R, I759V) were observed in male controls (POPlowrisk

males, I5AN, MAF<1%; 0/252 vs. 2/3245; p ¼ 0.65).

To replicate the domain- and sex-specific TLR7 findings,

analyses were performed in the cohort of the GenOMICC

study, which has generated one of the largest collections

of genome sequencing (GS) data from individuals with se-

vere COVID-19 to date.9 Overall, only very few numbers of

TLR7 variants were observed in females, and no I5AN

variant was observed in either female cases or controls.

Detailed results are shown in Table S8 and methodical in-

formation is presented in the supplemental methods.
Discussion

The present study investigated the contribution of rare ge-

netic variants within 52 candidate genes to the etiology of

severe COVID-19 and their relation to clinical risk factors,

via the performance of joint and stratified analyses in two

large, ethnically homogeneous cohorts recruited in the

pre-vaccine era of the SARS-CoV-2 pandemic. The present

findings reinforce prior genetic evidence for an etiological

role of the X-chromosomal gene TLR7 in severe COVID-19

through the identification of a robust enrichment of dele-

terious rare variants. Notably, this enrichment was particu-

larly pronounced in young individuals with severe

COVID-19 with no reported demographic or clinical risk

factors, and was also present in the female-only subgroup.

Together with results from protein structural modeling,

this suggests the existence ofmore complex pathomechan-

isms of TLR7 variants, beyond X-linked recessive loss of

function. The analyses also generated statistical evidence

that rare variants in three additional genes of the inter-

feron signaling pathway, specifically IFNAR2, IFIH1, and

TBK1, contribute to severe COVID-19, though these find-

ings require further follow-up.

TLR7 is a cytosolic receptor that recognizes single-

stranded RNA, and is a central component of the

interferon signaling pathway during SARS-CoV-2 host
Genetics and Genomics Advances 5, 100323, October 10, 2024 7
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Figure 5. Location of rare TLR7 variants within TLR7 protein domains
(A) Rare, deleterious TLR7 variants (POPlowrisk, C10þM1, MAF <0.1%) are mapped on the protein domains of TLR7 (x axis: amino acid
position). Phenotype, according to the POPlowrisk case-control definition, and the sex of variant carriers is indicated by color or caption.
Variants of carriers previously reported in Asano et al.19 (see subjects and methods and Table S2) are indicated by asterisks (*). TLR7 do-
mains: LRR-NT (leucine-rich repeat, N terminal, aa 27–65) orange; LRR regions 1–26 (aa 66–786) blue; LRR-CT (leucine-rich repeat, C
terminal, aa 787–839), violet; TIR (Toll/interleukin-1 receptor) domain (aa 889–1033), green.
(B) TLR7 dimer overview, interface highlighted as gray surface (also in C).
(C) Non-synonymous variants from (A) are highlighted in the 3D conformation of one TLR7 subunit (PDB ID: 5GMH) and are presented
from two angles. Phenotype (POPlowrisk, see A) and sex of the variant carriers are indicated by color coding. Variants within 5 Ångström of
the subunit interface are highlighted by a hash (#, also in A). Variants located downstream of position T858 could not be plotted due to
absence of the respective residues from the structure. Visualized using PyMOL Molecular Graphics System (Version 2.5.5 Schrödinger,
LLC).
defense.23 Multiple lines of evidence suggest that delete-

rious variants within TLR7 play a causal role in severe

COVID-19,11,12,18–21 and this eventually resulted in recog-

nition of TLR7 deficiency as an inborn error of immunity27

[OMIM: 301051]. Research suggests that TLR7 deficiency is

more frequent in younger (<60 years) patients with severe

COVID-19,21 which is consistent with the hypothesis that

the contribution of host genetic factors is larger in young

individuals,49 as has been demonstrated for other risk

loci for severe COVID-19, e.g., at the key GWAS locus

3p21.31.50 To refine the subgroup in which severe

COVID-19 secondary to TLR7 deficiency is prevalent, the

present analyses extended the list of non-genetic risk fac-

tors beyond age by including available data on diabetes,

hypertension, and CAD. The largest effect size for the asso-

ciation of rare deleterious TLR7 variants with severe

COVID-19 was observed in young individuals with none

of the aforementioned risk factors. Specifically, in these

cases, an approximately 10-fold increase in the proportion
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of individuals carrying variants that were predicted to be

deleterious was observed (2.4% vs. 0.24% in population-

based controls, C10þM1, MAF <0.1%). Variant classifica-

tion via 3D protein structural analysis (3D-P, MAF

<0.1%) further refined this overrepresentation to 1.85%

in young individuals with severe COVID-19 and none of

the listed risk factors, compared with 0.07% in popula-

tion-based controls.

