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Supplementary Figure S1: CCARI knock-out cells show FA-like phenotypes in multiple cell
lines, related to Figure 1

(A-B) CCARI knock-out clones in K562 (A) and HEK293T (B) cell lines show loss of FANCA
similar to RPE data in Figure 1. (C) K562 CCARI knockout clones are sensitive to MMC
treatment as evaluated by CTG assay. Mean and SD from n=3 independent experiments are
plotted. (D) WB of FANCA in FANCA knock-out clones. (E) MMC sensitivity of FANCA
knock-out clones. Cells were treated with MMC for 6 days, and then cell viability was measured
by CellTiter-Glo assay. Mean and SD from n=2 independent experiments are plotted. (F, G)
Representative immunofluorescence images and quantification of the number of FANCD2 foci
(n=2). (H) Colony formation assay data of RPE p53-/-CCARI knock-out clones. Cells were
treated with Olaparib, X-ray, or Topotecan. Mean and SEM from n=3 independent experiments
are plotted. (I) WB of CCAR1 in CCARI transduced RPE p53-/- CCARI knock-out clones. RPE
p33-/- and p53-/~-CCAR1 knock-out clones were transduced with pLV-Blast (EV) or WT CCAR!
cDNA, and selected using 10 pg/mL Blasticidin S HCI for 7 days. (J) MMC resistance of WT
CCARI transduced RPE p53-/- CCAR1 knock-out clones #2 and #3. The cells were treated with
MMC for 6 days, and then cell viability was measured by CellTiter-Glo assay. Mean and SEM
from n=3 independent experiments are plotted. (K) WB showing RPE CCAR2 knock-out clones
do not have a defect in FANCA protein expression. (L) CCAR2 loss does not sensitize cells to
MMC treatment. Colony formation assay of RPE CCAR?2 knock-out clones treated with MMC

for 7 days. Mean and SD from n=3 independent experiments are plotted.



Supplementary figure S2
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Supplementary Figure S2: CCARI loss does not affect other genes in the FA pathway,
related to Figure 2

(A) mRNA expression levels of FA core-complex genes in RPE p53-/-CCAR1 knock-out clones.
Mean and SEM from n=4 independent experiments are plotted. (B) WB of FANCE and FANCL
in RPE p53-/-CCARI knock-out clones. (C) WB of FANCA and FANCG in RPE p53-/- and
p33-/-CCAR1 knock-out cells transduced with pMMP-puro (EV), FANCA, or FANCG cDNA,
and selected using 12 pg/mL puromycin for 3 days (n=2). (D) Cell survival was evaluated for
FANCA or FANCG cDNA transduced RPE p53-/- or p53-/-CCAR1 knock-out cells treated with
MMC using the CellTiter Glo assay. The cells were treated with MMC for 6 days. Mean and
SEM from n=3 independent experiments are plotted. (E) Time-course of the degradation of
FANCA protein in CHX-treated RPE p53-/- and p53-/~-CCAR1 knock-out cells transduced with
FANCA cDNA. WB images were quantified using ImageJ. Mean and SD from n=3 independent
experiments are plotted. (F) WB of FANCA in RPE p53-/- and p53-/~-CCAR1 knock-out cells
treated with MG-132 (10 uM) for 6 h (n=2). (G) Co-immunoprecipitation assay of FLAG-

CCARI1 and FANCA in HEK293T cells (n=2).
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Supplementary Figure S3: CCARI regulates the exclusion of the poison exon from FANCA
transcript in multiple cell lines, related to Figure 3

(A) Schematics of the FANCA poison exon (PE) between exonl4 and exonl5 and the design of
antisense oligonucleotide (ASO) and sgRNAs targeting the poison exon. (B) RT-PCR evaluation
of the FANCA poison exon (PE) inclusion in K562 and HEK293T CCAR1 knockout clones. (C)
RT-PCR evaluation of the FANCA poison exon (PE) inclusion in RPE p53-/~-CCAR1 knock-out
cells after transfection with sgRNAs targeting the PE (sgPoison-1 and sgPoison-2). (D)
Restoration of MMC resistance in FANCA poison exon-edited RPE p53-/~-CCAR1 knock-out
cells. Cells were treated with MMC for 6 days, and then cell viability was measured by
CellTiter-Glo assay. Mean and SEM from n=3 independent experiments are plotted. (E) FANCA
transcript level in PE-edited RPE p53-/~-CCARI knock-out clones. Mean and SEM from n=4
independent experiments are plotted. *:P<0.05 (One-way ANOVA, Dunnett's multiple
comparisons test). Statistical analysis was performed by comparing to CCAR [ knock-out cells.
(F) RT-PCR evaluation of the FANCA poison exon (PE) inclusion in RPE p53-/- and p53-/-
CCARI knock-out cells after transfection with antisense oligonucleotide (ASO) (n=2). (G) WB
of FANCA in RPE p53-/~-CCAR1 knock-out cells transfected with ASO (n=2). (H) Control
showing qPCR signal in the RNA immuno-precipitation (RIP) assay is derived from RNA
converted to cDNA and not genomic DNA contamination. qPCR was set up with immuno-
precipitated RNA converted to cDNA without adding the reverse transcriptase enzyme. The Ct
values obtained were normalized to Ct values obtained from input RNA converted to cDNA with

reverse transcriptase enzyme. Mean and SD of (n=2).
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Supplementary Figure S4: Functional evaluation of various CCARI1 deletion mutants,
related to Figure 4

