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Supplementary Figure S1: CCAR1 knock-out cells show FA-like phenotypes in multiple cell 

lines, related to Figure 1 

(A-B) CCAR1 knock-out clones in K562 (A) and HEK293T (B) cell lines show loss of FANCA 

similar to RPE data in Figure 1. (C) K562 CCAR1 knockout clones are sensitive to MMC 

treatment as evaluated by CTG assay. Mean and SD from n=3 independent experiments are 

plotted. (D) WB of FANCA in FANCA knock-out clones. (E) MMC sensitivity of FANCA 

knock-out clones. Cells were treated with MMC for 6 days, and then cell viability was measured 

by CellTiter-Glo assay. Mean and SD from n=2 independent experiments are plotted. (F, G) 

Representative immunofluorescence images and quantification of the number of FANCD2 foci 

(n=2). (H) Colony formation assay data of RPE p53-/-CCAR1 knock-out clones. Cells were 

treated with Olaparib, X-ray, or Topotecan. Mean and SEM from n=3 independent experiments 

are plotted. (I) WB of CCAR1 in CCAR1 transduced RPE p53-/- CCAR1 knock-out clones. RPE 

p53-/- and p53-/-CCAR1 knock-out clones were transduced with pLV-Blast (EV) or WT CCAR1 

cDNA, and selected using 10 µg/mL Blasticidin S HCl for 7 days. (J) MMC resistance of WT 

CCAR1 transduced RPE p53-/- CCAR1 knock-out clones #2 and #3. The cells were treated with 

MMC for 6 days, and then cell viability was measured by CellTiter-Glo assay. Mean and SEM 

from n=3 independent experiments are plotted. (K) WB showing RPE CCAR2 knock-out clones 

do not have a defect in FANCA protein expression. (L) CCAR2 loss does not sensitize cells to 

MMC treatment. Colony formation assay of RPE CCAR2 knock-out clones treated with MMC 

for 7 days. Mean and SD from n=3 independent experiments are plotted. 

 

 



Supplementary figure S2
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Supplementary Figure S2: CCAR1 loss does not affect other genes in the FA pathway, 

related to Figure 2 

(A) mRNA expression levels of FA core-complex genes in RPE p53-/-CCAR1 knock-out clones. 

Mean and SEM from n=4 independent experiments are plotted. (B) WB of FANCE and FANCL 

in RPE p53-/-CCAR1 knock-out clones. (C) WB of FANCA and FANCG in RPE p53-/- and 

p53-/-CCAR1 knock-out cells transduced with pMMP-puro (EV), FANCA, or FANCG cDNA, 

and selected using 12 µg/mL puromycin for 3 days (n=2). (D) Cell survival was evaluated for 

FANCA or FANCG cDNA transduced RPE p53-/- or p53-/-CCAR1 knock-out cells treated with 

MMC using the CellTiter Glo assay. The cells were treated with MMC for 6 days. Mean and 

SEM from n=3 independent experiments are plotted. (E) Time-course of the degradation of 

FANCA protein in CHX-treated RPE p53-/- and p53-/-CCAR1 knock-out cells transduced with 

FANCA cDNA. WB images were quantified using ImageJ. Mean and SD from n=3 independent 

experiments are plotted. (F) WB of FANCA in RPE p53-/- and p53-/-CCAR1 knock-out cells 

treated with MG-132 (10 µM) for 6 h (n=2). (G) Co-immunoprecipitation assay of FLAG-

CCAR1 and FANCA in HEK293T cells (n=2).  

 

  



Supplementary figure S3
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Supplementary Figure S3: CCAR1 regulates the exclusion of the poison exon from FANCA 

transcript in multiple cell lines, related to Figure 3 

(A) Schematics of the FANCA poison exon (PE) between exon14 and exon15 and the design of 

antisense oligonucleotide (ASO) and sgRNAs targeting the poison exon. (B) RT-PCR evaluation 

of the FANCA poison exon (PE) inclusion in K562 and HEK293T CCAR1 knockout clones. (C) 

RT-PCR evaluation of the FANCA poison exon (PE) inclusion in RPE p53-/-CCAR1 knock-out 

cells after transfection with sgRNAs targeting the PE (sgPoison-1 and sgPoison-2). (D) 

Restoration of MMC resistance in FANCA poison exon-edited RPE p53-/-CCAR1 knock-out 

cells. Cells were treated with MMC for 6 days, and then cell viability was measured by 

CellTiter-Glo assay. Mean and SEM from n=3 independent experiments are plotted. (E) FANCA 

transcript level in PE-edited RPE p53-/-CCAR1 knock-out clones. Mean and SEM from n=4 

independent experiments are plotted. *:P<0.05 (One-way ANOVA, Dunnett's multiple 

comparisons test). Statistical analysis was performed by comparing to CCAR1 knock-out cells. 