In the female-only subgroup, the present analyses iden-

tified a strong enrichment of rare TLR7 variants that were

predicted to be damaging. While such an enrichment has

been observed in previous independent cohorts,15,21 the

underlying mechanisms were not explored. The proposed

X-linked recessive model19 suggests that TLR7 deficiency

would be restricted to females with biallelic deleterious

mutations. While we identified one female with presumed

compound heterozygosity, this individual was not among

the cases of the POPlowrisk analysis and did not contribute

to the observed burden. We therefore suggest the existence
024



of an additional pathomechanism in heterozygous fe-

males, which may be dominant-negative in nature. We hy-

pothesized that an affected TLR7 monomer would inter-

fere with dimerization, thereby reducing TLR7 function

by >50%. In support of this, an overrepresentation of

TLR7 missense variants that surrounded the dimerization

interface in 3D space was observed in female cases. This

observation adds to accumulating evidence for an allelic

series underlying TLR7 dosage and its relevance to human

immune disorders. The most recent support for this was

provided by reports of hypermorphic or gain-of-function

mutations in TLR7, which underlie monogenic forms of

systemic lupus erythematosus51 [OMIM: 301080]. Howev-

er, we were unable to obtain additional confirmation from

the GenOMICC cohort due to power limitations, such as

the very low number of variant observations and the

differing cohort characteristics, including recruitment

criteria. Future functional in vitro investigation of the path-

ogenic variants that were found in the present female cases

are required to confirm our hypothesis.

The present analyses also identified a missense TLR7

variant (rs202129610, p.D332G) that was specific to the

Spanish subcohort. This variant, which has in vitro evi-

dence for deleteriousness,19 was observed in three of 764

severe COVID-19 cases from Spain (MAF ¼ 0.33%),

including two out of 147 young hospitalized individuals

with no additional risk factors (MAF ¼ 1.0%). This is sub-

stantially higher than the allele frequency observed in

the present Spanish controls (MAF¼ 0.038%), as well as es-

timates from the Latin American population groups from

the gnomAD data v3.1.2 (0.019%).

Besides the results for TLR7, the present analyses gener-

ated several other interesting findings that require replica-

tion in larger cohorts. Specifically, associations with severe

COVID-19 were found for IFNAR2 and IFIH1 in the rare

variant collapsing analysis and for a rare missense TBK1

variant in the single-variant analysis. All of the three genes

are involved in the interferon signaling pathway,23 and

prior evidence for involvement in severe COVID-19 has

been presented.13,52,53 The observed rare TBK1 missense

variant (p.Arg358His) was found in two of 378 young cases

with no reported risk factors and only one of 5,347 con-

trols. Although statistical evidence for this variant was

not robust to multiple testing in our study alone, its inde-

pendent replication in the Regeneron dataset adds to the

prior finding of a rare deleterious TBK1 variant in a child

with severe COVID-19.13 Furthermore, our observation of

an enrichment of rare variants in the broader group of im-

munodeficiency genes, even after the exclusion of TLR7,

suggests that this set of genes is likely to harbor a substan-

tial proportion of the rare variant risk for severe COVID-19.

While our results contribute to ongoing work into the

role of rare variants within the overall host genetic archi-

tecture of severe COVID-19, the present study had some

inherent limitations. First, the candidate gene approach,

which was selected due to a lack of informed consent for

more systematic ES/GS analyses, limited the number of
Human
analyzed genes to 52. This prevented identification of addi-