(A) WB of CCAR1 and FANCA in RPE p53-/-CCARI knock-out cells transduced with empty
vector (EV), WT CCAR1, dS1 mutant, or dASAP mutants (n=2). (B) Schematics of d2-321, d2—
380, d2-477, d2—-145, and d205-321 mutants used in this study. (C) WB of CCAR1 in RPE p53-
/-CCARI knock-out cells transduced with d2-321, d2-380, or d2-477 mutants. Anti-CCAR1 and
anti-FLAG antibodies were used to detect the CCAR1 mutant proteins (n=2). (D) RT-PCR
showing FANCA poison exon (PE) inclusion in RPE p53-/~-CCAR1 knock-out cells transduced
with empty vector (EV), WT CCARI, d2-321, d2-380, or d2—477 mutants (n=2). (E) FANCA
protein expression in RPE p53-/~-CCAR1 knock-out cells transduced with empty vector (EV),
WT CCARI, d2-321, d2-380, or d2—477 mutants (n=2). (F) RT-PCR showing inclusion of the
FANCA poison exon in RPE p53-/~-CCAR1 knock-out cells transduced with empty vector (EV),
WT CCARI, d2—-146 or d205-321 mutants (n=2). (G) FANCA protein expression in RPE p53-/-
CCARI knock-out cells transduced with empty vector (EV), WT CCARI, d2-146, or d205-321
mutants (n=2). (H) FANCA protein expression in RPE p53-/~CCAR1 knock-out cells transduced

with empty vector (EV), WT CCAR1, d874-1150, d924—-1150, or d1033—1150 mutants (n=2).
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Supplementary Figure S5: CCARI interacts with the spliceosome and affects various
alternative splicing event types, related to Figure 5

(A) Oriole stained SDS-PAGE gel image of 2% FLAG-CCARI IP samples from HEK293T WT
and CCAR1 knock-out cells transfected with EV, WT-CCAR1-3xFLAG, or dEF-CCARI-
3xFLAG. The chromatin fraction samples were used for mass spectrometry analysis (n=2). (B)
WB showing fractionation of input samples used for FLAG IP in Fig. 5B. HEK293T CCARI
knock-out cells transfected with empty vector (EV), WT CCARI-3xFLAG, or dEF mutant-
CCARI1-3xFLAG (dEF) were fractionated and the chromatin fraction was used for FLAG-IP. (C)
Reactome functional interaction analysis of the potential binding partners of CCAR1 identified
by FLAG-CCARI IP mass spectrometry. The factors of the spliceosome pathway are highlighted
by a red circle. (D) Scatterplot comparing the differences in levels of exon inclusion between
MISO and rMATS, demonstrating high concordance between the two methods. Red and blue
dots represent events whose differences in levels of exon inclusion were significantly increased
(exons included), or decreased (exons excluded), respectively, in both algorithms. The FANCA
PE inclusion is the top event by both MISO and rMATS algorithm analysis. (E) Volcano plots
showing alternatively spliced retained intron (RI), alternative 3 splice site (A3SS), alternative
5’splice site (ASSS), and mutually exclusive exon (MXE) events in RPE p53-/~-CCARI knock-
out cells compared to RPE p53-/~. (F) Skipped exon event analyzed using rMATS framework
analysis with stringent a cut-off of FDR (10"1%) and dPSI (0.2). The pie chart on the left shows
annotated and unannotated skipped exon events in RPE p53-/~-CCARI knock-out cells compared
to RPE p53-/-. We also segregated skipped exon events based on exon inclusion or exclusion in

RPE p53-/-CCARI knock-out cells relative to RPE p53-/- (pie chart on the right).
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Supplementary Figure S6: Validation of the fluorescence-based synthetic FANCA poison
exon mini-gene reporter construct, related to Figure 6

(A) Schematic for the mini-gene reporter construct used in Figure 6. mNeongreen CDS was split
into two exons and a synthetic intron derived from intron 14 of FANCA was inserted in-between.
The FANCA intron 14 is >6kb, so a minimal region necessary for CCAR1-dependent splicing
was inserted (200bp from the start of intron14 and 250bp upstream of the poison exon and 159bp
downstream of the poison exon). The arrows show the position of the primers used for the RT-
PCR assay in Fig. S6B. (B) RT-PCR showing inclusion of the poison exon in the endogenous
FANCA and in the ectopic mNeongreen mRNA in K562 CCARI knock-out clones. (C) Raw
histogram data for Fig. 6C. K562 WT mini-gene reporter cells transduced with empty vector
(EV) and CCARI knock-out mini-gene reporter cells transduced with EV, wild-type CCARI
(WT), or dEF-CCAR1 (dEF) were evaluated by FACS for mNeongreen /mScarlet ratio. (D) RT-
PCR showing inclusion of the poison exon in the endogenous F4ANCA and in the ectopic
mNeongreen mRNA in the cells shown in Fig. S6C. (E) WB analysis of FANCA, CCARI, and

FLAG in the cells shown in Fig. S6C.
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