(F) RT-PCR evaluation of the FANCA poison exon (PE) inclusion in RPE p53-/- and p53-/-

CCAR1 knock-out cells after transfection with antisense oligonucleotide (ASO) (n=2). (G) WB 

of FANCA in RPE p53-/-CCAR1 knock-out cells transfected with ASO (n=2). (H) Control 

showing qPCR signal in the RNA immuno-precipitation (RIP) assay is derived from RNA 

converted to cDNA and not genomic DNA contamination. qPCR was set up with immuno-

precipitated RNA converted to cDNA without adding the reverse transcriptase enzyme. The Ct 

values obtained were normalized to Ct values obtained from input RNA converted to cDNA with 

reverse transcriptase enzyme. Mean and SD of (n=2).  
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Supplementary Figure S4: Functional evaluation of various CCAR1 deletion mutants, 

related to Figure 4 

(A) WB of CCAR1 and FANCA in RPE p53-/-CCAR1 knock-out cells transduced with empty 

vector (EV), WT CCAR1, dS1 mutant, or dSAP mutants (n=2). (B) Schematics of d2–321, d2–

380, d2–477, d2–145, and d205–321 mutants used in this study. (C) WB of CCAR1 in RPE p53-

/-CCAR1 knock-out cells transduced with d2–321, d2–380, or d2–477 mutants. Anti-CCAR1 and 

anti-FLAG antibodies were used to detect the CCAR1 mutant proteins (n=2). (D) RT-PCR 

showing FANCA poison exon (PE) inclusion in RPE p53-/-CCAR1 knock-out cells transduced 

with empty vector (EV), WT CCAR1, d2–321, d2–380, or d2–477 mutants (n=2). (E) FANCA 

protein expression in RPE p53-/-CCAR1 knock-out cells transduced with empty vector (EV), 

WT CCAR1, d2–321, d2–380, or d2–477 mutants (n=2). (F) RT-PCR showing inclusion of the 

FANCA poison exon in RPE p53-/-CCAR1 knock-out cells transduced with empty vector (EV), 

WT CCAR1, d2–146 or d205–321 mutants (n=2). (G) FANCA protein expression in RPE p53-/-

CCAR1 knock-out cells transduced with empty vector (EV), WT CCAR1, d2–146, or d205–321 

mutants (n=2). (H) FANCA protein expression in RPE p53-/-CCAR1 knock-out cells transduced 

with empty vector (EV), WT CCAR1, d874–1150, d924–1150, or d1033–1150 mutants (n=2).  

 

  



Supplementary figure S5
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Supplementary Figure S5: CCAR1 interacts with the spliceosome and affects various 

alternative splicing event types, related to Figure 5 

(A) Oriole stained SDS-PAGE gel image of 2% FLAG-CCAR1 IP samples from HEK293T WT 

and CCAR1 knock-out cells transfected with EV, WT-CCAR1-3xFLAG, or dEF-CCAR1-

3xFLAG. The chromatin fraction samples were used for mass spectrometry analysis (n=2). (B) 

WB showing fractionation of input samples used for FLAG IP in Fig. 5B. HEK293T CCAR1 

knock-out cells transfected with empty vector (EV), WT CCAR1-3xFLAG, or dEF mutant-

CCAR1-3xFLAG (dEF) were fractionated and the chromatin fraction was used for FLAG-IP. (C) 

Reactome functional interaction analysis of the potential binding partners of CCAR1 identified 

by FLAG-CCAR1 IP mass spectrometry. The factors of the spliceosome pathway are highlighted 

by a red circle. (D) Scatterplot comparing the differences in levels of exon inclusion between 

MISO and rMATS, demonstrating high concordance between the two methods. Red and blue 

dots represent events whose differences in levels of exon inclusion were significantly increased 

(exons included), or decreased (exons excluded), respectively, in both algorithms. The FANCA 

PE inclusion is the top event by both MISO and rMATS algorithm analysis. (E) Volcano plots 

showing alternatively spliced retained intron (RI), alternative 3´splice site (A3SS), alternative 

5´splice site (A5SS), and mutually exclusive exon (MXE) events in RPE p53-/-CCAR1 knock-

out cells compared to RPE p53-/-. (F) Skipped exon event analyzed using rMATS framework 

analysis with stringent a cut-off of FDR (10^-10) and dPSI (0.2). The pie chart on the left shows 

annotated and unannotated skipped exon events in RPE p53-/-CCAR1 knock-out cells compared 

to RPE p53-/-. We also segregated skipped exon events based on exon inclusion or exclusion in 

RPE p53-/-CCAR1 knock-out cells relative to RPE p53-/- (pie chart on the right).  

 



Supplementary figure S6
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Supplementary Figure S6: Validation of the fluorescence-based synthetic FANCA poison 

exon mini-gene reporter construct, related to Figure 6 

(A) Schematic for the mini-gene reporter construct used in Figure 6. mNeongreen CDS was split 

into two exons and a synthetic intron derived from intron 14 of FANCA was inserted in-between. 

The FANCA intron 14 is >6kb, so a minimal region necessary for CCAR1-dependent splicing 

was inserted (200bp from the start of intron14 and 250bp upstream of the poison exon and 159bp 

downstream of the poison exon). The arrows show the position of the primers used for the RT-

PCR assay in Fig. S6B. (B) RT-PCR showing inclusion of the poison exon in the endogenous 

FANCA and in the ectopic mNeongreen mRNA in K562 CCAR1 knock-out clones. (C) Raw 

histogram data for Fig. 6C. K562 WT mini-gene reporter cells transduced with empty vector 

(EV) and CCAR1 knock-out mini-gene reporter cells transduced with EV, wild-type CCAR1 

(WT), or dEF-CCAR1 (dEF) were evaluated by FACS for mNeongreen /mScarlet ratio.  (D) RT-

PCR showing inclusion of the poison exon in the endogenous FANCA and in the ectopic 

mNeongreen mRNA in the cells shown in Fig. S6C. (E) WB analysis of FANCA, CCAR1, and 

FLAG in the cells shown in Fig. S6C. 
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