tional risk genes, and also poses challenges regarding pop-

ulation substructure that might cause confounding in rare

variant studies.54 To address the latter, we took advantage

of the availability of prior array-based genotypes,25,26

which decreased the risk of false-positive findings due to

population stratification. Second, gene selection was per-

formed in August 2020, and thus subsequently reported

risk genes were not examined, e.g., those located at loci

that have been reported in recent global GWAS.7,10 Third,

comorbidity data were limited, and did not include the

now well-established risk factor increased weight—usually

measured as body mass index (BMI)—which is one of the

strongest clinical predictors of severe COVID-19.3 Howev-

er, CAD, diabetes, and hypertension are all correlated with

BMI, which suggests that the present analyses captured

this effect at least in part. Of note, following initial evi-

dence on hypertension being an independent risk factor

for severe COVID-19,2 subsequent studies have reported

ambiguous results.55 Given that individual array-based ge-

notypes are available for the individuals included in the

present study, future refinement analyses might include

the evaluation of genetically mediated obesity via the inte-

gration of polygenic risk scores. Finally, in the present anal-

ysis, the selection of variants with a deleterious effect on

protein function was mainly based on computational pre-

diction tools, since (with the exception of some variants

within TLR7) experimental data on genetic variants are

limited. Particularly for missense variants, computational

prediction tools are imperfect, and misclassification prob-

ably decreased the power of the gene-based collapsing an-

alyses. However, a tailored, molecular modeling approach

for missense variants within TLR7 was used in order to

fine-tune the statistical analyses and led to increased effect

size estimates. In the future, new approaches, such as novel

computational prediction tools that build more strongly

on protein structural information,56–58 and data from

deepmutational scanning experiments, could improve sta-

tistical power, and enhance the information content of the

present data.

Despite the residual open questions, our stratified anal-

ysis approach refined the association between rare delete-

rious TLR7 variants and severe COVID-19. We suggest a

candidate pathomechanism in females, which was identi-

fied on the basis of the integration of cohort-level

sequencing data and information on protein structure.
Data and code availability

Individual-level data, including raw sequencing data and

genotypes, are unavailable for sharing due to consent

restrictions. Single-variant summary statistics (MAF

>0.01%) and the results of the burden analyses are made

available at Zenodo (https://doi.org/10.5281/zenodo.

11148109). Code used for the analyses in the study is

openly available and referenced throughout the paper.
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Del Riego, E.S., Alonso, I.L., López-Martı́nez, C., Martı́n-Vice-

nte, P., Garcı́a-Clemente, M., Hermida-Valverde, T., Enrı́quez-

Rodriguez, A.I., et al. (2023). Age-dependent effect of the

IFIH1/MDA5 gene variants on the risk of critical COVID-19.

Immunogenetics 75, 91–98. https://doi.org/10.1007/s00251-

022-01281-6.

54. O’Connor, T.D., Kiezun, A., Bamshad, M., Rich, S.S., Smith,

J.D., Turner, E., NHLBIGO Exome Sequencing Project, ESP

Population Genetics, Statistical Analysis Working Group,

Leal, S.M., and Akey, J.M. (2013). Fine-scale patterns of popu-

lation stratification confound rare variant association tests.

PLoS One 8, e65834. https://doi.org/10.1371/journal.pone.

0065834.

55. Gallo, G., Calvez, V., and Savoia, C. (2022). Hypertension and

COVID-19: Current Evidence and Perspectives. High Blood

Press. Cardiovasc. Prev. 29, 115–123. https://doi.org/10.

1007/s40292-022-00506-9.

56. Schmidt, A., Röner, S., Mai, K., Klinkhammer, H., Kircher, M.,

and Ludwig, K.U. (2023). Predicting the pathogenicity of

missense variants using features derived from AlphaFold2.

Bioinforma. Oxf. Engl. 39, btad280. https://doi.org/10.1093/

bioinformatics/btad280.

57. Gao, H., Hamp, T., Ede, J., Schraiber, J.G., McRae, J., Singer-

Berk, M., Yang, Y., Dietrich, A.S.D., Fiziev, P.P., Kuderna,

L.F.K., et al. (2023). The landscape of tolerated genetic varia-

tion in humans and primates. Science 380, eabn8153.

https://doi.org/10.1126/science.abn8197.

58. Cheng, J., Novati, G., Pan, J., Bycroft, C., �Zemgulyt _e, A., Ap-

plebaum, T., Pritzel, A., Wong, L.H., Zielinski, M., Sargeant,

T., et al. (2023). Accurate proteome-wide missense variant ef-

fect prediction with AlphaMissense. Science 381, eadg7492.

