
Supplemental Material

Algorithm 1 Partition Sequence S into sets of modimizers
Input: List of hashed k-mers Sk[x1,x2, ...xn], window size w, sparsity s
Output: List of modimizer sets MODs = [A1,A2, ...,Ar]

1: function BASELAYER(Sk,w,s)
2: n← length of Sk

3: r← ⌈ n
w ⌉ ▷ Set number of windows (resolution) based on n and w

4: m← w
s ▷ Set the expected modimizer density

5: MODs← list of size r
6: for i← 0 to r do ▷ Retrieve all modimizers within each interval
7: MODs[i]←{}
8: start← wi ▷ Set non-overlapping interval boundaries
9: end←min((start+w),n−1)

10: MODs[i]← GETMODIMIZERS(Sk[start : end],s,d) ▷ Populate list with sets of modimizers
11: end for
12: return MODs

13: end function

14: function GETMODIMIZERS(Sk,s,m)
15: A←∀x ∈ {Sk[A]} : x≡ 0 mod s ▷ Gather the set of unique modimizers per interval
16: ŝ← s

2
17: while |A|< m

2 and ŝ > 1 do ▷ Resample at higher density if number of modimizers is under threshold
18: A←∀x ∈ {Sk[A]} : x≡ 0 mod ŝ
19: ŝ← ŝ

2
20: end while
21: return A
22: end function

Algorithm 2 Partition Sequence S into a modimizer hierarchy H
Input: List of hashed k-mers Sk[x1,x2, ...xn], minimum window size ŵ, sparsity ŝ, resolution r
Output: List H = [MODŝ,MOD2ŝ, ...,MOD2l−1ŝ]

1: function BUILDHIERARCHY(Sk,ŵ,ŝ,r)
2: n← length of Sk

3: l← ⌊log2 (n
ŵr)⌋ ▷ Initialize number of layers based on min. window size and resolution

4: H ← list of size l
5: H[0]← BASELAYER(Sk, ŵ, ŝ) ▷ Compute bottom layer
6: for i← 1 to l do ▷ Iteratively compute subsequent layers from previous layer
7: r̂← 2l−1−ir ▷ Halve the resolution when building subsequent layer
8: H[i]← ADDLAYER(H[i−1],2iŝ,2iŵ,n, r̂)
9: end for

10: return H
11: end function

12: function ADDLAYER(MODŝ[A1,A2, ...,Ar],s,w,n, r̂)
13: MODs← list of size r̂ ▷ Initialize current layer
14: m← w

s ▷ Update expected sketch size for current layer
15: for i← 0 to r̂ do ▷ Retrieve modimizers from matching intervals within the previous layer
16: MODs[i] = GETMODIMIZERS((MODŝ[A2i]∪MODŝ[A2i+1]),s,m)
17: end for
18: return MODs

19: end function

References

a) b)

Genomic position (Mbp) Genomic position (Mbp)

- 100
- 99
- 98
- 97
- 96
- 95
- 94

- 92
- 91

- 87

- 89

% Identity Estimate

- 93

- 100

- 98

% Identity Estimate

chr14:
2,000,000-3,600,000

chr14:
2,100,000-2,800,000

Supplementary Figure 1. Screenshots of ModDotPlot run on a human acrocentric short arm (CHM13 chr14:2,000,000-3,600,000),
highlighting the rDNA array with and without ModDotPlot’s interval extension activated. a) With no interval extension, the full 16 copy
rDNA array is visible; however, when zoomed in (chr14:2,100,000-2,800,000) and filtered for >98% sequence identity, some rDNA
copies disappear from the plot due to registration artifacts. b) With intervals extended (i.e. when computing similarity for the cell
M(A,B), interval B is extended by w/2 in both directions), all rDNA copies appear at all zoom levels.

Supplementary Figure 2. Screenshot of ModDotPlot’s interactive mode, showcasing the entire Y chromosome of a gibbon (mSym-
Syn1, Makova et. al 2024)). Despite spanning almost 30 Mbp, ModDotPlot was able to create 3 matrices in under 2 minutes, with
around 2.5GB of memory. Screenshot was taken using ModDotPlot version v0.8.0 (git commit ed190c7).

m = 2048
r = 0.962

m = 1024
r = 0.957

m = 512
r = 0.937

m = 256
r = 0.918

ANImANIm

ANImANIm

AN
I c

AN
I c

Supplementary Figure 3. Scatterplot of ANIm against the ANIc distances under various sketch sizes. The 10-mer non-canonical
HOR region from Figure 4 was excluded from analysis.