https://doi.org/10.1126/science.adg7492.
2024

https://doi.org/10.1038/s41588-021-00870-7
https://doi.org/10.1186/s13742-015-0047-8
https://doi.org/10.1093/bioinformatics/btq340
https://doi.org/10.1093/bioinformatics/btq340
https://doi.org/10.1186/s13073-021-00835-9
https://doi.org/10.1016/j.cell.2018.12.015
https://doi.org/10.1016/j.csbj.2018.01.002
https://doi.org/10.1016/j.csbj.2018.01.002
https://doi.org/10.1093/nar/gki387
https://doi.org/10.1093/nar/gki387
https://doi.org/10.1093/nar/gkw304
https://doi.org/10.1002/pro.2751
https://doi.org/10.1002/pro.2751
https://doi.org/10.1126/science.aaa3650
https://doi.org/10.1093/jnci/22.4.719
https://doi.org/10.1093/jnci/22.4.719
https://doi.org/10.1136/eb-2018-102911
https://doi.org/10.1136/eb-2018-102911
https://doi.org/10.1038/s41588-023-01608-3
https://doi.org/10.1016/j.immuni.2016.09.011
https://doi.org/10.1016/j.immuni.2016.09.011
https://doi.org/10.1093/hmg/ddac132
https://doi.org/10.1093/hmg/ddac132
https://doi.org/10.1172/JCI152386
https://doi.org/10.1172/JCI152386
https://doi.org/10.1038/s41586-022-04642-z
https://doi.org/10.1038/s41586-022-04642-z
https://doi.org/10.3389/fimmu.2022.949413
https://doi.org/10.3389/fimmu.2022.949413
https://doi.org/10.1007/s00251-022-01281-6
https://doi.org/10.1007/s00251-022-01281-6
https://doi.org/10.1371/journal.pone.0065834
https://doi.org/10.1371/journal.pone.0065834
https://doi.org/10.1007/s40292-022-00506-9
https://doi.org/10.1007/s40292-022-00506-9
https://doi.org/10.1093/bioinformatics/btad280
https://doi.org/10.1093/bioinformatics/btad280
https://doi.org/10.1126/science.abn8197
https://doi.org/10.1126/science.adg7492


HGGA, Volume 5

Supplemental information

Stratified analyses refine association between TLR7

rare variants and severe COVID-19

Jannik Boos, Caspar I. van der Made, Gayatri Ramakrishnan, Eamon Coughlan, Rosanna
Asselta, Britt-Sabina Löscher, Luca V.C. Valenti, Rafael de Cid, Luis Bujanda, Antonio
Julià, Erola Pairo-Castineira, J. Kenneth Baillie, Sandra May, Berina Zametica, Julia
Heggemann, Agustín Albillos, Jesus M. Banales, Jordi Barretina, Natalia Blay, Paolo
Bonfanti, Maria Buti, Javier Fernandez, Sara Marsal, Daniele Prati, Luisa
Ronzoni, Nicoletta Sacchi, The Spanish/Italian Severe COVID-19 Sequencing
group, GenOMICC Investigators, Joachim L. Schultze, Olaf Riess, Andre
Franke, Konrad Rawlik, David Ellinghaus, Alexander Hoischen, Axel
Schmidt, and Kerstin U. Ludwig



 
 

Supplement 
Table of Contents 

- Supplemental Tables S3, S7, S8 
- Supplemental Figures S1-S7 
- Supplemental Methods 
- Author Contribution Statement 
- References for the Supplement 

 
Supplemental Tables S1, S2, S4, S5, S6 and S9 are provided as separate spreadsheets. 

  



 
 

Supplemental Tables 
 

Table S3:  
Singleton pLoF variants (all heterozygous) in COVhosp individuals with no reported risk factors. 

sex Age 
range 

Respiratory 
support 
level 

Variant ID (hg19) HGVSc HGCSp Gene CADD 
(phred) 

LOEUF 

male# 40-49# 2 (NIV) 1:247587253:C:T ENST00000336119.3: 
c.508C>T 

p.Arg170Ter NLRP3 33 0.52 

male 50-59 3 
(intubation) 

2:160746889:C:G ENST00000504764.1: 
c.638-1G>C* 

- (splice acceptor) LY75 34 0.93 

male 40-49 1  (oxygen 
mask) 

2:160755571:C:T ENST00000504764.1: 
c.95-1G>A* 

- (splice acceptor) LY75 33 0.93 

female 50-59 1 (oxygen 
mask) 

2:163144677:C:A ENST00000263642.2: 
c.1063G>T 

p.Glu355Ter IFIH1 37 1.55 

male# 40-49# 2 (NIV) 3:46009772:C:A ENST00000296137.2: 
c.1054G>T 

p.Glu352Ter FYCO1 32 0.91 

female 30-39 2 (NIV) 4:110723127:T:C ENST00000394634.2: 
c.1A>G 

p.Met1? CFI 24.5 0.76 

male 50-59 2 (NIV) 6:137519600:TG:T ENST00000367739.4: 
c.1037del 

p.Thr346LysfsTer7 IFNGR1 14.7 0.70 

male 50-59 1 (oxygen 
mask) 

20:3669267:C:A ENST00000344754.4: 
c.5071-1G>T 

- (splice acceptor) SIGLEC1 32 1.23 

None of the variants was present in gnomAD (2.1) non-Finnish Europeans. pLoF=putative loss-of-function, NIV=Non-invasive ventilation, 
LOEUF=Loss-of-function Observed/Expected Upper-bound Fraction, #Same individual carrying two singleton pLoF variants. *Isoform covers 
LY75-CD302 
Predictions by LOFTEE: Variants in rows 1-6 are predicted to be high-confidence LoF, 6:137519600:TG:T is predicted to be low-confidence LoF, 
and 4:110723127:T:C is not predicted to be LoF. 

 
  



 
 

Table S7: Genes included in different gene groups  

 
  

Gene group Genes 

Inflammasome/IL-1/TNF 
(inflammasome) 

NLRP3, CASP1, CASP8, IL1B, TNF, RIPK1, RIPK3, MYD88, TNFRSF13B 

SARS-CoV-2 entry/replication 
(virus_entry_repl) 

ACE2, TMPRSS2, FURIN, SLC6A20, DDX1, DDX58, TLR4, FYCO1, CTSB, CTSL, ADAM17 

Complement MBL2, CFH, CFI, CFB, ADAM10, CD46 

IFN signaling TLR3, IFIH1, IFITM3, TBK1, TLR7, IL10RB, IFNAR1, IFNAR2, SIGLEC1, MYD88, IFNGR1 

Chemokine receptor signaling 
(chemokine_rec_signal) 

CCR1, CCR3, CCR2, CCR9, IL8, CXCL3, CXCL10, CXCR6, XCR1, CCL2, CCL20 

Immunodeficiency genes 
(immuno_deficiency) 

CASP8, CD46, CFB, CFH, CFI, IFNAR1, IFNAR2, IFNGR1, IFIH1, MYD88, NLRP3, RIPK1, TBK1, TLR3, 
TLR7 



 
 

Table S8: GenOMICC follow-up results 

Analysis sex OR CI P N ref|het|hemi|hom cases N ref|het|hemi|hom controls 

TLR7 protein-coding 

region, pLoF & CADD>10, 

MAF<0.1% 

all 2.01 [1.10, 3.70] 0.017 2,766 | 3 | 21 | 0 2,152 | 10 | 1 | 0 

females 0.41 [0.12, 1.41] 0.16 987 I 3 | - | 0 1,444 | 10 | - | 0 

males 3.53 [1.46, 8.52] 0.0003 1,779 | - | 21 | - 708 | - | 1 | - 

LRR domain, pLoF & 

CADD>10, MAF<0.1% 

all 2.01 [0.94, 4.32] 0.048 2,773 | 2 | 15 | 0 2,157 | 5 | 1 | 0 

females 0.59 [0.11, 3.15] 0.542 988 | 2 | - | 0 1,449 | 5 | - | 0 

males 3.13 [1.15, 8.50] 0.006 1,785 | - | 15 | - 708 | - | 1 | - 

Interface 5 Ångström 

neighborhood, non 

synonymous (I5AN) 

all 2.16 [0.62, 7.57] 0.23 2,784 | 0 | 6 | 0 2,163 | 0 | 0 | 0 

females - - - 990 | 0 | - | 0 1,454 | 0 | - | 0 

males 2.01 [0.74, 5.47] 0.17 1,794 | - | 6 | - 709 | - | 0 | - 

All analyses in cases vs. controls, age < 60 years. CADD: Combined Annotation Dependent Depletion; MAF: minor allele frequency; pLoF: 
putative loss-of-function; LRR: leucine-rich-repeat; OR: odds ratio; CI: 95% confidence interval; P: P-value. 

  



 
 

Supplemental Figures 
 
 
 
  

Figure S1: Distribution of age, sex, risk factors and respiratory support level per subcohort. 
A Age distribution of individuals separated by sex, and phenotype (cases = COVhosp, see Table 1). 
B Presence of comorbidities in cases (=COVhosp) per subcohort. 66 cases had no data available 
(NA). CAD=coronary artery disease. C Respiratory support levels of cases (=COVhosp) per 
subcohort. Categories are 1: oxygen mask only, 2: non-invasive ventilation, 3: invasive ventilation, 
4: extracorporeal membrane oxygenation (ECMO). 



 
 

 
 

Figure S2: Summary of variant sites found in this study. Darker/brighter bars indicate variants 
with/without reported frequency in gnomAD version r.2.1 exomes. A: Total number of variants across the 
entire cohort. B: Number of variants per deleteriousness class. SYN: synonymous variants; M1: putative 
Loss-of-function variants, defined as having a VEP impact of “HIGH”; M3: M1, moderate non missense, 
and missense variants predicted to be deleterious by 5/5 in-silico prediction scores (see Methods); M4: 
M3 and missense variants predicted to be deleterious by at least one in-silico prediction score; C10+M1: 
M1 and all variants with CADD>10. C: Variants divided by their allele frequency status, in common (≥1%) 
and rare (<1%), *observed common variants were identical in the Italian and Spanish subcohorts. IT: Italy; 
ES: Spain. 



 
 

 

 

Figure S3: Association analysis of individual variants, including stratified analyses. P-values (y-axis, 
negative log10) obtained from an association analysis of 1,211 non-singleton variants. Variants are grouped 
according to the genes (x-axis, sorted alphabetically) in which they are located. Case-control definition and 
sex stratification are indicated by symbols. Dotted line: Lenient significance threshold correcting for the 
number of variants tested (α=4.1x10-5). Dashed line: Strict significance threshold, also taking into account
the number of additional case-control definitions (α=6.7x10-6). Variants with p-values below the lenient 
significance threshold are highlighted in green. 



 
 

 

Figure S4: Results of the gene-based rare variant collapsing analysis including all stratified analyses. 
P-values (y-axis, negative log10) for all analyzed genes (x-axis, sorted alphabetically) for variants with 
MAF<1% (a) and MAF<0.1% (b). Case-control definition and sex stratification are indicated by symbols. 
Different variant deleteriousness classes (M1 = pLoF, M3 & M4 = pLoF and moderate effect variants including 
missense in two graduations, C10+M1 = CADD>10 or pLoF, SYN = synonymous, see Methods) are indicated 
by color. Dashed line: Strict significance threshold correcting for all tests conducted: (α=8.7x10-6). Dotted line: 
More lenient significance threshold correcting for the number of genes tested (α=9.6x10-4). 



 
 

 

 

 
 
 
 
  

Figure S5: Gene group rare variant collapsing analysis. P-values (y-axis, negative log10) for different 
gene groups (x-axis), left: MAF<1%, right: MAF<0.1%. Gene group definition is provided in 
Supplementary Table 2. Different case-control definitions are indicated by symbols. Different variant 
deleteriousness classes (M1 = pLoF, M3 & M4 = pLoF and moderate effect variants including missense 
in two graduations, C10+M1 = CADD>10 or pLoF, SYN = synonymous, see Methods) are indicated by 
color. Dashed line: Strict significance threshold correcting for all tests conducted: (α=1.89x10-5). Dotted 
line: More lenient significance threshold correcting for the number of gene groups tested (α=2.27x10-3). 



 
 

 

 

  

Figure S6:  Odds ratios for variants in TLR7, based on different definitions of deleteriousness. 
Odds ratios (ORs) of collapsed variants in TLR7 are shown for the POPall (left) and POPlowrisk (right) 
analysis for different allele frequency groups (MAF, upper bound) and deleteriousness classes. Sex-
stratified analyses were conducted (color coded). Error bars indicate 95% confidence intervals. Top: 
in silico prediction based variant classes, SYN=synonymous, C10+M1=CADD>10 or pLoF, M4 = 
pLoF and moderate effect variants including deleterious missense variants, see Methods. Bottom: 
Protein domain, protein structure, and biochemically based classes.  bLoF=biochemically loss-of-
function, 3D-P=variant class based on 3D protein structure, I5AN=Interface 5 Ångström 
neighborhood, TIR=Toll/interleukin-1 (IL-1) receptor, LRRR=leucine-rich repeat regions, see 
Methods. 



 
 

  

Figure S7: Allele frequencies of variants in the present cohort compared to allele 
frequencies in gnomAD. Comparison with gnomAD non-Finnish-European (NFE) data in blue 
and with East-Asians (EAS) in red. AAF=alternate allele frequency. a Arrows indicate strong 
deviations of our AAFs (alternate allele frequencies) from those of the gnomAD-NFE data. Closer 
investigation detected misaligned reads, and the respective regions were excluded from the 
analysis. b AAFs after the aforementioned exclusion of regions. 



 
 

Supplemental Methods 

Ethics committee approval 
This is a multi-institutional study for which approvals were obtained from the following 
relevant ethics committees: Germany: Kiel (reference number, D464/20); Bonn (reference 
number 171/20), Italy: Fondazione IRCCS Cá Granda Ospedale Maggiore Policlinico 
(reference numbers, 342_2020 for patients and 334-2020 for control participants), 
Humanitas Clinical and Research Center, IRCCS (reference number, 316/20), the University 
of Milano–Bicocca School of Medicine, San Gerardo Hospital, Monza (the ethics committee 
of the National Institute of Infectious Diseases Lazzarro Spallanzani reference number, 
84/2020); Spain: Hospital Clínic, Barcelona (reference number, HCB/2020/0405), Hospital 
Universitario Vall d’Hebron, Barcelona (reference number, PR[AG]244/2020), Hospital 
Universitario Ramón y Cajal, Madrid (reference number, 093/20) and Donostia University 
Hospital, San Sebastian (reference number, PI2020064). 

Library preparation and sequencing 
A Molecular Inversion Probe (MIP)1 approach was selected, since this represents a targeted, 
cost- and resource-efficient method of sequencing. Moreover, MIPs allow the addition of 
unique molecular identifiers (UMIs), which can be used for the deduplication of PCR clones, 
thus reducing PCR artifacts. For each of the 55 initially selected genes, the target region was 
defined as the protein coding region plus 5bp around the exons in order to cover splice sites. 
MIPGEN2 was used to design 988 MIPs covering 148kb of target sequence. For sample 
identification, 8bp barcodes were added to the 5’ and 3’ side using PCR primers. Eight pre-
runs (seven on MiSeq and one on NextSeq, Illumina) were performed in order to balance 
sample DNA amounts and MIPs, and thus ensure an evenly distributed number of reads for 
each sample and each MIP. After balancing, sequencing was performed in two S4 flow cells 
on a NovaSeq 6000 (Illumina), with four lanes in each run and ~1,200 samples per lane. 

Data processing and variant calling 
 
Demultiplexing was performed using bcl2fastq and the 8bp barcodes on both sides of the 
reads. For data preprocessing, tally (version tally-15-065)3 was used to deduplicate reads on 
the whole read level. Using bwa-mem2 (version 2.1)4 the reads were then aligned against a 
specific reference sequence, as based on hg19, which contained only those regions that are 
targeted by the MIPs. This conserved computational resources for aligning 9,104 samples, 
and assigned each read to the MIP from which it originated, allowing specific trimming of MIP 
arms (see below). After alignment, the reads were filtered using the following criteria: mapped, 
non-secondary or supplementary, proper pair, a read length > 100, no soft clipped ends longer 
than 10 bases, a mapping distance ≤ 5 with exceptions for long indels (insertion or deletion), 
and not being a mate of a filtered-out read. MIP arms were then trimmed to avoid false 
reference variant calls on the MIP arms. Subsequently, umi_tools (version 0.2.3)5 was used 
to deduplicate on the UMI level in order to reduce PCR artifacts. A coverage analysis was 
performed to filter out low performing samples (coverage <25 on more than 50% of MIPs) and 
MIPs (coverage <25 on more than 50% of the samples). Details on exonic regions included 



 
 

per gene after QC is shown in Table S1. Next, variant calling was performed using the GATK 
standard workflow (HaplotypeCaller, GenomicsDBImport and GenotypeGVCFs, version 
4.2.4.1) with selected MIP specific parameters (e.g., HaplotypeCaller: “--max-reads-per-
alignment-start 0” and “--recover-all-dangling-branches”). 
 
Variant sites were retained if QUAL ≥ 120 and QD ≥ 5. Genotypes were retained if GQ ≥ 20 
and DP ≥ 25. Next, the Variant Call Format file (VCF) was left-normalized and brought into 
biallelic form. A homopolymer filter was then applied. This excluded indels at sites with 
homopolymers with a length of five or more bases in order to reduce potential false positives 
introduced at these difficult-to-sequence sites. An allelic balance filter was then applied to 
restrict possible alternate allele counts to 0-5% for homozygous reference calls, 20-80% for 
heterozygous calls, and 95-100% for homozygous alternate calls. Next, all sites at which less 
than 95% of samples had a valid genotype were removed. Finally, all samples with a male 
phenotype, but a heterozygous variant on the X-chromosome, were removed. Annotation was 
performed using VEP (version 104)6 and CADD v1.6 7. 
 
Testing for batch effects was performed by comparing the allele frequencies of common 
variants between different runs and lanes on the sequencer. No significant differences were 
observed. To check for systematic errors in the sequencing analysis, allele frequencies in the 
present cohort were compared with non-Finish-European (NFE) allele frequencies from the 
gnomAD database (Figure S7). Substantial differences were found in four regions only, for 
which misaligned reads were identified. These regions were therefore excluded. 

Protein structural analyses 
To investigate the structural impact of missense variants in human TLR7, the crystal structure 
of macaque TLR7 (PDB ID: 5GMH, aa. 27-839) was used. This was in its activated m-shaped 
dimer conformation, co-crystallized with ligands. Modeling the variants in the macaque TLR7 
to predict and understand their functional outcomes in humans is a feasible approach, given 
the high sequence identity (98%) between human and macaque TLR7. It must be noted that 
the crystal structure of macaque TLR7 does not comprise the transmembranous region (aa. 
840-860) and the cytoplasmic TIR domain. Thus, mutations in such regions were excluded 
from the analysis. TLR7 variants were assigned to the 3D-P class using the following 
procedure. Changes in protein stability secondary to mutations were estimated using the 
widely-used FoldX energy function (v.5.0)8 , considering its speed, accuracy and ease of use 
for computational mutagenesis experiments9. First, structural models for each mutation were 
constructed using the functions RepairPDB and BuildModel, with five iterations of sidechain 
rotamer adjustments. RepairPDB yields energy minimized structure through repair of bad 
torsion angles, or van der Waals clashes, and is a default recommended step. BuildModel 
allows for introduction of point mutations and obtain energy terms (ddG = dGmut-dGwt). This 
function was performed five times, followed by calculation of average differences in free 
energies between the wildtype and mutant structures in kcal/mol (ddG). Changes in protein-
protein interaction energies secondary to a mutation were also estimated in a similar manner 
using the AnalyseComplex function. A positive ddG (>1 kcal/mol) implies destabilitizing 
mutation while a negative ddG (< -1kcal/mol) denotes stabilizing mutation. To ascertain 
reliability in the pathogenicity predictions, mutations were assessed in terms of amino acid 
residue interaction networks as well. To comprehend changes in residue-residue interaction 
networks within and across TLR7 protein dimer, the Frustratometer tool10 was used. This 



 
 

quantifies the degree of energetic frustration in proteins using water-mediated energy 
functions (AWSEM-MD) and electrostatic potentials11. For each mutation, differences in the 
frustration indices were calculated between the wild-type structure and its variant model. A 
consensus-based estimate was then derived to determine the overall outcome. A missense 
variant was classified as damaging if substantial changes were evident in at least two of the 
following three estimates: protein stability (> 1kcal/mol or < -1kcal/mol); protein-protein 
interaction energy (> 1kcal/mol or < -1kcal/mol); and frustration indices (∆ number of highly or 
minimally frustrated residues). If substantial changes were only evident for one of the three 
estimates, the missense variant was classified as “probably damaging”. These two categories 
were then combined into the 3D-P (3D protein structure) variant class. An in-house script was 
used to compile a list of residues at the dimerization interface in TLR7, as well as those located 
within a distance of 5Å from the interface residues (I5AN).  
 
 

Follow-up analysis in the cohort of the GenOMICC study 
Recruitment, phenotype definition, sequencing, and quality control for the GenOMICC dataset 
have been described previously (cases and mild or asymptomatic controls in Kousathanas et 
al.12). To mimic the present POPlowrisk analysis, the analysis was restricted to European 
individuals aged <60 years, since age was the only risk factor that was readily available. This 
yielded 2,790 cases (severe COVID-19 with admission to the intensive care unit) and 2,163 
controls (non-hospitalized or asymptomatic SARS-CoV-2 infection). Analyzed variants were 
restricted to those with an MAF <0.1% in the full cohort, and an allele count of at least 1 in the 
European < 60 years cohort. These variants were then collapsed according to location (TLR7 
protein, LRR domain, 5 Ångström distance to the protein-protein interface) and predicted 
deleteriousness (pLOF based on LOFTEE, CADD > 10). CADD scores were calculated using 
the GRCh38-v1.6 model at https://cadd.gs.washington.edu 7. The analyses were performed 
using the genome-wide Firth logistic regression test implemented in REGENIE13, using age, 
sex, age2, age-by-sex, age2-by-sex, and the first 20 principal components as covariates. 
Overall, 26 distinct variants (in 35 individuals) met the criteria for at least one of the analyses. 
 

  

https://cadd.gs.washington.edu/
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